Search results for: structural failure risk
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11343

Search results for: structural failure risk

11343 Numerical Modeling of Structural Failure of a Ship During the Collision Event

Authors: Adjal Yassine, Semmani Amar

Abstract:

During the last decades, The risk of collision has been increased, especially in high maritime traffic. As the consequence, the demand is required for safety at sea and environmental protection. For this purpose, the consequences prediction of ship collisions is recommended in order to minimize structural failure. additionally, at the design stage of the ship, damage generated during the collision event must be taken into consideration. This structural failure, in some cases, can develop into the progressive collapse of other structural elements and generate catastrophic consequences. The present study investigates the progressive collapse of ships damaged by collisions using the Non -linear finite element method. The failure criteria are taken into account. The impacted area has a refined mesh in order to have more reliable results. Finally, a parametric study was conducted in this study to highlight the effect of the ship's speed, as well as the different impacted areas of double-bottom ships.

Keywords: collsion, strucural failure, ship, finite element analysis

Procedia PDF Downloads 68
11342 Risk Based Inspection and Proactive Maintenance for Civil and Structural Assets in Oil and Gas Plants

Authors: Mohammad Nazri Mustafa, Sh Norliza Sy Salim, Pedram Hatami Abdullah

Abstract:

Civil and structural assets normally have an average of more than 30 years of design life. Adding to this advantage, the assets are normally subjected to slow degradation process. Due to the fact that repair and strengthening work for these assets are normally not dependent on plant shut down, the maintenance and integrity restoration of these assets are mostly done based on “as required” and “run to failure” basis. However unlike other industries, the exposure in oil and gas environment is harsher as the result of corrosive soil and groundwater, chemical spill, frequent wetting and drying, icing and de-icing, steam and heat, etc. Due to this type of exposure and the increasing level of structural defects and rectification in line with the increasing age of plants, assets integrity assessment requires a more defined scope and procedures that needs to be based on risk and assets criticality. This leads to the establishment of risk based inspection and proactive maintenance procedure for civil and structural assets. To date there is hardly any procedure and guideline as far as integrity assessment and systematic inspection and maintenance of civil and structural assets (onshore) are concerned. Group Technical Solutions has developed a procedure and guideline that takes into consideration credible failure scenario, assets risk and criticality from process safety and structural engineering perspective, structural importance, modeling and analysis among others. Detailed inspection that includes destructive and non-destructive tests (DT & NDT) and structural monitoring is also being performed to quantify defects, assess severity and impact on integrity as well as identify the timeline for integrity restoration. Each defect and its credible failure scenario is assessed against the risk on people, environment, reputation and production loss. This technical paper is intended to share on the established procedure and guideline and their execution in oil & gas plants. In line with the overall roadmap, the procedure and guideline will form part of specialized solutions to increase production and to meet the “Operational Excellence” target while extending service life of civil and structural assets. As the result of implementation, the management of civil and structural assets is now more systematically done and the “fire-fighting” mode of maintenance is being gradually phased out and replaced by a proactive and preventive approach. This technical paper will also set the criteria and pose the challenge to the industry for innovative repair and strengthening methods for civil & structural assets in oil & gas environment, in line with safety, constructability and continuous modification and revamp of plant facilities to meet production demand.

Keywords: assets criticality, credible failure scenario, proactive and preventive maintenance, risk based inspection

Procedia PDF Downloads 359
11341 Enterprise Risk Management: A Future Outlook

Authors: Ruchi Agarwal, Jake Ansell

Abstract:

Austerity impacts on all aspects of society. Companies into the future will have to be more capable of dealing with the risks they face. Enterprise Risk Management (ERM) has widely been accepted in recent years as an approach to manage risks within businesses. ERM attempts to tackle risk holistically with gains from opportunities in a managing risk and reduction in the risk of failure. The paper reviews merits and demerits of approaches to risk management in regard to antifragility. A qualitative study has investigated current practices and the problems with ERM implementation by interviewing over 25 chief risk officers and senior management. The findings indicate the gap in ERM description, understanding, and implementation. The paper suggests risk learning and expertise knowledge supports development of effective enterprise risk management by designing systems with inherent resilience.

Keywords: risk management, interviews, antifragility, failure

Procedia PDF Downloads 519
11340 Binary Decision Diagram Based Methods to Evaluate the Reliability of Systems Considering Failure Dependencies

Authors: Siqi Qiu, Yijian Zheng, Xin Guo Ming

Abstract:

In many reliability and risk analysis, failures of components are supposed to be independent. However, in reality, the ignorance of failure dependencies among components may render the results of reliability and risk analysis incorrect. There are two principal ways to incorporate failure dependencies in system reliability and risk analysis: implicit and explicit methods. In the implicit method, failure dependencies can be modeled by joint probabilities, correlation values or conditional probabilities. In the explicit method, certain types of dependencies can be modeled in a fault tree as mutually independent basic events for specific component failures. In this paper, explicit and implicit methods based on BDD will be proposed to evaluate the reliability of systems considering failure dependencies. The obtained results prove the equivalence of the proposed implicit and explicit methods. It is found that the consideration of failure dependencies decreases the reliability of systems. This observation is intuitive, because more components fail due to failure dependencies. The consideration of failure dependencies helps designers to reduce the dependencies between components during the design phase to make the system more reliable.

Keywords: reliability assessment, risk assessment, failure dependencies, binary decision diagram

Procedia PDF Downloads 442
11339 Accelerated Structural Reliability Analysis under Earthquake-Induced Tsunamis by Advanced Stochastic Simulation

Authors: Sai Hung Cheung, Zhe Shao

Abstract:

Recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 brought huge losses of lives and properties. Maintaining vertical evacuation systems is the most crucial strategy to effectively reduce casualty during the tsunami event. Thus, it is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability (or its complement failure probability) of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of the Subset Simulation algorithm and a recently proposed moving least squares response surface approach for stochastic sampling is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach.

Keywords: response surface model, subset simulation, structural reliability, Tsunami risk

Procedia PDF Downloads 339
11338 Risk and Reliability Based Probabilistic Structural Analysis of Railroad Subgrade Using Finite Element Analysis

Authors: Asif Arshid, Ying Huang, Denver Tolliver

Abstract:

Finite Element (FE) method coupled with ever-increasing computational powers has substantially advanced the reliability of deterministic three dimensional structural analyses of a structure with uniform material properties. However, railways trackbed is made up of diverse group of materials including steel, wood, rock and soil, while each material has its own varying levels of heterogeneity and imperfections. It is observed that the application of probabilistic methods for trackbed structural analysis while incorporating the material and geometric variabilities is deeply underworked. The authors developed and validated a 3-dimensional FE based numerical trackbed model and in this study, they investigated the influence of variability in Young modulus and thicknesses of granular layers (Ballast and Subgrade) on the reliability index (-index) of the subgrade layer. The influence of these factors is accounted for by changing their Coefficients of Variance (COV) while keeping their means constant. These variations are formulated using Gaussian Normal distribution. Two failure mechanisms in subgrade namely Progressive Shear Failure and Excessive Plastic Deformation are examined. Preliminary results of risk-based probabilistic analysis for Progressive Shear Failure revealed that the variations in Ballast depth are the most influential factor for vertical stress at the top of subgrade surface. Whereas, in case of Excessive Plastic Deformations in subgrade layer, the variations in its own depth and Young modulus proved to be most important while ballast properties remained almost indifferent. For both these failure moods, it is also observed that the reliability index for subgrade failure increases with the increase in COV of ballast depth and subgrade Young modulus. The findings of this work is of particular significance in studying the combined effect of construction imperfections and variations in ground conditions on the structural performance of railroad trackbed and evaluating the associated risk involved. In addition, it also provides an additional tool to supplement the deterministic analysis procedures and decision making for railroad maintenance.

Keywords: finite element analysis, numerical modeling, probabilistic methods, risk and reliability analysis, subgrade

Procedia PDF Downloads 96
11337 Application Reliability Method for Concrete Dams

Authors: Mustapha Kamel Mihoubi, Mohamed Essadik Kerkar

Abstract:

Probabilistic risk analysis models are used to provide a better understanding of the reliability and structural failure of works, including when calculating the stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of reliability analysis methods including the methods used in engineering. It is in our case, the use of level 2 methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type first order risk method (FORM) and the second order risk method (SORM). By way of comparison, a level three method was used which generates a full analysis of the problem and involves an integration of the probability density function of random variables extended to the field of security using the Monte Carlo simulation method. Taking into account the change in stress following load combinations: normal, exceptional and extreme acting on the dam, calculation of the results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities, thus causing a significant decrease in strength, shear forces then induce a shift that threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case the increase of uplift in a hypothetical default of the drainage system.

Keywords: dam, failure, limit-state, monte-carlo, reliability, probability, simulation, sliding, taylor

Procedia PDF Downloads 292
11336 Environmental Governance and Opportunities for Disaster Risk Reduction in Nigeria

Authors: Willie Eselebor

Abstract:

Environmental governance is not new, but may consist of a series of actions taken to establish sanity and ensure sustainable environment. While there is a growing accord linking disaster risk reduction with the management of environment and natural resources, little is known about failure to act which constitute vulnerability and how improved governance reduces risk globally. The paper reviews emerging trends in the field of application of governance tools and approaches for reducing disaster risk. The Hyogo Framework for Action (HFA) enjoin all stakeholders to stimulate the sustainable use and management of ecosystems, which promote the implementation of integrated environmental and natural resource planning that incorporate disaster risk reduction, including structural and non-structural measures, such as integrated management of fragile ecosystems. The methodology adopted is a case study of disaster-prone sites, prompting guided analysis on which hazards are traceable to environmental degradation, why a degraded environment reduces community resilience; how healthy ecosystems provide natural defense, and which opportunities exist to address gaps in reduction of disasters in Nigeria. The paper further analyses the interaction between disaster risk and environmental change. It is established that environmental governance remains a challenge; which implies that there is the need for a shift in traditional approaches to disaster risk management; exploring new initiatives and allowing environmental managers to be docketed as disaster risk managers in context, potentially opening up a window of dialogue on disaster risk management.

Keywords: disaster, ecosystem, environment, risk

Procedia PDF Downloads 318
11335 Application of the Tripartite Model to the Link between Non-Suicidal Self-Injury and Suicidal Risk

Authors: Ashley Wei-Ting Wang, Wen-Yau Hsu

Abstract:

Objectives: The current study applies and expands the Tripartite Model to elaborate the link between non-suicidal self-injury (NSSI) and suicidal behavior. We propose a structural model of NSSI and suicidal risk, in which negative affect (NA) predicts both anxiety and depression, positive affect (PA) predicts depression only, anxiety is linked to NSSI, and depression is linked to suicidal risk. Method: Four hundreds and eighty seven undergraduates participated. Data were collected by administering self-report questionnaires. We performed hierarchical regression and structural equation modeling to test the proposed structural model. Results: The results largely support the proposed structural model, with one exception: anxiety was strongly associated with NSSI and to a lesser extent with suicidal risk. Conclusions: We conclude that the co-occurrence of NSSI and suicidal risk is due to NA and anxiety, and suicidal risk can be differentiated by depression. Further theoretical and practical implications are discussed.

Keywords: non-suicidal self-injury, suicidal risk, anxiety, depression, the tripartite model, hierarchical relationship

Procedia PDF Downloads 434
11334 Project Risk Assessment of the Mining Industry of Ghana

Authors: Charles Amoatey

Abstract:

The issue of risk in the mining industry is a global phenomenon and the Ghanaian mining industry is not exempted. The main purpose of this study is to identify the critical risk factors affecting the mining industry. The study takes an integrated view of the mining industry by examining the contribution of various risk factors to mining project failure in Ghana. A questionnaire survey was conducted to solicit the critical risk factors from key mining practitioners. About 80 respondents from 11 mining firms participated in the survey. The study identified 22 risk factors contributing to mining project failure in Ghana. The five most critical risk factors based on both probability of occurrence and impact were: (1) unstable commodity prices, (2) inflation/exchange rate, (3) land degradation, (4) high cost of living and (5) government bureaucracy for obtaining licenses. Furthermore, the study found that risk assessment in the mining sector has a direct link with mining project sustainability. Mitigation measures for addressing the identified risk factors were discussed. The key findings emphasize the need for a comprehensive risk management culture in the entire mining industry.

Keywords: risk, assessment, mining, Ghana

Procedia PDF Downloads 402
11333 Real Activities Manipulation vs. Accrual Earnings Management: The Effect of Political Risk

Authors: Heba Abdelmotaal, Magdy Abdel-Kader

Abstract:

Purpose: This study explores whether a firm’s effective political risk management is preventing real and accrual earnings management . Design/methodology/approach: Based on a sample of 130 firms operating in Egypt during the period 2008-2013, two hypotheses are tested using the panel data regression models. Findings: The empirical findings indicate a significant relation between real and accrual earnings management and political risk. Originality/value: This paper provides a statistically evidence on the effects of the political risk management failure on the mangers’ engagement in the real and accrual earnings management practices, and its impact on the firm’s performance.

Keywords: political risk, risk management failure, real activities manipulation, accrual earnings management

Procedia PDF Downloads 398
11332 A Mathematical Optimization Model for Locating and Fortifying Capacitated Warehouses under Risk of Failure

Authors: Tareq Oshan

Abstract:

Facility location and size decisions are important to any company because they affect profitability and success. However, warehouses are exposed to various risks of failure that affect their activity. This paper presents a mixed-integer non-linear mathematical model that can be used to determine optimal warehouse locations and sizes, which warehouses to fortify, and which branches should be assigned to specific warehouses when there is a risk of warehouse failure. Every branch is assigned to a fortified primary warehouse or a nonfortified primary warehouse and a fortified backup warehouse. The standard method and an introduced method, based on the average probabilities, for linearizing this mathematical model were used. A Canadian case study was used to demonstrate the developed mathematical model, followed by some sensitivity analysis.

Keywords: supply chain network design, fortified warehouse, mixed-integer mathematical model, warehouse failure risk

Procedia PDF Downloads 207
11331 Breaking Stress Criterion that Changes Everything We Know About Materials Failure

Authors: Ali Nour El Hajj

Abstract:

Background: The perennial deficiencies of the failure models in the materials field have profoundly and significantly impacted all associated technical fields that depend on accurate failure predictions. Many preeminent and well-known scientists from an earlier era of groundbreaking discoveries attempted to solve the issue of material failure. However, a thorough understanding of material failure has been frustratingly elusive. Objective: The heart of this study is the presentation of a methodology that identifies a newly derived one-parameter criterion as the only general failure theory for noncompressible, homogeneous, and isotropic materials subjected to multiaxial states of stress and various boundary conditions, providing the solution to this longstanding problem. This theory is the counterpart and companion piece to the theory of elasticity and is in a formalism that is suitable for broad application. Methods: Utilizing advanced finite-element analysis, the maximum internal breaking stress corresponding to the maximum applied external force is identified as a unified and universal material failure criterion for determining the structural capacity of any system, regardless of its geometry or architecture. Results: A comparison between the proposed criterion and methodology against design codes reveals that current provisions may underestimate the structural capacity by 2.17 times or overestimate the capacity by 2.096 times. It also shows that existing standards may underestimate the structural capacity by 1.4 times or overestimate the capacity by 2.49 times. Conclusion: The proposed failure criterion and methodology will pave the way for a new era in designing unconventional structural systems composed of unconventional materials.

Keywords: failure criteria, strength theory, failure mechanics, materials mechanics, rock mechanics, concrete strength, finite-element analysis, mechanical engineering, aeronautical engineering, civil engineering

Procedia PDF Downloads 52
11330 Accelerated Evaluation of Structural Reliability under Tsunami Loading

Authors: Sai Hung Cheung, Zhe Shao

Abstract:

It is of our great interest to quantify the risk to structural dynamic systems due to earthquake-induced tsunamis in view of recent earthquake-induced tsunamis in Padang, 2004 and Tohoku, 2011 which brought huge losses of lives and properties. Despite continuous advancement in computational simulation of the tsunami and wave-structure interaction modeling, it still remains computationally challenging to evaluate the reliability of a structural dynamic system when uncertainties related to the system and its modeling are taken into account. The failure of the structure in a tsunami-wave-structural system is defined as any response quantities of the system exceeding specified thresholds during the time when the structure is subjected to dynamic wave impact due to earthquake-induced tsunamis. In this paper, an approach based on a novel integration of a recently proposed moving least squares response surface approach for stochastic sampling and the Subset Simulation algorithm is proposed. The effectiveness of the proposed approach is discussed by comparing its results with those obtained from the Subset Simulation algorithm without using the response surface approach.

Keywords: response surface, stochastic simulation, structural reliability tsunami, risk

Procedia PDF Downloads 644
11329 A Structural Equation Model of Risk Perception of Rockfall for Revisit Intention

Authors: Ya-Fen Lee, Yun-Yao Chi

Abstract:

The study aims to explore the relationship between risk perceptions of rockfall and revisit intention using a Structural Equation Modelling (SEM) analysis. A total of 573 valid questionnaires are collected from travelers to Taroko National Park, Taiwan. The findings show the majority of travellers have the medium perception of rockfall risk, and are willing to revisit the Taroko National Park. The revisit intention to Taroko National Park is influenced by hazardous preferences, willingness-to-pay, obstruction and attraction. The risk perception has an indirect effect on revisit intention through influencing willingness-to-pay. The study results can be a reference for mitigation the rockfall disaster.

Keywords: risk perception, rockfall, revisit intention, structural equation modelling

Procedia PDF Downloads 400
11328 Disaster Mitigation from an Analysis of a Condemned Building Erected over Collapsible Clay Soil in Brazil

Authors: Marcelo Jesus Kato Avila, Joao Da Costa Pantoja

Abstract:

Differential settlement of foundations is a serious pathology in buildings that put at risk lives and property. A common reason for the occurrence of this specific pathology in central Brazil is the presence of collapsible clay, a typical soil in the region. In this study, the foundation of a condemned building erected above this soil is analyzed. The aim is to prevent problems in new constructions, to predict which buildings may be subjected to damages, and to make possible a more precise treatment in less advanced differential settlements observed in the buildings of the vicinity, which includes a hospital, a Military School, an indoor sporting arena, the Police Academy, and the Military Police Headquarters. The methodology consists of visual inspection, photographic report of the main pathologies, analysis of the existing foundations, determination of the soil properties, the study of the cracking level and assessment of structural failure risk of the building. The findings show that the presence of water weaken the soil structure on which the foundation rest, being the main cause of the pathologic settlement, indicating that even in a one store building it was necessary to consider deeper digging, other categories of foundations, and more elaborated and detailed foundation plans when the soil presents this behavior.

Keywords: building cracks, collapsible clay, differential settlement, structural failure risk

Procedia PDF Downloads 224
11327 The Collapse of a Crane on Site: A Case Study

Authors: T. Teruzzi, S. Antonietti, C. Mosca, C. Paglia

Abstract:

This paper discusses the causes of the structural failure in a tower crane. The structural collapse occurred at the upper joints of the extension element used to increase the height of the crane. The extension element consists of a steel lattice structure made with angular profiles and plates joined to the tower element by arc welding. Macroscopic inspection of the sections showed that the break was always observed on the angular profiles at the weld bead edge. The case study shows how, using mechanical characterization, chemical analysis of the steel and macroscopic and microscopic metallographic examinations, it was possible to obtain significant evidence that identified the mechanism causing the breakage. The analyses identified the causes of the structural failure as the use of materials that were not suitable for welding and poor performance in the welding joints.

Keywords: failure, metals, weld, microstructure

Procedia PDF Downloads 86
11326 Six Failure Points Innovators and Entrepreneurs Risk Falling into: An Exploratory Study of Underlying Emotions and Behaviors of Self- Perceived Failure

Authors: Katarzyna Niewiadomska

Abstract:

Many technology startups fail to achieve a worthwhile return on investment for their funders, founders, and employees. Failures in product development, to-market strategy, sales, and delivery are commonly recognized. Founder failures are not as obvious and harder to identify. This paper explores six critical failure points that entrepreneurs and innovators are susceptible to and aims to link their emotional intelligence and behavioral profile to the points at which they experienced self-perceived failure. A model of six failure points from the perspective of the technology entrepreneur ranging from pre-startup to maturity is provided. By analyzing emotional and behavioral profile data from entrepreneurs and recording in-person accounts, certain key emotional and behavioral clusters contributing to each failure point are determined, and several underlying factors are defined and discussed. Recommendations that support entrepreneurs and innovators stalling at each failure point are given. This work can enable stakeholders to evaluate founder emotional and behavioral profiles and to take risk-mitigating action, either through coaching or through more robust team creation, to avoid founder-related company failure. The paper will be of interest to investors funding startups, executives leading them and mentors supporting them.

Keywords: behavior, emotional intelligence, entrepreneur, failure

Procedia PDF Downloads 202
11325 Application Reliability Method for the Analysis of the Stability Limit States of Large Concrete Dams

Authors: Mustapha Kamel Mihoubi, Essadik Kerkar, Abdelhamid Hebbouche

Abstract:

According to the randomness of most of the factors affecting the stability of a gravity dam, probability theory is generally used to TESTING the risk of failure and there is a confusing logical transition from the state of stability failed state, so the stability failure process is considered as a probable event. The control of risk of product failures is of capital importance for the control from a cross analysis of the gravity of the consequences and effects of the probability of occurrence of identified major accidents and can incur a significant risk to the concrete dam structures. Probabilistic risk analysis models are used to provide a better understanding the reliability and structural failure of the works, including when calculating stability of large structures to a major risk in the event of an accident or breakdown. This work is interested in the study of the probability of failure of concrete dams through the application of the reliability analysis methods including the methods used in engineering. It is in our case of the use of level II methods via the study limit state. Hence, the probability of product failures is estimated by analytical methods of the type FORM (First Order Reliability Method), SORM (Second Order Reliability Method). By way of comparison, a second level III method was used which generates a full analysis of the problem and involving an integration of the probability density function of, random variables are extended to the field of security by using of the method of Mont-Carlo simulations. Taking into account the change in stress following load combinations: normal, exceptional and extreme the acting on the dam, calculation results obtained have provided acceptable failure probability values which largely corroborate the theory, in fact, the probability of failure tends to increase with increasing load intensities thus causing a significant decrease in strength, especially in the presence of combinations of unique and extreme loads. Shear forces then induce a shift threatens the reliability of the structure by intolerable values of the probability of product failures. Especially, in case THE increase of uplift in a hypothetical default of the drainage system.

Keywords: dam, failure, limit state, monte-carlo, reliability, probability, sliding, Taylor

Procedia PDF Downloads 293
11324 Developing Measurement Instruments for Enterprise Resources Planning (ERP) Post-Implementation Failure Model

Authors: Malihe Motiei, Nor Hidayati Zakaria, Davide Aloini

Abstract:

This study aims to present a method to develop the failure measurement model for ERP post-implementation. To achieve this outcome, the study firstly evaluates the suitability of Technology-Organization-Environment framework for the proposed conceptual model. This study explains how to discover the constructs and subsequently to design and evaluate the constructs as formative or reflective. Constructs are used including reflective and purely formative. Then, the risk dimensions are investigated to determine the instruments to examine the impact of risk on ERP failure after implementation. Two construct as formative constructs consist inadequate implementation and poor organizational decision making. Subsequently six construct as reflective construct include technical risks, operational risks, managerial risks, top management risks, lack of external risks, and user’s inefficiency risks. A survey was conducted among Iranian industries to collect data. 69 data were collected from manufacturing sectors and the data were analyzed by Smart PLS software. The results indicated that all measurements included 39 critical risk factors were acceptable for the ERP post-implementation failure model.

Keywords: critical risk factors (CRFs), ERP projects, ERP post-implementation, measurement instruments, ERP system failure measurement model

Procedia PDF Downloads 331
11323 Towards Resilient Cloud Computing through Cyber Risk Assessment

Authors: Hilalah Alturkistani, Alaa AlFaadhel, Nora AlJahani, Fatiha Djebbar

Abstract:

Cloud computing is one of the most widely used technology which provides opportunities and services to government entities, large companies, and standard users. However, cybersecurity risk management studies of cloud computing and resiliency approaches are lacking. This paper proposes resilient cloud cybersecurity risk assessment and management tailored specifically, to Dropbox with two approaches:1) technical-based solution motivated by a cybersecurity risk assessment of cloud services, and 2)a target personnel-based solution guided by cybersecurity-related survey among employees to identify their knowledge that qualifies them withstand to any cyberattack. The proposed work attempts to identify cloud vulnerabilities, assess threats and detect high risk components, to finally propose appropriate safeguards such as failure predicting and removing, redundancy or load balancing techniques for quick recovery and return to pre-attack state if failure happens.

Keywords: cybersecurity risk management plan, resilient cloud computing, cyberattacks, cybersecurity risk assessment

Procedia PDF Downloads 101
11322 Risk Analysis of Leaks from a Subsea Oil Facility Based on Fuzzy Logic Techniques

Authors: Belén Vinaixa Kinnear, Arturo Hidalgo López, Bernardo Elembo Wilasi, Pablo Fernández Pérez, Cecilia Hernández Fuentealba

Abstract:

The expanded use of risk assessment in legislative and corporate decision-making has increased the role of expert judgement in giving data for security-related decision-making. Expert judgements are required in most steps of risk assessment: danger recognizable proof, hazard estimation, risk evaluation, and examination of choices. This paper presents a fault tree analysis (FTA), which implies a probabilistic failure analysis applied to leakage of oil in a subsea production system. In standard FTA, the failure probabilities of items of a framework are treated as exact values while evaluating the failure probability of the top event. There is continuously insufficiency of data for calculating the failure estimation of components within the drilling industry. Therefore, fuzzy hypothesis can be used as a solution to solve the issue. The aim of this paper is to examine the leaks from the Zafiro West subsea oil facility by using fuzzy fault tree analysis (FFTA). As a result, the research has given theoretical and practical contributions to maritime safety and environmental protection. It has been also an effective strategy used traditionally in identifying hazards in nuclear installations and power industries.

Keywords: expert judgment, probability assessment, fault tree analysis, risk analysis, oil pipelines, subsea production system, drilling, quantitative risk analysis, leakage failure, top event, off-shore industry

Procedia PDF Downloads 155
11321 Understanding Surface Failures in Thick Asphalt Pavement: A 3-D Finite Element Model Analysis

Authors: Hana Gebremariam Liliso

Abstract:

This study investigates the factors contributing to the deterioration of thick asphalt pavements, such as rutting and cracking. We focus on the combined influence of traffic loads and pavement structure. This study uses a three-dimensional finite element model with a Mohr-Coulomb failure criterion to analyze the stress levels near the pavement's surface under realistic conditions. Our model considers various factors, including tire-pavement contact stresses, asphalt properties, moving loads, and dynamic analysis. This research suggests that cracking tends to occur between dual tires. Some key discoveries include the risk of cracking increases as temperatures rise; surface cracking at high temperatures is associated with distortional deformation; using a uniform contact stress distribution underestimates the risk of failure compared to realistic three-dimensional tire contact stress, particularly at high temperatures; the risk of failure is higher near the surface when there is a negative temperature gradient in the asphalt layer; and debonding beneath the surface layer leads to increased shear stress and premature failure around the interface.

Keywords: asphalt pavement, surface failure, 3d finite element model, multiaxial stress states, Mohr-Coulomb failure criterion

Procedia PDF Downloads 19
11320 Testing Method of Soil Failure Pattern of Sand Type as an Effort to Minimize the Impact of the Earthquake

Authors: Luthfi Assholam Solamat

Abstract:

Nowadays many people do not know the soil failure pattern as an important part in planning the under structure caused by the loading occurs. This is because the soil is located under the foundation, so it cannot be seen directly. Based on this study, the idea occurs to do a study for testing the soil failure pattern, especially the type of sand soil under the foundation. The necessity of doing this to the design of building structures on the land which is the initial part of the foundation structure that met with waves/vibrations during an earthquake. If the underground structure is not strong it is feared the building thereon more vulnerable to the risk of building damage. This research focuses on the search of soil failure pattern, which the most applicable in the field with the loading periodic re-testing of a particular time with the help of the integrated video visual observations performed. The results could be useful for planning under the structure in an effort to try the upper structure is minimal risk of the earthquake.

Keywords: soil failure pattern, earthquake, under structure, sand soil testing method

Procedia PDF Downloads 326
11319 Application of Failure Mode and Effects Analysis (FMEA) on the Virtual Process Hazard Analysis of Acetone Production Process

Authors: Princes Ann E. Prieto, Denise F. Alpuerto, John Rafael C. Unlayao, Neil Concibido, Monet Concepcion Maguyon-Detras

Abstract:

Failure Mode and Effects Analysis (FMEA) has been used in the virtual Process Hazard Analysis (PHA) of the Acetone production process through the dehydrogenation of isopropyl alcohol, for which very limited process risk assessment has been published. In this study, the potential failure modes, effects, and possible causes of selected major equipment in the process were identified. During the virtual FMEA mock sessions, the risks in the process were evaluated and recommendations to reduce and/or mitigate the process risks were formulated. The risk was estimated using the calculated risk priority number (RPN) and was classified into four (4) levels according to their effects on acetone production. Results of this study were also used to rank the criticality of equipment in the process based on the calculated criticality rating (CR). Bow tie diagrams were also created for the critical hazard scenarios identified in the study.

Keywords: chemical process safety, failure mode and effects analysis (FMEA), process hazard analysis (PHA), process safety management (PSM)

Procedia PDF Downloads 100
11318 A Dam Break Analysis Using MIKE11

Authors: Oussama Derdous, Lakhdar Djemili, Hamza Bouchahed

Abstract:

The consequences of a dam breach can be devastating; both in terms of lives lost and damaged infrastructure and property. Hydraulic modeling provides a clear picture of the possible consequences of partial or complete failure of a dam, which is the key to carry out emergency planning and conduct reliable risk assessments. In this paper, the MIKE11 model developed by the Danish Hydrologic Institute (DHI) was used to simulate the flood wave propagation associated with a potential failure analysis failure of Zardezas dam located in the city of Skikda in the North East of Algeria. MIKE11 results including inundation maps and the representative channel/valley cross-sections depicting flow depth and maximal flow velocities showed that Zardezas reservoir presents a significant risk to downstream areas in the event of a dam failure. These results can be used as the basis of the development of an Emergency Action Plan (EAP).The main objective of this plan is to predict the appropriate steps to avoid or at least decrease the consequences of unexpected failure of Zardezas dam.

Keywords: MIKE11, dam break, inundation maps, emergency action plan

Procedia PDF Downloads 410
11317 Implantology Failure: Epidemiological Survey among Tunisian Dentists

Authors: Faten Khanfir, Mohamed Tlili, Ali Medeb Hamrouni, Raki Selmi, M. S. Khalfi, Faten Ben Amor

Abstract:

Introduction: dental implant failure is a major concern for the clinician and the patient. Objectives: The aim of our study is to investigate the way in which 100 Tunisian dentists carried implant treatment for their patients from the early phase of planning and selection of patients to the placement of the implant in order to look for the implant failure factors. Results: significant correlations were found between failure rates > 5 and their corresponding factors as the number of implants placed (p = 0.001<0, 05), smoking (0.046 <0.05), unbalanced diabetes (0.03<0.05), aseptic protocol (= 0.004< 0.05) and the drilling speed (0,002<0.05) Conclusion: It seems that the number of implant placed, smoking, diabetes, aseptic protocol, and the drilling speed may contribute to dental implant failure.

Keywords: failure, implants, survey, risk, osseointegration

Procedia PDF Downloads 142
11316 A Process FMEA in Aero Fuel Pump Manufacturing and Conduct the Corrective Actions

Authors: Zohre Soleymani, Meisam Amirzadeh

Abstract:

Many products are safety critical, so proactive analysis techniques are vital for them because these techniques try to identify potential failures before the products are produced. Failure Mode and Effective Analysis (FMEA) is an effective tool in identifying probable problems of product or process and prioritizing them and planning for its elimination. The paper shows the implementation of FMEA process to identify and remove potential troubles of aero fuel pumps manufacturing process and improve the reliability of subsystems. So the different possible causes of failure and its effects along with the recommended actions are discussed. FMEA uses Risk Priority Number (RPN) to determine the risk level. RPN value is depending on Severity(S), Occurrence (O) and Detection (D) parameters, so these parameters need to be determined. After calculating the RPN for identified potential failure modes, the corrective actions are defined to reduce risk level according to assessment strategy and determined acceptable risk level. Then FMEA process is performed again and RPN revised is calculated. The represented results are applied in the format of a case study. These results show the improvement in manufacturing process and considerable reduction in aero fuel pump production risk level.

Keywords: FMEA, risk priority number, aero pump, corrective action

Procedia PDF Downloads 255
11315 Design of Structural Health Monitoring System for a Damaged Reinforced Concrete Bridge

Authors: Muhammad Fawad

Abstract:

Monitoring and structural health assessment are the primary requirements for the performance evaluation of damaged bridges. This paper highlights the case study of a damaged Reinforced Concrete (RC) bridge structure where the Finite element (FE) modelling of this structure was done using the material properties extracted by the in-situ testing. Analysis was carried out to evaluate the bridge damage. On the basis of FE analysis results, this study proposes a proper Structural Health Monitoring (SHM) system that will extend the life cycle of the bridge with minimal repair costs and reduced risk of failure. This system is based on the installation of three different types of sensors: Liquid Levelling sensors (LLS) for measurement of vertical displacement, Distributed Fiber Optic Sensors (DFOS) for crack monitoring, and Weigh in Motion (WIM) devices for monitoring of moving loads on the bridge.

Keywords: bridges, reinforced concrete, finite element method, structural health monitoring, sensors

Procedia PDF Downloads 68
11314 The Integrated Methodological Development of Reliability, Risk and Condition-Based Maintenance in the Improvement of the Thermal Power Plant Availability

Authors: Henry Pariaman, Iwa Garniwa, Isti Surjandari, Bambang Sugiarto

Abstract:

Availability of a complex system of thermal power plant is strongly influenced by the reliability of spare parts and maintenance management policies. A reliability-centered maintenance (RCM) technique is an established method of analysis and is the main reference for maintenance planning. This method considers the consequences of failure in its implementation, but does not deal with further risk of down time that associated with failures, loss of production or high maintenance costs. Risk-based maintenance (RBM) technique provides support strategies to minimize the risks posed by the failure to obtain maintenance task considering cost effectiveness. Meanwhile, condition-based maintenance (CBM) focuses on monitoring the application of the conditions that allow the planning and scheduling of maintenance or other action should be taken to avoid the risk of failure prior to the time-based maintenance. Implementation of RCM, RBM, CBM alone or combined RCM and RBM or RCM and CBM is a maintenance technique used in thermal power plants. Implementation of these three techniques in an integrated maintenance will increase the availability of thermal power plants compared to the use of maintenance techniques individually or in combination of two techniques. This study uses the reliability, risks and conditions-based maintenance in an integrated manner to increase the availability of thermal power plants. The method generates MPI (Priority Maintenance Index) is RPN (Risk Priority Number) are multiplied by RI (Risk Index) and FDT (Failure Defense Task) which can generate the task of monitoring and assessment of conditions other than maintenance tasks. Both MPI and FDT obtained from development of functional tree, failure mode effects analysis, fault-tree analysis, and risk analysis (risk assessment and risk evaluation) were then used to develop and implement a plan and schedule maintenance, monitoring and assessment of the condition and ultimately perform availability analysis. The results of this study indicate that the reliability, risks and conditions-based maintenance methods, in an integrated manner can increase the availability of thermal power plants.

Keywords: integrated maintenance techniques, availability, thermal power plant, MPI, FDT

Procedia PDF Downloads 760