Search results for: slender structural walls
4316 A Fluid-Walled Microfluidic Device for Cell Migration Studies
Authors: Cyril Deroy, Agata Rumianek, David R. Greaves, Peter R. Cook, Edmond J. Walsh
Abstract:
Various microfluidic platforms have been developed in the past couple of decades offering experimental methods for the study of cell migration; however, their implementation in the laboratory has remained limited. Some reasons cited for the lack of uptake include the technical complexity of the devices, high failure rate associated with gas-bubbles, biocompatibility concerns with the use of polydimethylsiloxane (PDMS) and equipment/time/expertise requirements for operation and manufacture. As sample handling remains challenging due to the closed format of microfluidic devices, open microfluidic systems have been developed offering versatility and simplicity of use. Rather than confining fluids by solid walls, samples can be accessed directly over the open platform, by removing at least one of the solid boundaries, such as the cover. In this paper, a method for the fabrication of open fluid-walled microfluidic circuits for cell migration studies is introduced, where only materials commonly used by the life-science community are required; tissue culture dishes and cell media. The simplicity of the method, and ability to retrieve cells of interest are two key features of the method. Both passive and active flow-devices can be created in this way. To demonstrate the versatility of the method a cell migration assay is performed, which requires fabricating circuits for establishing chemical gradients, loading cells and incubating, creating chemical gradients, real time imaging of cell migration and finally retrieval of cells. The open architecture has high fidelity as it eliminates air bubble related failures and enables the precise control of gradients. The ability to fabricate custom microfluidic designs in minutes should make this method suitable for use in a wide range of cell migration studies.Keywords: chemotaxis, fluid walls, gradient generation, open microfluidics
Procedia PDF Downloads 1494315 Development of a Matlab® Program for the Bi-Dimensional Truss Analysis Using the Stiffness Matrix Method
Authors: Angel G. De Leon Hernandez
Abstract:
A structure is defined as a physical system or, in certain cases, an arrangement of connected elements, capable of bearing certain loads. The structures are presented in every part of the daily life, e.g., in the designing of buildings, vehicles and mechanisms. The main goal of a structure designer is to develop a secure, aesthetic and maintainable system, considering the constraint imposed to every case. With the advances in the technology during the last decades, the capabilities of solving engineering problems have increased enormously. Nowadays the computers, play a critical roll in the structural analysis, pitifully, for university students the vast majority of these software are inaccessible due to the high complexity and cost they represent, even when the software manufacturers offer student versions. This is exactly the reason why the idea of developing a more reachable and easy-to-use computing tool. This program is designed as a tool for the university students enrolled in courser related to the structures analysis and designs, as a complementary instrument to achieve a better understanding of this area and to avoid all the tedious calculations. Also, the program can be useful for graduated engineers in the field of structural design and analysis. A graphical user interphase is included in the program to make it even simpler to operate it and understand the information requested and the obtained results. In the present document are included the theoretical basics in which the program is based to solve the structural analysis, the logical path followed in order to develop the program, the theoretical results, a discussion about the results and the validation of those results.Keywords: stiffness matrix method, structural analysis, Matlab® applications, programming
Procedia PDF Downloads 1224314 Gamma Irradiation Effect on Structural and Optical Properties of Bismuth-Boro-Tellurite Glasses
Authors: Azuraida Amat, Halimah Mohamed Kamari, Che Azurahanim Che Abdullah, Ishak Mansor
Abstract:
The changes of the optical and structural properties of Bismuth-Boro-Tellurite glasses pre and post gamma irradiation were studied. Six glass samples, with different compositions [(TeO2)0.7 (B2O3)0.3]1-x (Bi2O3)x prepared by melt quenching method were irradiated with 25kGy gamma radiation at room temperature. The Fourier Transform Infrared Spectroscopy (FTIR) was used to explore the structural bonding in the prepared glass samples due to exposure, while UV-VIS Spectrophotometer was used to evaluate the changes in the optical properties before and after irradiation. Gamma irradiation causes a profound changes in the peak intensity as shown by FTIR spectra which is due to the breaking of the network bonding. Before gamma irradiation, the optical band gap, Eg value decreased from 2.44 eV to 2.15 eV with the addition of Bismuth content. The value kept decreasing (from 2.18 eV to 2.00 eV) following exposure to gamma radiation due to the increase of non-bridging oxygen (NBO) and the increase of defects in the glass. In conclusion, the glass with high content of Bi2O3 (0.30Bi) give the smallest Eg and show less changes in FTIR spectra after gamma irradiation, which indicate that this glass is more resistant to gamma radiation compared to other glasses.Keywords: boro-tellurite, bismuth, gamma radiation, optical properties
Procedia PDF Downloads 4274313 Structural and Leaching Properties of Irradiated Lead Commercial Glass by Using XRD, Ultrasonic, UV-VIS and AAS Technique
Authors: N. H. Alias, S. A. Aziz, Y. Abdullah, H. M. Kamari, S. Sani, M. P. Ismail, N. U. Saidin, N. A. A. Salim, N. E. E. Abdullah
Abstract:
Gamma (γ) irradiation study has been investigated on the 6 rectangular shape of the standard X-Ray lead glass with 5/16” thick, providing 2.00 mm lead shielding value; at selected Sievert doses (C1; 0, C2; 0.07, C3; 0.035, C4; 0.07, C5; 0.105 and C6; 0.14) by using (XRD) X-ray Diffraction techniques, ultrasonic and (UV-VIS) Ultraviolet-Visible Spectroscopy. Concentration of lead in 0.5 N acid nitric (HNO3) environments is then studied by means of Atomic Absorption Spectroscopy (AAS) as to observe the glass corrosion behavior after irradiation at room temperature. This type of commercial glass is commonly used as radiation shielding glass in medical application.Keywords: gamma irradiation, lead glass, leaching, structural
Procedia PDF Downloads 4344312 Use of Geometrical Relationship in the Ancient Vihara Housing Reclining Buddha Remains of Thailand's Kamphaeng Phet World Heritage Site
Authors: Vacharee Svamivastu
Abstract:
This research investigates the application of geometrical relationship to the ancient religious assembly hall (Vihara) housing a reclining Buddha statue of Thailand's Kamphaeng Phet Historical Park. The study utilizes the archaeological and wooden roof structure remains of the Vihara as the prima facie evidence, supplemented with evidence from other active archaeological sites with architectural kinship as well as Buddhist ideology. At present, the wooden roofs of the Vihara fell prey to the elements and there remain only the base, columns and enclosing walls. Unlike typical Viharas whose floor plan are of rectangular shape, the floor plan of the Vihara housing the reclining Buddha is of square configuration of 25x25m. Further observation has revealed the utilization of large laterite boulders as the principal construction material of the assembly hall (Vihara) columns. The laterite columns are of square shape (1x1m) and various heights (H), ranging from 3.50m to 5.50m. The erection of the Vihara required a total of 36 laterite columns. The pattern of columns arrangement is of two rows of inner columns, two rows of outer columns and two rows of verandah columns. The space between pairs of the verandah columns was stacked with laterite blocks of varying sizes to form the Vihara walls with small openings for ventilation. Upon applying the geometrical relationship-grid system to the Vihara, the results reveal that the placement of the columns was deliberately and masterfully undertaken such that the center of the square-shaped Vihara is conspicuously spacious so as to accommodate the sacred reclining Buddha statue. The elegance of the Vihara demonstrates the ingenious application of geometrical relationship to transforming a space into a structure (i.e. Vihara) of architectural and religious significance.Keywords: geometrical relationship, the religious assembly hall, Vihara, Kamphaeng Phet School of Master Builder
Procedia PDF Downloads 2754311 Assessing the Vulnerability Level in Coastal Communities in the Caribbean: A Case Study of San Pedro, Belize
Authors: Sherry Ann Ganase, Sandra Sookram
Abstract:
In this paper, the vulnerability level to climate change is analysed using a comprehensive index, consisting of five pillars: human, social, natural, physical, and financial. A structural equation model is also applied to determine the indicators and relationships that exist between the observed environmental changes and the quality of life. Using survey data to model the results, a value of 0.382 is derived as the vulnerability level for San Pedro, where values closer to zero indicates lower vulnerability and values closer to one indicates higher vulnerability. The results showed the social pillar to be most vulnerable, with the indicator ‘participation’ ranked the highest in its cohort. Although, the environmental pillar is ranked as least vulnerable, the indicators ‘hazard’ and ‘biodiversity’ obtained scores closer to 0.4, suggesting that changes in the environment are occurring from natural and anthropogenic activities. These changes can negatively influence the quality of life as illustrated in the structural equation modelling. The study concludes by reporting on the need for collective action and participation by households in lowering vulnerability to ensure sustainable development and livelihood.Keywords: climate change, participation, San Pedro, structural equation model, vulnerability index
Procedia PDF Downloads 6314310 Fractional Calculus into Structural Dynamics
Authors: Jorge Lopez
Abstract:
In this work, we introduce fractional calculus in order to study the dynamics of a damped multistory building with some symmetry. Initially we make a review of the dynamics of a free and damped multistory building. Then we introduce those concepts of fractional calculus that will be involved in our study. It has been noticed that fractional calculus provides models with less parameters than those based on classical calculus. In particular, a damped classical oscilator is more naturally described by using fractional derivatives. Accordingly, we model our multistory building as a set of coupled fractional oscillators and compare its dynamics with the results coming from traditional methods.Keywords: coupled oscillators, fractional calculus, fractional oscillator, structural dynamics
Procedia PDF Downloads 2424309 In2S3 Buffer Layer Properties for Thin Film Solar Cells Based on CIGS Absorber
Authors: A. Bouloufa, K. Djessas
Abstract:
In this paper, we reported the effect of substrate temperature on the structural, electrical and optical properties of In2S3 thin films deposited on soda-lime glass substrates by physical vapor deposition technique at various substrate temperatures. The In2Se3 material used for deposition was synthesized from its constituent elements. It was found that all samples exhibit one phase which corresponds to β-In2S3 phase. Values of band gap energy of the films obtained at different substrate temperatures vary in the range of 2.38-2.80 eV and decrease with increasing substrate temperature.Keywords: buffer layer, In2S3, optical properties, PVD, structural properties
Procedia PDF Downloads 3184308 Computational Fluid Dynamics Simulation of a Boiler Outlet Header Constructed of Inconel Alloy 740H
Authors: Sherman Ho, Ahmed Cherif Megri
Abstract:
Headers play a critical role in conveying steam to regulate heating system temperatures. While various materials like steel grades 91 and 92 have been traditionally used for pipes, this research proposes the use of a robust and innovative material, INCONEL Alloy 740H. Boilers in power plant configurations are exposed to cycling conditions due to factors such as daily, seasonal, and yearly variations in weather. These cycling conditions can lead to the deterioration of headers, which are vital components with intricate geometries. Header failures result in substantial financial losses from repair costs and power plant shutdowns, along with significant public inconveniences such as the loss of heating and hot water. To address this issue and seek solutions, a mechanical analysis, as well as a structural analysis, are recommended. Transient analysis to predict heat transfer conditions is of paramount importance, as the direction of heat transfer within the header walls and the passing steam can vary based on the location of interest, load, and operating conditions. The geometry and material of the header are also crucial design factors, and the choice of pipe material depends on its usage. In this context, the heat transfer coefficient plays a vital role in header design and analysis. This research employs ANSYS Fluent, a numerical simulation program, to understand header behavior, predict heat transfer, and analyze mechanical phenomena within the header. Transient simulations are conducted to investigate parameters like heat transfer coefficient, pressure loss coefficients, and heat flux, with the results used to optimize header design.Keywords: CFD, header, power plant, heat transfer coefficient, simulation using experimental data
Procedia PDF Downloads 664307 Damage Assessment of Current Facades in Turkey throughout the Seismic Actions
Authors: Büşra Elibol, İsmail Sait Soyer, Hamid Farrokh Ghatte
Abstract:
The continuity of the structural and non-structural elements within the envelope of the buildings is one of the fundamental factors in buildings during seismic actions. This investigation aims to make a comparison between Van and İzmir earthquakes in terms of damage assessment of the various facades. A strong earthquake (magnitude 7.2) struck the city of Van in the east of Turkey on 23 October 2011, and similarly, another strong earthquake struck the city of İzmir (magnitude 6.9) in Turkey on 30 October 2020. This paper presents the damage assessment of the current facade systems from multi-story buildings in Van and İzmir, Turkey. This investigation covers the buildings greater than three stories in height, excluding most unreinforced masonry facades. Regarding a building that can have more than one facade system, any of the facade systems are considered individually. Observation of different kinds of damages in the facade is discussed and represented in terms of its performance level throughout the seismic actions. Furthermore, presenting the standard design guidelines (i.e., Turkish seismic design code) is required not only for designers but also for installers of facade systems.Keywords: damage, earthquake, facade, structural element, seismic action
Procedia PDF Downloads 1614306 Energy Efficient Construction and the Seismic Resistance of Passive Houses
Authors: Vojko Kilar, Boris Azinović, David Koren
Abstract:
Recently, an increasing trend of passive and low-energy buildings transferring form non earthquake-prone to earthquake-prone regions has thrown out the question about the seismic safety of such buildings. The paper describes the most commonly used thermal insulating materials and the special details, which could be critical from the point of view of earthquake resistance. The most critical appeared to be the cases of buildings founded on the RC foundation slab lying on a thermal insulation (TI) layer made of extruded polystyrene (XPS). It was pointed out that in such cases the seismic response of such buildings might differ to response of their fixed based counterparts. The main parameters that need special designers’ attention are: the building’s lateral top displacement, the ductility demand of the superstructure, the foundation friction coefficient demand, the maximum compressive stress in the TI layer and the percentage of the uplifted foundation. The analyses have shown that the potentially negative influences of inserting the TI under the foundation slab could be expected only for slender high-rise buildings subjected to severe earthquakes. Oppositely it was demonstrated for the foundation friction coefficient demand which could exceed the capacity value yet in the case of low-rise buildings subjected to moderate earthquakes. Some suggestions to prevent the horizontal shifts are also given.Keywords: earthquake response, extruded polystyrene (XPS), low-energy buildings, foundations on thermal insulation layer
Procedia PDF Downloads 2524305 An Implementation of Multi-Media Applications in Teaching Structural Design to Architectural Students
Authors: Wafa Labib
Abstract:
Teaching methods include lectures, workshops and tutorials for the presentation and discussion of ideas have become out of date; were developed outside the discipline of architecture from the college of engineering and do not satisfy the architectural students’ needs and causes them many difficulties in integrating structure into their design. In an attempt to improve structure teaching methods, this paper focused upon proposing a supportive teaching/learning tool using multi-media applications which seeks to better meet the architecture student’s needs and capabilities and improve the understanding and application of basic and intermediate structural engineering and technology principles. Before introducing the use of multi-media as a supportive teaching tool, a questionnaire was distributed to third year students of a structural design course who were selected as a sample to be surveyed forming a sample of 90 cases. The primary aim of the questionnaire was to identify the students’ learning style and to investigate whether the selected method of teaching could make the teaching and learning process more efficient. Students’ reaction on the use of this method was measured using three key elements indicating that this method is an appropriate teaching method for the nature of the students and the course as well.Keywords: teaching method, architecture, learning style, multi-media
Procedia PDF Downloads 4374304 Between Riots and Protests: A Structural Approach to Urban Environmental Uprisings in China
Authors: Zi Zhu
Abstract:
The last decade has witnessed increasing urban environmental uprisings in China, as thousands of citizens swarmed into streets to express their deep concerns about the environmental threat and public health through various collective actions. The prevalent western approaches to collective actions, which usually treat urban riots and social movements as distinct phenomenon, have plagued an adequate analysis of the urban environmental uprisings in China. The increasing urban environmental contention can neither be categorized into riots nor social movements, as they carry the features of both: at first sight, they are spontaneous, disorganized and disruptive with an absence of observable mobilization process; however, unlike riots in the west, these collective actions conveyed explicit demand in a mostly non-destructive way rather than a pure expression of frustration. This article proposes a different approach to urban environmental uprisings in China which concerns the diminishing boundaries between riots and social movements and points to the underlying structural causes to the unique forms of urban environmental contention. Taking the urban anti-PX protests as examples, this article analyzes the societal and political structural environment faced by the Chinese environmental protesters and its influence on the origin and development of their contention.Keywords: urban environmental uprisings, China, anti-PX protests, opportunity structure
Procedia PDF Downloads 2894303 Effect of Fire on Structural Behavior of Normal and High Strength Concrete Beams
Authors: Alaa I. Arafa, Hemdan O. A. Said. Marwa A. M. Ali
Abstract:
This paper investigates and evaluates experimentally the structural behavior of high strength concrete (HSC) beams under fire and compares it with that of Normal strength concrete (NSC) beams. The main investigated parameters are: concrete compressive strength (300 or 600 kg/cm2); the concrete cover thickness (3 or 5 cm); the degree of temperature (room temperature or 600 oC); the type of cooling (air or water); and the fire exposure time (3 or 5 hours). Test results showed that the concrete compressive strength decreases significantly as the exposure time to fire increases.Keywords: experimental, fire, high strength concrete beams, monotonic loading
Procedia PDF Downloads 4024302 Designing, Processing and Isothermal Transformation of Al-Si High Carbon Ultrafine High Strength Bainitic Steel
Authors: Mohamed K. El-Fawkhry, Ahmed Shash, Ahmed Ismail Zaki Farahat, Sherif Ali Abd El Rahman, Taha Mattar
Abstract:
High-carbon, silicon-rich steels are commonly suggested to obtain very fine bainitic microstructure at low temperature ranged from 200 to 300°C. Thereby, the resulted microstructure consists of slender of bainitic-ferritic plates interwoven with retained austenite. The advanced strength and ductility package of this steel is much dependent on the fineness of bainitic ferrite, as well as the retained austenite phase. In this article, Aluminum to Silicon ratio, and the isothermal transformation temperature have been adopted to obtain ultra high strength high carbon steel. Optical and SEM investigation of the produced steels have been performed. XRD has been used to track the retained austenite development as a result of the change in the chemical composition of developed steels and heat treatment process. Mechanical properties in terms of hardness and microhardness of obtained phases and structure were investigated. It was observed that the increment of aluminum to silicon ratio has a great effect in promoting the bainitic transformation, in tandem with improving the stability and the fineness of retained austenite. Such advanced structure leads to enhancement in the whole mechanical properties of the high carbon steel.Keywords: high-carbon steel, silicon-rich steels, fine bainitic microstructure, retained austenite, isothermal transformation
Procedia PDF Downloads 3494301 System Identification of Building Structures with Continuous Modeling
Authors: Ruichong Zhang, Fadi Sawaged, Lotfi Gargab
Abstract:
This paper introduces a wave-based approach for system identification of high-rise building structures with a pair of seismic recordings, which can be used to evaluate structural integrity and detect damage in post-earthquake structural condition assessment. The fundamental of the approach is based on wave features of generalized impulse and frequency response functions (GIRF and GFRF), i.e., wave responses at one structural location to an impulsive motion at another reference location in time and frequency domains respectively. With a pair of seismic recordings at the two locations, GFRF is obtainable as Fourier spectral ratio of the two recordings, and GIRF is then found with the inverse Fourier transformation of GFRF. With an appropriate continuous model for the structure, a closed-form solution of GFRF, and subsequent GIRF, can also be found in terms of wave transmission and reflection coefficients, which are related to structural physical properties above the impulse location. Matching the two sets of GFRF and/or GIRF from recordings and the model helps identify structural parameters such as wave velocity or shear modulus. For illustration, this study examines ten-story Millikan Library in Pasadena, California with recordings of Yorba Linda earthquake of September 3, 2002. The building is modelled as piecewise continuous layers, with which GFRF is derived as function of such building parameters as impedance, cross-sectional area, and damping. GIRF can then be found in closed form for some special cases and numerically in general. Not only does this study reveal the influential factors of building parameters in wave features of GIRF and GRFR, it also shows some system-identification results, which are consistent with other vibration- and wave-based results. Finally, this paper discusses the effectiveness of the proposed model in system identification.Keywords: wave-based approach, seismic responses of buildings, wave propagation in structures, construction
Procedia PDF Downloads 2334300 Structural, Magnetic, Electrical and Dielectric Properties of Pr0.8Na0.2MnO3 Manganite
Authors: H. Ben Khlifa, W. Cheikhrouhou, R. M'nassri
Abstract:
The Orthorhombic Pr0.8Na0.2MnO3 ceramic was prepared in Polycrystalline form by a Pechini sol–gel method and its structural, magnetic, electrical, and dielectric properties were investigated experimentally. A structural study confirms that the sample is a single phase. Magnetic measurements show that the sample is a charge ordered Manganite. The sample undergoes two successive magnetic phase transitions with the variation of temperature: a charge ordering transition occurred at TCO = 212 K followed by a Paramagnetic (PM) to ferromagnetic (FM) transition around TC = 115 K. From an electrical point of view, a saturation region was marked in the conductivity as a function of Temperature s(T) curves at a specific temperature. The dc-conductivity (sdc) reaches a maximum value at 240 K. The obtained results are in good agreement with the temperature dependence of the average normalized change (ANC). We found that the conduction mechanism was governed by small polaron hopping (SPH) in the high-temperature region and by variable range hopping (VRH) in the low-temperature region. Complex impedance analysis indicates the presence of a non-Debye relaxation phenomenon in the system. Also, the compound was modeled by an electrical equivalent circuit. Then, the contribution of the grain boundary in the transport properties was confirmed.Keywords: manganites, preparation methods, magnetization, magnetocaloric effect, electrical and dielectric
Procedia PDF Downloads 1734299 Optimal Design of Propellant Grain Shape Based on Structural Strength Analysis
Authors: Chen Xiong, Tong Xin, Li Hao, Xu Jin-Sheng
Abstract:
Experiment and simulation researches on the structural integrity of propellant grain in solid rocket motor (SRM) with high volumetric fraction were conducted. First, by using SRM parametric modeling functions with secondary development tool Python of ABAQUS, the three dimensional parameterized modeling programs of star shaped grain, wheel shaped grain and wing cylindrical grain were accomplished. Then, the mechanical properties under different loads for star shaped grain were obtained with the application of automatically established finite element model in ABAQUS. Next, several optimization algorithms are introduced to optimize the star shaped grain, wheel shaped grain and wing cylindrical grain. After meeting the demands of burning surface changes and volumetric fraction, the optimum three dimensional shapes of grain were obtained. Finally, by means of parametric modeling functions, pressure data of SRM’s cold pressurization test was directly applied to simulation of grain in terms of mechanical performance. The results verify the reliability and practical of parameterized modeling program of SRM.Keywords: cold pressurization test, ğarametric modeling, structural integrity, propellant grain, SRM
Procedia PDF Downloads 3614298 The Current Practices of Analysis of Reinforced Concrete Panels Subjected to Blast Loading
Authors: Palak J. Shukla, Atul K. Desai, Chentankumar D. Modhera
Abstract:
For any country in the world, it has become a priority to protect the critical infrastructure from looming risks of terrorism. In any infrastructure system, the structural elements like lower floors, exterior columns, walls etc. are key elements which are the most susceptible to damage due to blast load. The present study revisits the state of art review of the design and analysis of reinforced concrete panels subjected to blast loading. Various aspects in association with blast loading on structure, i.e. estimation of blast load, experimental works carried out previously, the numerical simulation tools, various material models, etc. are considered for exploring the current practices adopted worldwide. Discussion on various parametric studies to investigate the effect of reinforcement ratios, thickness of slab, different charge weight and standoff distance is also made. It was observed that for the simulation of blast load, CONWEP blast function or equivalent numerical equations were successfully employed by many researchers. The study of literature indicates that the researches were carried out using experimental works and numerical simulation using well known generalized finite element methods, i.e. LS-DYNA, ABAQUS, AUTODYN. Many researchers recommended to use concrete damage model to represent concrete and plastic kinematic material model to represent steel under action of blast loads for most of the numerical simulations. Most of the studies reveal that the increase reinforcement ratio, thickness of slab, standoff distance was resulted in better blast resistance performance of reinforced concrete panel. The study summarizes the various research results and appends the present state of knowledge for the structures exposed to blast loading.Keywords: blast phenomenon, experimental methods, material models, numerical methods
Procedia PDF Downloads 1574297 Assessing the Effect of Underground Tunnel Diameter on Structure-Foundation-Soil Performance under the Kobe Earthquake
Authors: Masoud Mahdavi
Abstract:
Today, developed and industrial cities have all kinds of sewage and water transfer canals, subway tunnels, infrastructure facilities, etc., which have caused underground cavities to be created under the buildings. The presence of these cavities causes behavioral changes in the structural behavior that must be fully evaluated. In the present study, using Abaqus finite element software, the effect of cavities with 0.5 and 1.5 meters in diameter at a depth of 2.5 meters from the earth's surface (with a circular cross-section) on the performance of the foundation and the ground (soil) has been evaluated. For this purpose, the Kobe earthquake was applied to the models for 10 seconds. Also, pore water pressure and weight were considered on the models to get complete results. The results showed that by creating and increasing the diameter of circular cavities in the soil, three indicators; 1) von Mises stress, 2) displacement and 3) plastic strain have had oscillating, ascending and ascending processes, respectively, which shows the relationship between increasing the diameter index of underground cavities and structural indicators of structure-foundation-soil.Keywords: underground excavations, foundation, structural substrates, Abaqus software, Kobe earthquake, time history analysis
Procedia PDF Downloads 1214296 Effect of Spatially Correlated Disorder on Electronic Transport Properties of Aperiodic Superlattices (GaAs/AlxGa1-xAs)
Authors: F. Bendahma, S. Bentata, S. Cherid, A. Zitouni, S. Terkhi, T. Lantri, Y. Sefir, Z. F. Meghoufel
Abstract:
We examine the electronic transport properties in AlxGa1-xAs/GaAs superlattices. Using the transfer-matrix technique and the exact Airy function formalism, we investigate theoretically the effect of structural parameters on the electronic energy spectra of trimer thickness barrier (TTB). Our numerical calculations showed that the localization length of the states becomes more extended when the disorder is correlated (trimer case). We have also found that the resonant tunneling time (RTT) is of the order of several femtoseconds.Keywords: electronic transport properties, structural parameters, superlattices, transfer-matrix technique
Procedia PDF Downloads 2854295 Health Monitoring and Failure Detection of Electronic and Structural Components in Small Unmanned Aerial Vehicles
Authors: Gopi Kandaswamy, P. Balamuralidhar
Abstract:
Fully autonomous small Unmanned Aerial Vehicles (UAVs) are increasingly being used in many commercial applications. Although a lot of research has been done to develop safe, reliable and durable UAVs, accidents due to electronic and structural failures are not uncommon and pose a huge safety risk to the UAV operators and the public. Hence there is a strong need for an automated health monitoring system for UAVs with a view to minimizing mission failures thereby increasing safety. This paper describes our approach to monitoring the electronic and structural components in a small UAV without the need for additional sensors to do the monitoring. Our system monitors data from four sources; sensors, navigation algorithms, control inputs from the operator and flight controller outputs. It then does statistical analysis on the data and applies a rule based engine to detect failures. This information can then be fed back into the UAV and a decision to continue or abort the mission can be taken automatically by the UAV and independent of the operator. Our system has been verified using data obtained from real flights over the past year from UAVs of various sizes that have been designed and deployed by us for various applications.Keywords: fault detection, health monitoring, unmanned aerial vehicles, vibration analysis
Procedia PDF Downloads 2624294 An Evaluation of Full-Scale Reinforced Concrete and Steel Girder Composite Members Using High Volume Fly-Ash
Authors: Sung-Won Yoo, Chul-Hyeon Kang, Kyoung-Tae Park, Hae-Sik Woo
Abstract:
Numerous studies were dedicated on the High Volume Fly-Ash (HVFA) concrete using high volume fly ash. The material properties of HVFA concrete have been the primordial topics of early studies, and interest shifted gradually toward the structural behavior of HVFA concrete such as elasticity modulus, stress-strain relationship, and structural behavior. However, structural studies consider small-scale members limited to the scope of reinforced concrete only. Therefore, in this paper, on the basis of recent studies on the structural behavior, 2 full-scale test members were manufactured with 7.5 m span length, fly ash replacement ratio of 50 % and concrete compressive strength of 50 MPa in order to evaluate the practicability of HVFA to real structures. In addition, 2 steel composite test members were also manufactured with span length of 3 m and using the same HVFA concrete for the same purpose. The test results of full-scale RC members showed that the practical use of HVFA on such structures is not hard despite small differences between test results and existing research results on the stress-strain relationship. The flexural test revealed very little difference between 50% fly ash concrete and general concrete in view of the similarity exhibited by the displacement and strain patterns. The experimental concrete shear strength being very close to that of design code, the existing design code can be applied. From the flexural test results of steel girder composite members, the composite behavior can be secured as much as that using normal concrete under the condition of sufficient arrangement of reinforcing bar.Keywords: composite, fly ash, full-scale, high volume
Procedia PDF Downloads 2174293 Probabilistic Robustness Assessment of Structures under Sudden Column-Loss Scenario
Authors: Ali Y Al-Attraqchi, P. Rajeev, M. Javad Hashemi, Riadh Al-Mahaidi
Abstract:
This paper presents a probabilistic incremental dynamic analysis (IDA) of a full reinforced concrete building subjected to column loss scenario for the assessment of progressive collapse. The IDA is chosen to explicitly account for uncertainties in loads and system capacity. Fragility curves are developed to predict the probability of progressive collapse given the loss of one or more columns. At a broader scale, it will also provide critical information needed to support the development of a new generation of design codes that attempt to explicitly quantify structural robustness.Keywords: fire, nonlinear incremental dynamic analysis, progressive collapse, structural engineering
Procedia PDF Downloads 2664292 Calculated Structural and Electronic Properties of Mg and Bi
Authors: G. Patricia Abdel Rahim, Jairo Arbey Rodriguez M, María Guadalupe Moreno Armenta
Abstract:
The present study shows the structural, electronic and magnetic properties of magnesium (Mg) and bismuth (Bi) in a supercell (1X1X5). For both materials were studied in five crystalline structures: rock salt (NaCl), cesium chloride (CsCl), zinc-blende (ZB), wurtzite (WZ), and nickel arsenide (NiAs), using the Density Functional Theory (DFT), the Generalized Gradient Approximation (GGA), and the Full Potential Linear Augmented Plane Wave (FP-LAPW) method. By means of fitting the Murnaghan's state equation we determine the lattice constant, the bulk modulus and it's derived with the pressure. Also we calculated the density of states (DOS) and the band structure.Keywords: bismuth, magnesium, pseudo-potential, supercell
Procedia PDF Downloads 8224291 An Investigation into the Effects of Anxiety Sensitivity in Adolescents on Anxiety Disorder and Childhood Depression
Authors: Ismail Seçer
Abstract:
The purpose of this study is to investigate the effects of anxiety sensitivity in adolescents on anxiety disorder and childhood depression. Mood disorders and anxiety disorders in children and adolescents can be given examples of important research topics in recent years. The participants of the study consist of 670 students in Erzurum and Erzincan city centers. The participants of the study were 670 secondary and high school students studying in city centers of Erzurum and Erzincan. The participants were chosen based on convenience sampling. The participants were between the ages of 13 and 18 (M=15.7, Ss= 1.35) and 355 were male and 315 were female. The data were collected through Anxiety Sensitivity Index and Anxiety and Depression Index for Children and Adolescents. For data analysis, Correlation analysis and Structural Equation Model were used. In this study, correlational descriptive survey was used. This model enables the researcher to make predictions related to different variables based on the information obtained from one or more variables. Therefore, the purpose is to make predictions considering anxiety disorder and childhood depression based on anxiety sensitivity. For this purpose, latent variable and structural equation model was used. Structural equation model is an analysis method which enables the identification of direct and indirect effects by determining the relationship between observable and latent variables and testing their effects on a single model. CFI, RMR, RMSEA and SRMR, which are commonly accepted fit indices in structural equation model, were used. The results revealed that anxiety sensitivity impacts anxiety disorder and childhood depression through direct and indirect effects in a positive way. The results are discussed in line with the relevant literature. This finding can be considered that anxiety sensitivity can be a significant risk source in terms of children's and adolescents’ anxiety disorder experience. This finding is consistent with relevant research highlighting that in case the anxiety sensitivity increases then the obsessive compulsive disorder and panic attack increase too. The adolescents’ experience of anxiety can be attributed to anxiety sensitivity.Keywords: anxiety sensitivity, anxiety, depression, structural equation
Procedia PDF Downloads 2974290 Solitons and Universes with Acceleration Driven by Bulk Particles
Authors: A. C. Amaro de Faria Jr, A. M. Canone
Abstract:
Considering a scenario where our universe is taken as a 3d domain wall embedded in a 5d dimensional Minkowski space-time, we explore the existence of a richer class of solitonic solutions and their consequences for accelerating universes driven by collisions of bulk particle excitations with the walls. In particular it is shown that some of these solutions should play a fundamental role at the beginning of the expansion process. We present some of these solutions in cosmological scenarios that can be applied to models that describe the inflationary period of the Universe.Keywords: solitons, topological defects, branes, kinks, accelerating universes in brane scenarios
Procedia PDF Downloads 1374289 Numerical Investigation of Hybrid Ferrofluid Unsteady Flow through Porous Channel
Authors: Wajahat Hussain Khan, M. Zubair Akbar Qureshi
Abstract:
The viscous, two-dimensional, incompressible, and laminar time-dependent heat transfer flow through a ferromagnetic fluid is considered in this paper. Flow takes place in a channel between two porous walls under the influence of the magnetic field located beyond the channel. It is assumed that there are no electric field effects and the variation in the magnetic field vector that could occur within the FKeywords: hybrid ferrofluid, heat transfer, magnetic field, porous channel
Procedia PDF Downloads 1774288 Full Potential Calculation of Structural and Electronic Properties of Perovskite BiAlO3 and BiGaO3
Authors: M. Harmel, H. Khachai
Abstract:
The first principles within the full potential linearized augmented plane wave (FP-LAPW) method were applied to study the structural and electronic properties of cubic perovskite-type compounds BiAlO3 and BiGaO3. The lattice constant, bulk modulus, its pressure derivative, band structure and density of states were obtained. The results show that BiGaO3 should exhibit higher hardness and stiffness than BiAlO3. The Al–O or Ga–O bonds are typically covalent with a strong hybridization as well as Bi–O ones that have a significant ionic character. Both materials are weakly ionic and exhibit wide and indirect band gaps, which are typical of insulators.Keywords: DFT, Ab initio, electronic structure, Perovskite structure, ferroelectrics
Procedia PDF Downloads 3974287 Aspects Regarding the Structural Behaviour of Autonomous Underwater Vehicle for Emergency Response
Authors: Lucian Stefanita Grigore, Damian Gorgoteanu, Cristian Molder, Amado Stefan, Daniel Constantin
Abstract:
The purpose of this article is to present an analytical-numerical study on the structural behavior of a sunken autonomous underwater vehicle (AUV) for emergency intervention. The need for such a study was generated by the key objective of the ERL-Emergency project. The project aims to develop a system of collaborative robots for emergency response. The system consists of two robots: unmanned ground vehicles (UGV) on tracks and the second is an AUV. The system of collaborative robots, AUV and UGV, will be used to perform missions of monitoring, intervention, and rescue. The main mission of the AUV is to dive into the maritime space of an industrial port to detect possible leaks in a pipeline transporting petroleum products. Another mission is to close and open the valves with which the pipes are provided. Finally, you will need to be able to lift a manikin to the surface, which you can take to land. Numerical analysis was performed by the finite element method (FEM). The conditions for immersing the AUV at 100 m depth were simulated, and the calculations for different fluid flow rates were repeated. From a structural point of view, the stiffening areas and the enclosures in which the command-and-control elements and the accumulators are located have been especially analyzed. The conclusion of this research is that the AUV meets very well the established requirements.Keywords: analytical-numerical, emergency, FEM, robotics, underwater
Procedia PDF Downloads 150