Search results for: superlattices
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15

Search results for: superlattices

15 Study of Quantum Lasers of Random Trimer Barrier AlxGa1-xAs Superlattices

Authors: Bentata Samir, Bendahma Fatima

Abstract:

We have numerically studied the random trimer barrier AlxGa1-xAs superlattices (RTBSL). Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that the barriers of one kind appear in triply. An explicit formula is given for evaluating the transmission coefficient of superlattices (SL's) in intentional correlated disorder. We have specially investigated the effect of aluminum concentration on the laser wavelength. We discuss the impact of the aluminum concentration associated with the structure profile on the laser wavelengths.

Keywords: superlattices, transfer matrix method, transmission coefficient, quantum laser

Procedia PDF Downloads 453
14 Effect of the Aluminium Concentration on the Laser Wavelength of Random Trimer Barrier AlxGa1-xAs Superlattices

Authors: Samir Bentata, Fatima Bendahma

Abstract:

We have numerically investigated the effect of Aluminium concentration on the the laser wavelength of random trimer barrier AlxGa1-xAs superlattices (RTBSL). Such systems consist of two different structures randomly distributed along the growth direction, with the additional constraint that the barriers of one kind appear in triply. An explicit formula is given for evaluating the transmission coefficient of superlattices (SL's) with intentional correlated disorder. The method is based on Airy function formalism and the transfer-matrix technique. We discuss the impact of the Aluminium concentration associate to the structure profile on the laser wavelengths.

Keywords: superlattices, correlated disorder, transmission coefficient, laser wavelength

Procedia PDF Downloads 310
13 Effect of Spatially Correlated Disorder on Electronic Transport Properties of Aperiodic Superlattices (GaAs/AlxGa1-xAs)

Authors: F. Bendahma, S. Bentata, S. Cherid, A. Zitouni, S. Terkhi, T. Lantri, Y. Sefir, Z. F. Meghoufel

Abstract:

We examine the electronic transport properties in AlxGa1-xAs/GaAs superlattices. Using the transfer-matrix technique and the exact Airy function formalism, we investigate theoretically the effect of structural parameters on the electronic energy spectra of trimer thickness barrier (TTB). Our numerical calculations showed that the localization length of the states becomes more extended when the disorder is correlated (trimer case). We have also found that the resonant tunneling time (RTT) is of the order of several femtoseconds.

Keywords: electronic transport properties, structural parameters, superlattices, transfer-matrix technique

Procedia PDF Downloads 257
12 Formation of Miniband Structure in Dimer Fibonacci GaAs/Ga1-XAlXAs Superlattices

Authors: Aziz Zoubir, Sefir Yamina, Djelti Redouan, Bentata Samir

Abstract:

The effect of a uniform electric field across multibarrier systems (GaAs/AlxGa1-xAs) is exhaustively explored by a computational model using exact Airy function formalism and the transfer-matrix technique. In the case of biased Dimer Fibonacci Height Barrier superlattices (DFHBSL) structure a strong reduction in transmission properties was observed and the width of the miniband structure linearly decreases with the increase of the applied bias. This is due to the confinement of the states in the miniband structure, which becomes increasingly important (Wannier-Stark effect).

Keywords: Dimer Fibonacci Height Barrier superlattices, singular extended states, exact Airy function, transfer matrix formalism

Procedia PDF Downloads 471
11 Effect of the Structural Parameters on Subbands of Fibonacci AlxGa1-xAs/GaAs Superlattices

Authors: Y. Sefir, Z. Aziz, S. Cherid, Z. F. Meghoufel, F. Bendahama, S. Terkhi, B. Bouadjemi. A. Zitouni S. Bentata

Abstract:

This work is to study the effect of the variation of structural parameters on the band structure in the quasiperiodic Fibonacci superlattices AlxGa1-xAs/GaAs using the formalism of the transfer matrix and Airy function. Our results show that increasing the width of Fibonacci’s wells of allows to the confinement of subminibands with a widening of minigaps, this causes a consistent and coherent fragmentation. The barrier thickness of Fibonacci bf acts on the width of subminibands by controlling the interaction force between neighboring eigenstates. Its increase gives rise to singularly extended states. The barrier height Fibonacci Vf permit to control the degree of structural disorder in these structures. The variation of these parameters permits the design of laser with modulated wavelength.

Keywords: transmission coefficient – Quasiperiodic superlattices- singularly localized and extended states- structural parameters- Laser with modulated wavelength

Procedia PDF Downloads 342
10 Effect of the Applied Bias on Miniband Structures in Dimer Fibonacci Inas/Ga1-Xinxas Superlattices

Authors: Z. Aziz, S. Terkhi, Y. Sefir, R. Djelti, S. Bentata

Abstract:

The effect of a uniform electric field across multibarrier systems (InAs/InxGa1-xAs) is exhaustively explored by a computational model using exact airy function formalism and the transfer-matrix technique. In the case of biased DFHBSL structure a strong reduction in transmission properties was observed and the width of the miniband structure linearly decreases with the increase of the applied bias. This is due to the confinement of the states in the miniband structure, which becomes increasingly important (Wannier-Stark Effect).

Keywords: dimer fibonacci height barrier superlattices, singular extended state, exact airy function, transfer matrix formalism

Procedia PDF Downloads 273
9 Effect of the Applied Bias on Mini-Band Structures in Dimer Fibonacci InAs/Ga1-XInXAs Superlattices

Authors: Z. Aziz, S. Terkhi, Y. Sefir, R. Djelti, S. Bentata

Abstract:

The effect of a uniform electric field across multi-barrier systems (InAs/InxGa1-xAs) is exhaustively explored by a computational model using exact Airy function formalism and the transfer-matrix technique. In the case of biased DFHBSL structure a strong reduction in transmission properties was observed and the width of the mini-band structure linearly decreases with the increase of the applied bias. This is due to the confinement of the states in the mini-band structure, which becomes increasingly important (Wannier-Stark Effect).

Keywords: dimer fibonacci height barrier superlattices, singular extended state, exact Airy function and transfer matrix formalism, bioinformatics

Procedia PDF Downloads 258
8 Theoretical Investigation of the Origin of Interfacial Ferromagnetism of (LaNiO₃)n/(CaMnO₃)m Superlattices

Authors: Jiwuer Jilili, Iogann Tolbatov, Mousumi U. Kahaly

Abstract:

Metal to insulator transition and interfacial magnetism of the LaNiO₃ based superlattice are main interest due to thickness dependent electronic response and tunable magnetic behavior. We investigate the structural, electronic, and magnetic properties of recently experimentally synthesized (LaNiO₃)n/(CaMnO₃)m superlattices with varying LaNiO₃ thickness using density functional theory. The effect of the on-site Coulomb interaction is discussed. In switching from zero to finite U value for Ni atoms, LaNiO₃ shows transitions from half-metallic to metallic character, while spinning ordering changes from paramagnetic to ferromagnetic (FM). For CaMnO₃, U < 3 eV on Mn atoms results in G-type anti-FM spin ordering whereas increasing U value yields FM ordering. In superlattices, metal to insulator transition was achieved with a reduction of LaNiO₃ thickness. The system with one layer of LaNiO₃ yields insulating character. Increasing LaNiO₃ to two layers and above results in the onset of the metallic character with a major contribution from Ni and Mn 3d eg states. Our results for interfacial ferromagnetism, induced Ni magnetic moments and novel antiferromagnetically coupled Ni atoms are consistent with the recent experimental findings. The possible origin of the emergent magnetism is proposed in terms of the exchange interaction and Anderson localization.

Keywords: density functional theory, interfacial magnetism, metal-insulator transition, Ni magnetism.

Procedia PDF Downloads 201
7 Effect of the Aluminum Fraction “X” on the Laser Wavelengths in GaAs/AlxGa1-xAs Superlattices

Authors: F.Bendahma, S.Bentata

Abstract:

In this paper, we study numerically the eigenstates existing in a GaAs/AlxGa1-xAs superlattice with structural disorder in trimer height barrier (THB). Aluminium concentration x takes at random two different values, one of them appears only in triply and remains inferior to the second in the studied structure. In spite of the presence of disorder, the system exhibits two kinds of sets of propagating states lying below the barrier due to the characteristic structure of the superlattice. This result allows us to note the existence of a single laser emission in trimer and wavelengths are obtained in the mid-infrared.

Keywords: infrared (IR), laser emission, superlattice, trimer

Procedia PDF Downloads 427
6 Effects of Position and Shape of Atomic Defects on the Band Gap of Graphene Nano-Ribbon Superlattices

Authors: Zeinab Jokar, Mohammad Reza Moslemi

Abstract:

In this work, we study the behavior of introducing atomic size vacancy in a graphene nanoribbon superlattice. Our investigations are based on the density functional theory (DFT) with the Local Density Approximation in Atomistix Toolkit (ATK). We show that, in addition to its shape, the position of vacancy has a major impact on the electrical properties of a graphene nanoribbon superlattice. We show that the band gap of an armchair graphene nanoribbon may be tuned by introducing an appropriate periodic pattern of vacancies. The band gap changes in a zig-zag manner similar to the variation of the band gap of a graphene nanoribbon by changing its width.

Keywords: AGNR, antidot, atomistic toolKit, vacancy

Procedia PDF Downloads 950
5 Investigating the Energy Gap and Wavelength of (AlₓGa₁₋ₓAs)ₘ/(GaAs)ₙ Superlattices in Terms of Material Thickness and Al Mole Fraction Using Empirical Tight-Binding Method

Authors: Matineh Sadat Hosseini Gheidari, Vahid Reza Yazdanpanah

Abstract:

In this paper, we used the empirical tight-binding method (ETBM) with sp3s* approximation and considering the first nearest neighbor with spin-orbit interactions in order to model superlattice structure (SLS) of (AlₓGa₁₋ₓAs)ₘ/(GaAs)ₙ grown on GaAs (100) substrate at 300K. In the next step, we investigated the behavior of the energy gap and wavelength of this superlattice in terms of different thicknesses of core materials and Al mole fractions. As a result of this survey, we found out that as the Al composition increases, the energy gap of this superlattice has an upward trend and ranges from 1.42-1.63 eV. Also, according to the wavelength range that we gained from this superlattice in different Al mole fractions and various thicknesses, we can find a suitable semiconductor for a special light-emitting diode (LED) application.

Keywords: energy gap, empirical tight-binding method, light-emitting diode, superlattice, wavelength

Procedia PDF Downloads 162
4 Catalytic Nanomaterials for Energy Conversion and Storage

Authors: Yijin Kang

Abstract:

Chemical-electrical energy conversion and storage are greatly attractive for the development of sustainable energy. Catalytic processes are heavily involved in such energy conversion and storage. Development of high-performance catalyst nanomaterials relies on tuning material structures at nanoscale. This is in particular manifested in the design of catalysts demanding both high activity and durability. Here, a research system will be presented that connects fundamental investigation on well-defined extended surfaces (e.g. single crystal surfaces), extrapolation onto nanocrystals with highly controlled shape and size, exploration of interfacial interaction using novel nanocrystal superlattices as platform, and finally design of high performance catalysts in which all the possible beneficial properties from complex functional structures are implemented. Using recently published results, it will be demonstrated that optimal and fine balanced activity and durability, as well as tunable functionality, can be achieved by carefully tailoring the nanostructure of catalytic nanomaterials.

Keywords: energy, nanomaterials, catalysis, electrocatalysis

Procedia PDF Downloads 200
3 The Photon-Drag Effect in Cylindrical Quantum Wire with a Parabolic Potential

Authors: Hoang Van Ngoc, Nguyen Thu Huong, Nguyen Quang Bau

Abstract:

Using the quantum kinetic equation for electrons interacting with acoustic phonon, the density of the constant current associated with the drag of charge carriers in cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field and a laser radiation field is calculated. The density of the constant current is studied as a function of the frequency of electromagnetic wave, as well as the frequency of laser field and the basic elements of quantum wire with a parabolic potential. The analytic expression of the constant current density is numerically evaluated and plotted for a specific quantum wires GaAs/AlGaAs to show the dependence of the constant current density on above parameters. All these results of quantum wire compared with bulk semiconductors and superlattices to show the difference.

Keywords: The photon-drag effect, the constant current density, quantum wire, parabolic potential

Procedia PDF Downloads 384
2 Influence of Confined Acoustic Phonons on the Shubnikov – de Haas Magnetoresistance Oscillations in a Doped Semiconductor Superlattice

Authors: Pham Ngoc Thang, Le Thai Hung, Nguyen Quang Bau

Abstract:

The influence of confined acoustic phonons on the Shubnikov – de Haas magnetoresistance oscillations in a doped semiconductor superlattice (DSSL), subjected in a magnetic field, DC electric field, and a laser radiation, has been theoretically studied based on quantum kinetic equation method. The analytical expression for the magnetoresistance in a DSSL has been obtained as a function of external fields, DSSL parameters, and especially the quantum number m characterizing the effect of confined acoustic phonons. When m goes to zero, the results for bulk phonons in a DSSL could be achieved. Numerical calculations are also achieved for the GaAs:Si/GaAs:Be DSSL and compared with other studies. Results show that the Shubnikov – de Haas magnetoresistance oscillations amplitude decrease as the increasing of phonon confinement effect.

Keywords: Shubnikov–de Haas magnetoresistance oscillations, quantum kinetic equation, confined acoustic phonons, laser radiation, doped semiconductor superlattices

Procedia PDF Downloads 290
1 Development of New Localized Surface Plasmon Resonance Interfaces Based on ITO Au NPs/ Polymer for Nickel Detection

Authors: F. Z. Tighilt, N. Belhaneche-Bensemra, S. Belhousse, S. Sam, K. Lasmi, N. Gabouze

Abstract:

Recently, the gold nanoparticles (Au NPs) became an active multidisciplinary research topic. First, Au thin films fabricated by alkylthiol-functionalized Au NPs were found to have vapor sensitive conductivities, they were hence widely investigated as electrical chemiresistors for sensing different vapor analytes and even organic molecules in aqueous solutions. Second, Au thin films were demonstrated to have speciallocalized surface plasmon resonances (LSPR), so that highly ordered 2D Au superlattices showed strong collective LSPR bands due to the near-field coupling of adjacent nanoparticles and were employed to detect biomolecular binding. Particularly when alkylthiol ligands were replaced by thiol-terminated polymers, the resulting polymer-modified Au NPs could be readily assembled into 2D nanostructures on solid substrates. Monolayers of polystyrene-coated Au NPs showed typical dipolar near-field interparticle plasmon coupling of LSPR. Such polymer-modified Au nanoparticle films have an advantage that the polymer thickness can be feasibly controlled by changing the polymer molecular weight. In this article, the effect of tin-doped indium oxide (ITO) coatings on the plasmonic properties of ITO interfaces modified with gold nanostructures (Au NSs) is investigated. The interest in developing ITO overlayers is multiple. The presence of a con-ducting ITO overlayer creates a LSPR-active interface, which can serve simultaneously as a working electrode in an electro-chemical setup. The surface of ITO/ Au NPs contains hydroxyl groups that can be used to link functional groups to the interface. Here the covalent linking of nickel /Au NSs/ITO hybrid LSPR platforms will be presented.

Keywords: conducting polymer, metal nanoparticles (NPs), LSPR, poly (3-(pyrrolyl)–carboxylic acid), polypyrrole

Procedia PDF Downloads 244