Search results for: convolutional coding
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 972

Search results for: convolutional coding

372 Barriers to the Implementation of Peace Education in Secondary Schools, South Africa

Authors: Ntokozo Dennis Ndwandwe

Abstract:

The aim of the study was to explore the barriers facing the implementation of peace education as a strategy to combat violence in selected secondary schools in the Western Cape Province of South Africa. The problem that motivated this enquiry was the absence of stable peace and the increase of incidents of violence in schools. A qualitative approach was followed when conducting the study, and small samples of three case studies of secondary schools were used. Method used in collecting data consisted of semi-structured interviews; focus group interviews and observation. The participants consisted of the program manager for Quaker for Peace Centre (QPC), three principals, nine teachers, and fifteen learners. Data were analysed by transcribing, organising, marking by hand and coding that produced labels that allowed key points to be highlighted. Findings revealed that the effective implementation of peace education was being constrained by factors such as financial constraints, inadequate time allocated, lack of parental involvement, over work-loaded teachers, negative attitude and other societal influences. It is recommended that teachers should receive an ongoing training for peace education. Therefore, the government should prioritise and provide funds for peace education. In addition, parental involvement should be improved in order to enhance the implementation of peace education in selected secondary schools.

Keywords: barriers, implementation, conflict, peace, peace education, conflict resolution, violence

Procedia PDF Downloads 200
371 Remote Sensing through Deep Neural Networks for Satellite Image Classification

Authors: Teja Sai Puligadda

Abstract:

Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.

Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss

Procedia PDF Downloads 159
370 An Exploratory Study of Effects of Parenting Styles on Maternal Expectation and Perception of Compliance among Adolescents

Authors: Anton James

Abstract:

This study explored the contribution of parenting styles in the Maternal Perception of Compliance Model (MPCM). This model explores maternal expectations to illustrate the formation of maternal perception of severity of noncompliance in adolescent children. The methodology consisted of three stages: In the first stage, a focus group was held, and the data was analysed to fine-tune the interview schedule. In the second stage, a single interview was held, and the interview schedule was further modified. The third and the final stage consisted of interviewing six mothers who had adolescent children. They were chosen with ‘maximum variation’ approach to represent three tiered socioeconomic statuses, and Asian, white and black ethnicities. The data was thematically analysed in a hybrid fashion: inductive coding and deductive assignment of codes into discrete parenting styles. The study found: a) parenting styles are not always discrete and sometimes it can be mixed. b) The parenting styles are influenced by culture, socioeconomic status, transgenerational knowledge, academic knowledge, observational knowledge, self-reflective knowledge, and parental anxiety. c) The parenting style functioned a mediating mechanism where it attempted to converge discrepancies between parental expectations of compliance with maternal perception of severity of noncompliance. The findings of parenting styles were discussed in relation to MPCM.

Keywords: compliance, expectation, parenting styles, perception

Procedia PDF Downloads 781
369 Credit Card Fraud Detection with Ensemble Model: A Meta-Heuristic Approach

Authors: Gong Zhilin, Jing Yang, Jian Yin

Abstract:

The purpose of this paper is to develop a novel system for credit card fraud detection based on sequential modeling of data using hybrid deep learning models. The projected model encapsulates five major phases are pre-processing, imbalance-data handling, feature extraction, optimal feature selection, and fraud detection with an ensemble classifier. The collected raw data (input) is pre-processed to enhance the quality of the data through alleviation of the missing data, noisy data as well as null values. The pre-processed data are class imbalanced in nature, and therefore they are handled effectively with the K-means clustering-based SMOTE model. From the balanced class data, the most relevant features like improved Principal Component Analysis (PCA), statistical features (mean, median, standard deviation) and higher-order statistical features (skewness and kurtosis). Among the extracted features, the most optimal features are selected with the Self-improved Arithmetic Optimization Algorithm (SI-AOA). This SI-AOA model is the conceptual improvement of the standard Arithmetic Optimization Algorithm. The deep learning models like Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), and optimized Quantum Deep Neural Network (QDNN). The LSTM and CNN are trained with the extracted optimal features. The outcomes from LSTM and CNN will enter as input to optimized QDNN that provides the final detection outcome. Since the QDNN is the ultimate detector, its weight function is fine-tuned with the Self-improved Arithmetic Optimization Algorithm (SI-AOA).

Keywords: credit card, data mining, fraud detection, money transactions

Procedia PDF Downloads 131
368 Public Bus Transport Passenger Safety Evaluations in Ghana: A Phenomenological Constructivist Exploration

Authors: Enoch F. Sam, Kris Brijs, Stijn Daniels, Tom Brijs, Geert Wets

Abstract:

Notwithstanding the growing body of literature that recognises the importance of personal safety to public transport (PT) users, it remains unclear what PT users consider regarding their safety. In this study, we explore the criteria PT users in Ghana use to assess bus safety. This knowledge will afford a better understanding of PT users’ risk perceptions and assessments which may contribute to theoretical models of PT risk perceptions. We utilised phenomenological research methodology, with data drawn from 61 purposively sampled participants. Data collection (through focus group discussions and in-depth interviews) and analyses were done concurrently to the point of saturation. Our inductive data coding and analyses through the constant comparison and content analytic techniques resulted in 4 code categories (conceptual dimensions), 27 codes (safety items/criteria), and 100 quotations (data segments). Of the number of safety criteria participants use to assess bus safety, vehicle condition, driver’s marital status, and transport operator’s safety records were the most considered. With each criterion, participants rightly demonstrated its respective relevance to bus safety. These findings imply that investment in and maintenance of safer vehicles, and responsible and safety-conscious drivers, and prioritization of passengers’ safety are key-targets for public bus/minibus operators in Ghana.

Keywords: safety evaluations, public bus/minibus, passengers, phenomenology, Ghana

Procedia PDF Downloads 337
367 Breast Cancer and BRCA Gene: A Study on Genetic and Environmental Interaction

Authors: Abhishikta Ghosh Roy

Abstract:

Breast cancer is the most common malignancy among women globally, including India. Human breast cancer results from the genetic and environmental interaction. The present study attempts to understand the molecular heterogeneity of BRCA1 and BRCA2 genes, as well as to understand the association of various lifestyle and reproductive variables for the Breast Cancer risk. The study was conducted amongst 110 patients and 128 controls with total DNA sequencing of flanking and coding regions of BRCA1 BRCA2 genes that revealed ten Single Nucleotide Polymorphisms (SNPs) (6 novels). The controls selected for the study were age, sex and ethnic group matched. After written and informed consent biological samples were collected from the subjects. After detailed molecular analysis, significant (p < 0.005) molecular heterogeneity is revealed in terms of SNPs in BRCA1 (4 Exonic & 1 Intronic) and BRCA2 (2exonic and 3 Intronic) genes. The augmentation study investigated significant (p < 0.05) association with positive family history, early age at menarche, irregular menstrual periods, menopause, prolong contraceptive use, nulliparity, history of abortions, consumption of alcohol and smoking for breast cancer risk. To the best of authors knowledge, this study is the first of its kind, envisaged that the identification of the SNPs and modification of the lifestyle factors might aid to minimize the risk among the Bengalee Hindu females.

Keywords: breast cancer, BRCA, lifestyle, India

Procedia PDF Downloads 114
366 The Effects of Multiple Levels of Intelligence in an Algebra 1 Classroom

Authors: Abigail Gragg

Abstract:

The goal of this research study was to adjudicate if implementing Howard Gardner’s multiple levels of intelligence would enhance student achievement levels in an Algebra 1 College Preparatory class. This was conducted within every class by incorporating one level of the eight levels of intelligence into small group work in stations. Every class was conducted utilizing small-group instruction. Achievement levels were measured through various forms of collected data that expressed student understandings in class through formative assessments versus student understandings on summative assessments. The data samples included: assessments (i.e. summative and formative assessments), observable data, video recordings, a daily log book, student surveys, and checklists kept during the observation periods. Formative assessments were analyzed during each class period to measure in-class understanding. Summative assessments were dissected per question per accuracy to review the effects of each intelligence implemented. The data was collated into a coding workbook for further analysis to conclude the resulting themes of the research. These themes include 1) there was no correlation to multiple levels of intelligence enhancing student achievement, 2) bodily-kinesthetic intelligence showed to be the intelligence that had the most improvement on test questions and 3) out of all of the bits of intelligence, interpersonal intelligence enhanced student understanding in class.

Keywords: stations, small group instruction, multiple levels of intelligence, Mathematics, Algebra 1, student achievement, secondary school, instructional Pedagogies

Procedia PDF Downloads 111
365 Medical Diagnosis of Retinal Diseases Using Artificial Intelligence Deep Learning Models

Authors: Ethan James

Abstract:

Over one billion people worldwide suffer from some level of vision loss or blindness as a result of progressive retinal diseases. Many patients, particularly in developing areas, are incorrectly diagnosed or undiagnosed whatsoever due to unconventional diagnostic tools and screening methods. Artificial intelligence (AI) based on deep learning (DL) convolutional neural networks (CNN) have recently gained a high interest in ophthalmology for its computer-imaging diagnosis, disease prognosis, and risk assessment. Optical coherence tomography (OCT) is a popular imaging technique used to capture high-resolution cross-sections of retinas. In ophthalmology, DL has been applied to fundus photographs, optical coherence tomography, and visual fields, achieving robust classification performance in the detection of various retinal diseases including macular degeneration, diabetic retinopathy, and retinitis pigmentosa. However, there is no complete diagnostic model to analyze these retinal images that provide a diagnostic accuracy above 90%. Thus, the purpose of this project was to develop an AI model that utilizes machine learning techniques to automatically diagnose specific retinal diseases from OCT scans. The algorithm consists of neural network architecture that was trained from a dataset of over 20,000 real-world OCT images to train the robust model to utilize residual neural networks with cyclic pooling. This DL model can ultimately aid ophthalmologists in diagnosing patients with these retinal diseases more quickly and more accurately, therefore facilitating earlier treatment, which results in improved post-treatment outcomes.

Keywords: artificial intelligence, deep learning, imaging, medical devices, ophthalmic devices, ophthalmology, retina

Procedia PDF Downloads 181
364 Computational Prediction of the Effect of S477N Mutation on the RBD Binding Affinity and Structural Characteristic, A Molecular Dynamics Study

Authors: Mohammad Hossein Modarressi, Mozhgan Mondeali, Khabat Barkhordari, Ali Etemadi

Abstract:

The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant concerns worldwide due to its catastrophic effects on public health. The SARS-CoV-2 infection is initiated with the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Due to the error-prone entity of the viral RNA-dependent polymerase complex, the virus genome, including the coding region for the RBD, acquires new mutations, leading to the appearance of multiple variants. These variants can potentially impact transmission, virulence, antigenicity and evasive immune properties. S477N mutation located in the RBD has been observed in the SARS-CoV-2 omicron (B.1.1. 529) variant. In this study, we investigated the consequences of S477N mutation at the molecular level using computational approaches such as molecular dynamics simulation, protein-protein interaction analysis, immunoinformatics and free energy computation. We showed that displacement of Ser with Asn increases the stability of the spike protein and its affinity to ACE2 and thus increases the transmission potential of the virus. This mutation changes the folding and secondary structure of the spike protein. Also, it reduces antibody neutralization, raising concern about re-infection, vaccine breakthrough and therapeutic values.

Keywords: S477N, COVID-19, molecular dynamic, SARS-COV2 mutations

Procedia PDF Downloads 176
363 Digital Curriculum Preservation Planning, Actions, and Challenges

Authors: Misook Ahn

Abstract:

This study examined the Digital Curriculum Repository (DCR) project initiated at Defense Language Institute Foreign Language Center (DLIFLC). The purpose of the DCR is to build a centralized curriculum infrastructure, preserve all curriculum materials, and provide academic service to users (faculty, students, or other agencies). The DCR collection includes core language curriculum materials developed by each language school—foreign language textbooks, language survival kits, and audio files currently in or not in use at the schools. All core curriculum materials with audio and video files have been coded, collected, and preserved at the DCR. The DCR website was designed with MS SharePoint for easy accessibility by the DLIFLC’s faculty and students. All metadata for the collected curriculum materials have been input by language, code, year, book type, level, user, version, and current status (in use/not in use). The study documents digital curriculum preservation planning, actions, and challenges, including collecting, coding, collaborating, designing DCR SharePoint, and policymaking. DCR Survey data is also collected and analyzed for this research. Based on the finding, the study concludes that the mandatory policy for the DCR system and collaboration with school leadership are critical elements of a successful repository system. The sample collected items, metadata, and DCR SharePoint site are presented in the evaluation section.

Keywords: MS share point, digital preservation, repository, policy

Procedia PDF Downloads 159
362 The Impact of Vertical Product Differentiation on Exchange Rate Pass-Through: An Empirical Investigation of IRON and Steel Industry between Thailand and Vietnam

Authors: Santi Termprasertsakul, Jakkrich Jearviriyaboonya

Abstract:

This paper studies the market power and pricing behavior of products in iron and steel industry by investigating the impact of vertical product differentiation (VPD) on exchange rate pass-through (ERPT). Vietnam has become one of the major trading partners of Thailand since 2017. The iron and steel export value to Vietnam is more than $300 million a year. Particularly, the average growth rate of importing iron and steel is approximately 30% per year. The VPD is applied to analyze the quality difference of iron and steel between Thailand and Vietnam. The 20 products in iron and steel industry are investigated. The monthly pricing behavior of Harmonized Commodity Description and Coding System 4-digit products is observed from 2010 to 2019. The Nonlinear Autoregressive Distributed Lag is also used to analyze the asymmetry of ERPT in this paper. The empirical results basically reveal an incomplete pass-through between Thai Baht and Vietnamese Dong. The ERPT also varies with the degree of VPD. The product with higher VPD, indicating higher unit values, has higher ERPT. This result suggests the higher market power of the Thai iron and steel industry. In addition, the asymmetry of ERPT exists.

Keywords: exchange rate pass-through, iron and steel industry, pricing behavior, vertical product differentiation

Procedia PDF Downloads 142
361 Identification and Classification of Gliadin Genes in Iranian Diploid Wheat

Authors: Jafar Ahmadi, Alireza Pour-Aboughadareh

Abstract:

Wheat is the first and the most important grain of the world and its bakery property is due to glutenin and gliadin qualities. Wheat seed proteins were divided into four groups according to solubility. Two groups are albumin and globulin dissolving in water and salt solutions possessing metabolic activities. Two other groups are inactive and non-dissolvable and contain glutelins or glutenins and prolamins or gliadins. Gliadins are major components of the storage proteins in wheat endosperm. Gliadin proteins are separated into three groups based on electrophoretic mobility: α/β-gliadin, γ-gliadin, and ω-gliadin. It seems that little information is available about gliadin genes in Iranian wild relatives of wheat. Thus, the aim of this study was the evaluation of the wheat wild relatives collected from different origins of Zagros Mountains in Iran, involving coding gliadin genes using specific primers. For this, forty accessions of Triticum boeoticum and Triticum urartu were selected. For each accession, genomic DNA was extracted and PCRs were performed in total volumes of 15 μl. The amplification products were separated on 1.5% agarose gels. In results, for Gli-2A locus, three allelic variants were detected by Gli-2As primer pairs. The sizes of PCR products for these alleles were 210, 490 and 700 bp. Only five (13%) and two accessions (5%) produced 700 and 490 bp fragments when their DNA was amplified with the Gli.As.2 primer pairs. However, 37 of the 40 accessions (93%) carried 210 bp allele, and three accessions (8%) did not yield any product for this marker. Therefore, these germplasm could be used as rich gene pool to broaden the genetic base of bread wheat.

Keywords: diploied wheat, gliadin, Triticum boeoticum, Triticum urartu

Procedia PDF Downloads 251
360 Similar Script Character Recognition on Kannada and Telugu

Authors: Gurukiran Veerapur, Nytik Birudavolu, Seetharam U. N., Chandravva Hebbi, R. Praneeth Reddy

Abstract:

This work presents a robust approach for the recognition of characters in Telugu and Kannada, two South Indian scripts with structural similarities in characters. To recognize the characters exhaustive datasets are required, but there are only a few publicly available datasets. As a result, we decided to create a dataset for one language (source language),train the model with it, and then test it with the target language.Telugu is the target language in this work, whereas Kannada is the source language. The suggested method makes use of Canny edge features to increase character identification accuracy on pictures with noise and different lighting. A dataset of 45,150 images containing printed Kannada characters was created. The Nudi software was used to automatically generate printed Kannada characters with different writing styles and variations. Manual labelling was employed to ensure the accuracy of the character labels. The deep learning models like CNN (Convolutional Neural Network) and Visual Attention neural network (VAN) are used to experiment with the dataset. A Visual Attention neural network (VAN) architecture was adopted, incorporating additional channels for Canny edge features as the results obtained were good with this approach. The model's accuracy on the combined Telugu and Kannada test dataset was an outstanding 97.3%. Performance was better with Canny edge characteristics applied than with a model that solely used the original grayscale images. The accuracy of the model was found to be 80.11% for Telugu characters and 98.01% for Kannada words when it was tested with these languages. This model, which makes use of cutting-edge machine learning techniques, shows excellent accuracy when identifying and categorizing characters from these scripts.

Keywords: base characters, modifiers, guninthalu, aksharas, vattakshara, VAN

Procedia PDF Downloads 53
359 Stigmatising AIDS: A Content Analysis on HIV/AIDS-Related News Articles Published in Three Major Philippine Broadsheet

Authors: L. Dinco John Christian, C. Ramos Camille, C. Reyes Maria Eloisa

Abstract:

HIV/AIDS has been dubbed as one of the most stigmatised diseases of the recent century. Nelson Mandela pointed out that PLWHA (People Living With HIV/AIDS) are not killed by the disease, but by the stigma surrounding it. Despite the numerous studies on HIV/AIDS Stigmatisation globally, little is known about how evident and how powerful the media can be in framing the views of the readers when it comes to print in the Philippine context. This study dealt with a quantitative content analysis of HIV/AIDS-related news articles published by the top three broadsheets such as Philippine Daily Inquirer, Manila Bulletin and the Philippine Star in the span of one year. The HIV/AIDS-related news articles were collected and subjected to coding according to their tones, stigmatising statements/terminologies and news prominence. An analysis of the results had supported the researchers’ objectives (1) that there are different tones of HIV/AIDS-related news articles, (2) that there is a significant relation between the Stigmatizing Statements/Terminologies and the tone and that the (3) technical properties of HIV/AIDS related news articles determine the news prominence. Results revealed that despite the fact that the broadsheets were overtly reporting HIV/AIDS in Anti-Stigma-toned articles, they were covertly suggesting Stigma by the use of Stigmatising statements/terminologies present in it rather than plainly disseminating current medical knowledge about the transmission and treatments of the disease; the technical properties of the HIV/AIDS related news articles determined its prominence.

Keywords: HIV, AIDS, newspaper, content analysis

Procedia PDF Downloads 435
358 A Combination of Anisotropic Diffusion and Sobel Operator to Enhance the Performance of the Morphological Component Analysis for Automatic Crack Detection

Authors: Ankur Dixit, Hiroaki Wagatsuma

Abstract:

The crack detection on a concrete bridge is an important and constant task in civil engineering. Chronically, humans are checking the bridge for inspection of cracks to maintain the quality and reliability of bridge. But this process is very long and costly. To overcome such limitations, we have used a drone with a digital camera, which took some images of bridge deck and these images are processed by morphological component analysis (MCA). MCA technique is a very strong application of sparse coding and it explores the possibility of separation of images. In this paper, MCA has been used to decompose the image into coarse and fine components with the effectiveness of two dictionaries namely anisotropic diffusion and wavelet transform. An anisotropic diffusion is an adaptive smoothing process used to adjust diffusion coefficient by finding gray level and gradient as features. These cracks in image are enhanced by subtracting the diffused coarse image into the original image and the results are treated by Sobel edge detector and binary filtering to exhibit the cracks in a fine way. Our results demonstrated that proposed MCA framework using anisotropic diffusion followed by Sobel operator and binary filtering may contribute to an automation of crack detection even in open field sever conditions such as bridge decks.

Keywords: anisotropic diffusion, coarse component, fine component, MCA, Sobel edge detector and wavelet transform

Procedia PDF Downloads 173
357 An Investigation of Sentiment and Themes from Twitter for Brexit in 2016

Authors: Anas Alsuhaibani

Abstract:

Observing debate and discussion over social media has been found to be a promising tool to investigate different types of opinion. On 23 June 2016, Brexit voters in the UK decided to depart from the EU, with 51.9% voting to leave. On Twitter, there had been a massive debate in this context, and the hashtag Brexit was allocated as number six of the most tweeted hashtags across the globe in 2016. The study aimed to investigate the sentiment and themes expressed in a sample of tweets during a political event (Brexit) in 2016. A sentiment and thematic analysis was conducted on 1304 randomly selected tweets tagged with the hashtag Brexit in Twitter for the period from 10 June 2016 to 7 July 2016. The data were coded manually into two code frames, sentiment and thematic, and the reliability of coding was assessed for both codes. The sentiment analysis of the selected sample found that 45.63% of tweets conveyed negative emotions while there were only 10.43% conveyed positive emotions. It also surprisingly resulted that 29.37% were factual tweets, where the tweeter expressed no sentiment and the tweet conveyed a fact. For the thematic analysis, the economic theme dominated by 23.41%, and almost half of its discussion was related to business within the UK and the UK and global stock markets. The study reported that the current UK government and relation to campaign themes were the most negative themes. Both sentiment and thematic analyses found that tweets with more than one opinion or theme were rare, 8.29% and 6.13%, respectively.

Keywords: Brexit, political opinion mining, social media, twitter

Procedia PDF Downloads 214
356 Sustainability in Hospitality: An Inevitable Necessity in New Age with Big Environmental Challenges

Authors: Majid Alizadeh, Sina Nematizadeh, Hassan Esmailpour

Abstract:

The mutual effects of hospitality and the environment are undeniable, so that the tourism industry has major harmful effects on the environment. Hotels, as one of the most important pillars of the hospitality industry, have significant effects on the environment. Green marketing is a promising strategy in response to the growing concerns about the environment. A green hotel marketing model was proposed using a grounded theory approach in the hotel industry. The study was carried out as a mixed method study. Data gathering in the qualitative phase was done through literature review and In-depth, semi-structured interviews with 10 experts in green marketing using snowball technique. Following primary analysis, open, axial, and selective coding was done on the data, which yielded 69 concepts, 18 categories and six dimensions. Green hotel (green product) was adopted as the core phenomenon. In the quantitative phase, data were gleaned using 384 questionnaires filled-out by hotel guests and descriptive statistics and Structural equation modeling (SEM) were used for data analysis. The results indicated that the mediating role of behavioral response between the ecological literacy, trust, marketing mix and performance was significant. The green marketing mix, as a strategy, had a significant and positive effect on guests’ behavioral response, corporate green image, and financial and environmental performance of hotels.

Keywords: green marketing, sustainable development, hospitality, grounded theory, structural equations model

Procedia PDF Downloads 81
355 Study of the Genes Involved in the Resistance of Nosocomial Pseudomonas aeruginosa to Fluoroquinolone

Authors: Rosetta Moshirian Farahi, Ahya Abdi Ali, Sara Gharavi

Abstract:

The major mechanism of Pseudomonas aeruginosa resistance to fluoroquinolones is the alteration of target enzymes, type II and IV topoisomerases due to mutations in the quinolone resistance-determining regions (QRDR) of the gyrA and parC genes coding A subunits of these enzymes. 37 isolates from patients with burn wounds and 20 isolates from blood, urine and sputum specimen were selected to evaluate mutations involved in antibiotic resistance and were subsequently verified for their resistance to ciprofloxacin. QRDRs regions of gyrA and parC were amplified by polymerase chain reaction (PCR) and were subsequently sequenced. 90% of isolates with MIC≥8 µg/ml to ciprofloxacin had a mutation in gyrA gene in which threonine at position 83 changed to isoleucine. 87.5% of isolates had mutation in parC, Serine 87 changed. 75% had Ser87Leu and 12.5% possessed Serin87Trp. Various silent mutations were also detected such as Val103Val, Ala118Ala, Ala136Ala, His132His in gyrA and Ala115Ala in parC. The data indicates that the common mutation in gyrA is Thr83Ile and in parC is Ser87Leu/Trp. No individual parC mutation was observed while mutations in gyrA and parC occurred simultaneously and appears to be the main reason of high-level resistance to fluoroquinolones in patients with burn wounds and urine infection. The vast majority of P.aeruginosa isolates had mutation in parC which can play a crucial role in increased resistance of these isolates. This is a report of parC mutations from resistant P. aeruginosa isolates from Iran, Tehran.

Keywords: P. aeruginosa, fluoroquinolones, gyrA, parC, antibiotic resistance

Procedia PDF Downloads 293
354 Grey Wolf Optimization Technique for Predictive Analysis of Products in E-Commerce: An Adaptive Approach

Authors: Shital Suresh Borse, Vijayalaxmi Kadroli

Abstract:

E-commerce industries nowadays implement the latest AI, ML Techniques to improve their own performance and prediction accuracy. This helps to gain a huge profit from the online market. Ant Colony Optimization, Genetic algorithm, Particle Swarm Optimization, Neural Network & GWO help many e-commerce industries for up-gradation of their predictive performance. These algorithms are providing optimum results in various applications, such as stock price prediction, prediction of drug-target interaction & user ratings of similar products in e-commerce sites, etc. In this study, customer reviews will play an important role in prediction analysis. People showing much interest in buying a lot of services& products suggested by other customers. This ultimately increases net profit. In this work, a convolution neural network (CNN) is proposed which further is useful to optimize the prediction accuracy of an e-commerce website. This method shows that CNN is used to optimize hyperparameters of GWO algorithm using an appropriate coding scheme. Accurate model results are verified by comparing them to PSO results whose hyperparameters have been optimized by CNN in Amazon's customer review dataset. Here, experimental outcome proves that this proposed system using the GWO algorithm achieves superior execution in terms of accuracy, precision, recovery, etc. in prediction analysis compared to the existing systems.

Keywords: prediction analysis, e-commerce, machine learning, grey wolf optimization, particle swarm optimization, CNN

Procedia PDF Downloads 113
353 Analysis of Travel Behavior Patterns of Frequent Passengers after the Section Shutdown of Urban Rail Transit - Taking the Huaqiao Section of Shanghai Metro Line 11 Shutdown During the COVID-19 Epidemic as an Example

Authors: Hongyun Li, Zhibin Jiang

Abstract:

The travel of passengers in the urban rail transit network is influenced by changes in network structure and operational status, and the response of individual travel preferences to these changes also varies. Firstly, the influence of the suspension of urban rail transit line sections on passenger travel along the line is analyzed. Secondly, passenger travel trajectories containing multi-dimensional semantics are described based on network UD data. Next, passenger panel data based on spatio-temporal sequences is constructed to achieve frequent passenger clustering. Then, the Graph Convolutional Network (GCN) is used to model and identify the changes in travel modes of different types of frequent passengers. Finally, taking Shanghai Metro Line 11 as an example, the travel behavior patterns of frequent passengers after the Huaqiao section shutdown during the COVID-19 epidemic are analyzed. The results showed that after the section shutdown, most passengers would transfer to the nearest Anting station for boarding, while some passengers would transfer to other stations for boarding or cancel their travels directly. Among the passengers who transferred to Anting station for boarding, most of passengers maintained the original normalized travel mode, a small number of passengers waited for a few days before transferring to Anting station for boarding, and only a few number of passengers stopped traveling at Anting station or transferred to other stations after a few days of boarding on Anting station. The results can provide a basis for understanding urban rail transit passenger travel patterns and improving the accuracy of passenger flow prediction in abnormal operation scenarios.

Keywords: urban rail transit, section shutdown, frequent passenger, travel behavior pattern

Procedia PDF Downloads 84
352 A Case Study of Clinicians’ Perceptions of Enterprise Content Management at Tygerberg Hospital

Authors: Temitope O. Tokosi

Abstract:

Healthcare is a human right. The sensitivity of health issues has necessitated the introduction of Enterprise Content Management (ECM) at district hospitals in the Western Cape Province of South Africa. The objective is understanding clinicians’ perception of ECM at their workplace. It is a descriptive case study design of constructivist paradigm. It employed a phenomenological data analysis method using a pattern matching deductive based analytical procedure. Purposive and s4nowball sampling techniques were applied in selecting participants. Clinicians expressed concerns and frustrations using ECM such as, non-integration with other hospital systems. Inadequate access points to ECM. Incorrect labelling of notes and bar-coding causes more time wasted in finding information. System features and/or functions (such as search and edit) are not possible. Hospital management and clinicians are not constantly interacting and discussing. Information turnaround time is unacceptably lengthy. Resolving these problems would involve a positive working relationship between hospital management and clinicians. In addition, prioritising the problems faced by clinicians in relation to relevance can ensure problem-solving in order to meet clinicians’ expectations and hospitals’ objective. Clinicians’ perception should invoke attention from hospital management with regards technology use. The study’s results can be generalised across clinician groupings exposed to ECM at various district hospitals because of professional and hospital homogeneity.

Keywords: clinician, electronic content management, hospital, perception, technology

Procedia PDF Downloads 233
351 Identification of Common Indicators of Family Environment of Pupils of Alternative Schools

Authors: Yveta Pohnětalová, Veronika Nováková, Lucie Hrašová

Abstract:

The paper presents the results of research in which we were looking for common characteristics of the family environment of students alternative and innovative education systems. Topicality comes from the fact that nowadays in the Czech Republic there are several civic and parental initiatives held with the aim to establish schools for their children. The goal of our research was to reveal key aspects of these families and to identify their common indicators. Among other things, we were interested what reasons lead parents to decide to enroll their child into different education than standard (common). The survey was qualitative and there were eighteen respondents of parents of alternative schools´ pupils. The reason to implement qualitative design was the opportunity to gain deeper insight into the essence of phenomena and to obtain detailed information, which would become the basis for subsequent quantitative research. There have been semi structured interviews done with the respondents which had been recorded and transcribed. By an analysis of gained data (categorization and by coding), we found out that common indicator of our respondents is higher education and higher economic level. This issue should be at the forefront of the researches because there is lack of analysis which would provide a comparison of common and alternative schools in the Czech Republic especially with regard to quality of education. Based on results, we consider questions whether approaches of these parents towards standard education come from their own experience or from the lack of knowledge of current goals and objectives of education policy of the Czech Republic.

Keywords: alternative schools, family environment, quality of education, parents´ approach

Procedia PDF Downloads 352
350 Scrutiny and Solving Analytically Nonlinear Differential at Engineering Field of Fluids, Heat, Mass and Wave by New Method AGM

Authors: Mohammadreza Akbari, Sara Akbari, Davood Domiri Ganji, Pooya Solimani, Reza Khalili

Abstract:

As all experts know most of engineering system behavior in practical are nonlinear process (especially heat, fluid and mass, etc.) and analytical solving (no numeric) these problems are difficult, complex and sometimes impossible like (fluids and gas wave, these problems can't solve with numeric method, because of no have boundary condition) accordingly in this symposium we are going to exposure a innovative approach which we have named it Akbari-Ganji's Method or AGM in engineering, that can solve sets of coupled nonlinear differential equations (ODE, PDE) with high accuracy and simple solution and so this issue will be emerged after comparing the achieved solutions by Numerical method (Runge-Kutte 4th) and so compare to other methods such as HPM, ADM,… and exact solutions. Eventually, AGM method will be proved that could be created huge evolution for researchers, professors and students (engineering and basic science) in whole over the world, because of AGM coding system, so by using this software we can analytically solve all complicated linear and nonlinear differential equations, with help of that there is no difficulty for solving nonlinear differential equations(ODE and PDE). In this paper, we investigate and solve 4 types of the nonlinear differential equation with AGM method : 1-Heat and fluid, 2-Unsteady state of nonlinear partial differential, 3-Coupled nonlinear partial differential in wave equation, and 4-Nonlinear integro-differential equation.

Keywords: new method AGM, sets of coupled nonlinear equations at engineering field, waves equations, integro-differential, fluid and thermal

Procedia PDF Downloads 546
349 Loss Function Optimization for CNN-Based Fingerprint Anti-Spoofing

Authors: Yehjune Heo

Abstract:

As biometric systems become widely deployed, the security of identification systems can be easily attacked by various spoof materials. This paper contributes to finding a reliable and practical anti-spoofing method using Convolutional Neural Networks (CNNs) based on the types of loss functions and optimizers. The types of CNNs used in this paper include AlexNet, VGGNet, and ResNet. By using various loss functions including Cross-Entropy, Center Loss, Cosine Proximity, and Hinge Loss, and various loss optimizers which include Adam, SGD, RMSProp, Adadelta, Adagrad, and Nadam, we obtained significant performance changes. We realize that choosing the correct loss function for each model is crucial since different loss functions lead to different errors on the same evaluation. By using a subset of the Livdet 2017 database, we validate our approach to compare the generalization power. It is important to note that we use a subset of LiveDet and the database is the same across all training and testing for each model. This way, we can compare the performance, in terms of generalization, for the unseen data across all different models. The best CNN (AlexNet) with the appropriate loss function and optimizers result in more than 3% of performance gain over the other CNN models with the default loss function and optimizer. In addition to the highest generalization performance, this paper also contains the models with high accuracy associated with parameters and mean average error rates to find the model that consumes the least memory and computation time for training and testing. Although AlexNet has less complexity over other CNN models, it is proven to be very efficient. For practical anti-spoofing systems, the deployed version should use a small amount of memory and should run very fast with high anti-spoofing performance. For our deployed version on smartphones, additional processing steps, such as quantization and pruning algorithms, have been applied in our final model.

Keywords: anti-spoofing, CNN, fingerprint recognition, loss function, optimizer

Procedia PDF Downloads 136
348 A Multidimensional Genetic Algorithm Applicable for Our VRP Variant Dealing with the Problems of Infrastructure Defaults SVRDP-CMTW: “Safety Vehicle Routing Diagnosis Problem with Control and Modified Time Windows”

Authors: Ben Mansour Mouin, Elloumi Abdelkarim

Abstract:

We will discuss the problem of routing a fleet of different vehicles from a central depot to different types of infrastructure-defaults with dynamic maintenance requests, modified time windows, and control of default maintained. For this reason, we propose a modified metaheuristicto to solve our mathematical model. SVRDP-CMTW is a variant VRP of an optimal vehicle plan that facilitates the maintenance task of different types of infrastructure-defaults. This task will be monitored after the maintenance, based on its priorities, the degree of danger associated with each default, and the neighborhood at the black-spots. We will present, in this paper, a multidimensional genetic algorithm “MGA” by detailing its characteristics, proposed mechanisms, and roles in our work. The coding of this algorithm represents the necessary parameters that characterize each infrastructure-default with the objective of minimizing a combination of cost, distance and maintenance times while satisfying the priority levels of the most urgent defaults. The developed algorithm will allow the dynamic integration of newly detected defaults at the execution time. This result will be displayed in our programmed interactive system at the routing time. This multidimensional genetic algorithm replaces N genetic algorithm to solve P different type problems of infrastructure defaults (instead of N algorithm for P problem we can solve in one multidimensional algorithm simultaneously who can solve all these problemsatonce).

Keywords: mathematical model, VRP, multidimensional genetic algorithm, metaheuristics

Procedia PDF Downloads 196
347 Nucleotide Diversity and Bacterial Endosymbionts of the Black Cherry Aphid Myzus cerasi (Fabricus, 1775) (Hemiptera: Aphididae) from Turkey

Authors: Burcu Inal, Irfan Kandemir

Abstract:

Sequences of mitochondrial cytochrome oxidase I (COI) gene of twenty-five Turkish and one Greek Myzus cerasi (Fabricus) (Hemiptera: Aphididae) in populations were collected from Prunus avium and Prunus cerasus. The partial coding region of COI studied is 605 bp for all the populations, from which 565 nucleotides were conserved, 40 were variable, 37 were singleton, and 3 sites were parsimony-informative. Four haplotypes were identified based on nucleotide substitutions, and the mean of intraspecific divergence was calculated to be 0.3%. Phylogenetic trees were constructed using Maximum Likelihood, Minimum Evolution, Neighbor-joining, and Unweighed Pair Group Method of Arithmetic Averages (UPGMA) and Myzus persicae (Sulzer) and Myzus borealis Ossiannilson were included as outgroups. The population of M. cerasi from Isparta diverged from the rest of the groups and formed a clade (Haplotype B) with Myzus borealis. The rest of the haplotype diversity includes Haplotype A and Haplotype C with individuals characterized as Myzus cerasi pruniavium and Haplotype D with Myzus cerasi cerasi. M. cerasi diverge into two subspecies and it must be reevaluated whether this pest is monophagous or oligophagous in terms of plant type dependence. The obligated endosymbiont Buchnera aphidicola was also found during this research, but no facultative symbionts could be found. It is expected further studies will be required for a complete barcoding and diversity of bacterial endosymbionts present.

Keywords: bacterial endosymbionts, barcoding, black cherry aphid, nucleotide diversity

Procedia PDF Downloads 173
346 Branding and Posting Strategy on Facebook Pages of Higher Education Institutions in Ontario, Canada in 2019-2020: A Quantitative and Qualitative Investigation

Authors: Mai To

Abstract:

Higher education institutions (HEIs) in Ontario, Canada have invested in social media presence for multiple purposes, such as branding, student’ engagement, and recruitment. To have a full picture of the social media strategy implemented by HEIs in Ontario, Canada, this study used a mixed-method approach to analyze Facebook posts’ characteristics and content. A total of 1789 Facebook posts from September 2019 to April 2020 of six selected HEIs were collected for analysis and coding based on five pre-determined branding positions: Elite, Nurturing, Campus, Outcome, and Commodity. Besides, the study also calculated the engagement rate for each social media practice to measure its effectiveness. The results show that there were not many differences in practices such as posting frequency, length, types, and timing among HEIs. However, the distribution of branding positions and content targeting future students versus current students was varied, although the HEIs employed all five branding positions and targeted the same lists of audiences. Some practices such as evening post for colleges and nurturing branding for universities attracted significantly higher engagement. This study provides a review of current social media practices and branding strategy, as well as informs the practices that can better engage the audiences.

Keywords: branding, higher education, social media, student engagement, student recruitment

Procedia PDF Downloads 126
345 A Pipeline for Detecting Copy Number Variation from Whole Exome Sequencing Using Comprehensive Tools

Authors: Cheng-Yang Lee, Petrus Tang, Tzu-Hao Chang

Abstract:

Copy number variations (CNVs) have played an important role in many kinds of human diseases, such as Autism, Schizophrenia and a number of cancers. Many diseases are found in genome coding regions and whole exome sequencing (WES) is a cost-effective and powerful technology in detecting variants that are enriched in exons and have potential applications in clinical setting. Although several algorithms have been developed to detect CNVs using WES and compared with other algorithms for finding the most suitable methods using their own samples, there were not consistent datasets across most of algorithms to evaluate the ability of CNV detection. On the other hand, most of algorithms is using command line interface that may greatly limit the analysis capability of many laboratories. We create a series of simulated WES datasets from UCSC hg19 chromosome 22, and then evaluate the CNV detective ability of 19 algorithms from OMICtools database using our simulated WES datasets. We compute the sensitivity, specificity and accuracy in each algorithm for validation of the exome-derived CNVs. After comparison of 19 algorithms from OMICtools database, we construct a platform to install all of the algorithms in a virtual machine like VirtualBox which can be established conveniently in local computers, and then create a simple script that can be easily to use for detecting CNVs using algorithms selected by users. We also build a table to elaborate on many kinds of events, such as input requirement, CNV detective ability, for all of the algorithms that can provide users a specification to choose optimum algorithms.

Keywords: whole exome sequencing, copy number variations, omictools, pipeline

Procedia PDF Downloads 319
344 Next-Gen Solutions: How Generative AI Will Reshape Businesses

Authors: Aishwarya Rai

Abstract:

This study explores the transformative influence of generative AI on startups, businesses, and industries. We will explore how large businesses can benefit in the area of customer operations, where AI-powered chatbots can improve self-service and agent effectiveness, greatly increasing efficiency. In marketing and sales, generative AI could transform businesses by automating content development, data utilization, and personalization, resulting in a substantial increase in marketing and sales productivity. In software engineering-focused startups, generative AI can streamline activities, significantly impacting coding processes and work experiences. It can be extremely useful in product R&D for market analysis, virtual design, simulations, and test preparation, altering old workflows and increasing efficiency. Zooming into the retail and CPG industry, industry findings suggest a 1-2% increase in annual revenues, equating to $400 billion to $660 billion. By automating customer service, marketing, sales, and supply chain management, generative AI can streamline operations, optimizing personalized offerings and presenting itself as a disruptive force. While celebrating economic potential, we acknowledge challenges like external inference and adversarial attacks. Human involvement remains crucial for quality control and security in the era of generative AI-driven transformative innovation. This talk provides a comprehensive exploration of generative AI's pivotal role in reshaping businesses, recognizing its strategic impact on customer interactions, productivity, and operational efficiency.

Keywords: generative AI, digital transformation, LLM, artificial intelligence, startups, businesses

Procedia PDF Downloads 76
343 Constructions of Linear and Robust Codes Based on Wavelet Decompositions

Authors: Alla Levina, Sergey Taranov

Abstract:

The classical approach to the providing noise immunity and integrity of information that process in computing devices and communication channels is to use linear codes. Linear codes have fast and efficient algorithms of encoding and decoding information, but this codes concentrate their detect and correct abilities in certain error configurations. To protect against any configuration of errors at predetermined probability can robust codes. This is accomplished by the use of perfect nonlinear and almost perfect nonlinear functions to calculate the code redundancy. The paper presents the error-correcting coding scheme using biorthogonal wavelet transform. Wavelet transform applied in various fields of science. Some of the wavelet applications are cleaning of signal from noise, data compression, spectral analysis of the signal components. The article suggests methods for constructing linear codes based on wavelet decomposition. For developed constructions we build generator and check matrix that contain the scaling function coefficients of wavelet. Based on linear wavelet codes we develop robust codes that provide uniform protection against all errors. In article we propose two constructions of robust code. The first class of robust code is based on multiplicative inverse in finite field. In the second robust code construction the redundancy part is a cube of information part. Also, this paper investigates the characteristics of proposed robust and linear codes.

Keywords: robust code, linear code, wavelet decomposition, scaling function, error masking probability

Procedia PDF Downloads 489