Search results for: pressure loss coefficients
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8044

Search results for: pressure loss coefficients

7474 Modeling Reflection and Transmission of Elastodiffussive Wave Sata Semiconductor Interface

Authors: Amit Sharma, J. N. Sharma

Abstract:

This paper deals with the study of reflection and transmission characteristics of acoustic waves at the interface of a semiconductor halfspace and elastic solid. The amplitude ratios (reflection and transmission coefficients) of reflected and transmitted waves to that of incident wave varying with the incident angles have been examined for the case of quasi-longitudinal wave. The special cases of normal and grazing incidence have also been derived with the help of Gauss elimination method. The mathematical model consisting of governing partial differential equations of motion and charge carriers diffusion of n-type semiconductors and elastic solid has been solved both analytically and numerically in the study. The numerical computations of reflection and transmission coefficients has been carried out by using MATLAB programming software for silicon (Si) semiconductor and copper elastic solid. The computer simulated results have been plotted graphically for Si semiconductors. The study may be useful in semiconductors, geology, and seismology in addition to surface acoustic wave (SAW) devices.

Keywords: quasilongitudinal, reflection and transmission, semiconductors, acoustics

Procedia PDF Downloads 393
7473 Optimal Design of Shape for Increasing the Bonding Pressure Drawing of Hot Clad Pipes by Finite Element Method Analysis

Authors: Seok-Hyeon Park, Joon-Hong Park, Mok-Tan-Ahn, Seong-Hun Ha

Abstract:

Clad Pipe is made of a different kind of material, which is different from the internal and external materials, for the corrosive crude oil transportation tube. Most of the clad pipes are produced by hot rolling. However, problems arise due to high product prices and excessive process numbers. Therefore, in this study, the hot drawing process with excellent product cost, process number and productivity is applied. Due to the nature of the drawing process, the shape of the mold greatly influences the formability of the material and the bonding pressure of the two materials because it is a process of drawing the material to the die and reducing the cross-sectional area. Also, in case of hot drawing, if the mold shape is not suitable due to the increased fluidity of the material, it may cause problems such as tearing and stretching. Therefore, in this study, we try to find the shape of the mold which suppresses the occurrence of defects in the hot drawing process and maximizes the bonding pressure between the two materials through the mold shape optimization design by FEM analysis.

Keywords: clad pipe, hot drawing, bonding pressure, mold shape

Procedia PDF Downloads 305
7472 Thermal Performance Analysis of Nanofluids in a Concetric Heat Exchanger Equipped with Turbulators

Authors: Feyza Eda Akyurek, Bayram Sahin, Kadir Gelis, Eyuphan Manay, Murat Ceylan

Abstract:

Turbulent forced convection heat transfer and pressure drop characteristics of Al2O3–water nanofluid flowing through a concentric tube heat exchanger with and without coiled wire turbulators were studied experimentally. The experiments were conducted in the Reynolds number ranging from 4000 to 20000, particle volume concentrations of 0.8 vol.% and 1.6 vol.%. Two turbulators with the pitches of 25 mm and 39 mm were used. The results of nanofluids indicated that average Nusselt number increased much more with increasing Reynolds number compared to that of pure water. Thermal conductivity enhancement by the nanofluids resulted in heat transfer enhancement. Once the pressure drop of the alumina/water nanofluid was analyzed, it was nearly equal to that of pure water at the same Reynolds number range. It was concluded that nanofluids with the volume fractions of 0.8 and 1.6 did not have a significant effect on pressure drop change. However, the use of wire coils in heat exchanger enhanced heat transfer as well as the pressure drop.

Keywords: turbulators, heat exchanger, nanofluids, heat transfer enhancement

Procedia PDF Downloads 408
7471 Assessing the Prevalence of Taste Loss Among Adults Who Have Contracted SARS-CoV-2

Authors: Alketa Qafmolla, Mimoza Canga, Edit Xhajanka, Vergjini Mulo, Ramazan Isufi, Vito Antonio Malagnino

Abstract:

COVID-19 is threatening the lives of people all over the world. A number of health problems, including oral health problems, have been linked to SARS-CoV-2 infection. Loss of taste is one of the initial symptoms presented by patients who have COVID-19. Purpose: The aim of the current study is to determine the prevalence of taste loss in young adults aged 18 to 26 who have contracted SARS-CoV-2. Materials and methods: This study is analytical cross-sectional research conducted in Albania from March 2023 to September 2023. Our research included a total of 157 students, of which 100 (63.7%) were female and 57 (36.3%) were male. They were divided into three age groups: 18-20, 21-23, and 24-26 years old. Students willingly agreed to participate in the current study and were assured that their participation would be kept anonymous. The study recorded no dropouts and was conducted in accordance with the Declaration of Helsinki. Statistical analysis was performed using IBM SPSS Statistics Version 23.0 on Microsoft Windows Linux, Chicago, IL, USA. The evaluation of data was done using analysis of variance (ANOVA), with a significance level set at P ≤ 0.05. Results: 113 (72%) of the participants reported loss of taste, while 44 (28%) did not experience any loss of taste. According to the study's data analysis, taste problems typically manifest over three days, with the lowest frequency occurring on the second day and the highest frequency occurring on the fifteenth. 68.7% of participants reported experiencing taste recovery after three weeks. The present study's findings demonstrated a substantial correlation between the duration of the individuals' COVID-19 infection and taste loss (P <0.0003). Based on the statistical analysis of the data, this study shows that there is no association between gender and loss of taste (P = 0.218). The participants reported having undergone the following treatments: prednisolone sodium phosphate (15 mg/5 mL daily), vitamin C (1000 mg), azithromycin (500 mg daily), oral vitamin D3 supplementation of 5000 IU daily, vitamin B12 (2.4 mcg daily), zinc 20 mg daily, Augmentin tablets (625 mg), and magnesium sulfate (4 g/100 mL). Conclusion: Within the limitations of this study conducted in Albania, it can be concluded that loss of taste was present in 72% of participants infected with COVID-19 and recovery was evident after three weeks.

Keywords: adult, Albania, COVID-19, cross-sectional study, loss of taste

Procedia PDF Downloads 31
7470 Finite Difference Method of the Seismic Analysis of Earth Dam

Authors: Alaoua Bouaicha, Fahim Kahlouche, Abdelhamid Benouali

Abstract:

Many embankment dams have suffered failures during earthquakes due to the increase of pore water pressure under seismic loading. After analyzing of the behavior of embankment dams under severe earthquakes, major advances have been attained in the understanding of the seismic action on dams. The present study concerns numerical analysis of the seismic response of earth dams. The procedure uses a nonlinear stress-strain relation incorporated into the code FLAC2D based on the finite difference method. This analysis provides the variation of the pore water pressure and horizontal displacement.

Keywords: Earthquake, Numerical Analysis, FLAC2D, Displacement, Embankment Dam, Pore Water Pressure

Procedia PDF Downloads 380
7469 A Comparative Study to Evaluate Changes in Intraocular Pressure with Thiopentone Sodium and Etomidate in Patients Undergoing Surgery for Traumatic Brain Injury

Authors: Vasudha Govil, Prashant Kumar, Ishwar Singh, Kiranpreet Kaur

Abstract:

Traumatic brain injury leads to elevated intracranial pressure. Intraocular pressure (IOP) may also be affected by intracranial pressure. Increased venous pressure in the cavernous sinus is transmitted to the episcleral veins, resulting in an increase in IOP. All drugs used in anesthesia induction can change IOP. Irritation of the gag reflex after usage of the endotracheal tube can also increase IOP; therefore, the administration of anesthetic drugs, which make the lowest change in IOP, is important, while cardiovascular depression must also be avoided. Thiopentone decreases IOP by 40%, whereas etomidate decreases IOP by 30-60% for up to 5 minutes. Hundred patients (age 18-55 years) who underwent emergency craniotomy for TBI are selected for the study. Patients are randomly assigned to two groups of 50 patients each accord¬ing to the drugs used for induction: group T was given thiopentone sodium (5mg kg-1) and group E was given etomi¬date (0.3mg kg-1). Preanaesthesia intraocular pressure (IOP) was measured using Schiotz tonometer. Induction of anesthesia was achieved with etomidate (0.3mg kg-1) or thiopentone (5mg kg-1) along with fentanyl (2 mcg kg-1). Intravenous rocuronium (0.9mg kg-1) was given to facilitate intubation. Intraocular pressure was measured after 1 minute of induction agent administration and 5 minutes after intubation. Maintainance of anesthesia was done with isoflurane in 50% nitrous oxide with fresh gas flow of 5 litres. At the end of the surgery, the residual neuromuscular block was reversed and the patient was shifted to ward/ICU. Patients in both groups were comparable in terms of demographic profile. There was no significant difference between the groups for the hemody¬namic and respiratory variables prior to thiopentone or etomidate administration. Intraocular pressure in thiopentone group in left eye and right eye before induction was 14.97±3.94 mmHg and 14.72±3.75 mmHg respectively and for etomidate group was 15.28±3.69 mmHg and 15.54±4.46 mmHg respectively. After induction IOP decreased significantly in both the eyes (p<0.001) in both the groups. After 5 min of intubation IOP was significantly less than the baseline in both the eyes but it was more than the IOP after induction with the drug. It was found that there was no statistically significant difference in IOP between the two groups at any point of time. Both the drugs caused a significant decrease in IOP after induction and after 5 minutes of endotracheal intubation. The mechanism of decrease in IOP by intravenous induction agents is debatable. Systemic hypotension after the induction of anaesthesia has been shown to cause a decrease in intra-ocular pressure. A decrease in the tone of the extra-ocular muscles can also result in a decrease in intra-ocular pressure. We observed that it is appropriate to use etomidate as an induction agent when elevation of intra-ocular pressure is undesirable owing to the cardiovascular stability it confers in the patients.

Keywords: etomidate, intraocular pressure, thiopentone, traumatic

Procedia PDF Downloads 126
7468 Kinetic Studies of Bioethanol Production from Salt-Pretreated Sugarcane Leaves

Authors: Preshanthan Moodley, E. B. Gueguim Kana

Abstract:

This study examines the kinetics of S. cerevisiae BY4743 growth and bioethanol production from sugarcane leaf waste (SLW), utilizing two different optimized pretreatment regimes; under two fermentation modes: steam salt-alkali filtered enzymatic hydrolysate (SSA-F), steam salt-alkali unfiltered (SSA-U), microwave salt-alkali filtered (MSA-F) and microwave salt-alkali unfiltered (MSA-U). The kinetic coefficients were determined by fitting the Monod, modified Gompertz, and logistic models to the experimental data with high coefficients of determination R² > 0.97. A maximum specific growth rate (µₘₐₓ) of 0.153 h⁻¹ was obtained under SSA-F and SSA-U whereas, 0.150 h⁻¹ was observed with MSA-F and MSA-U. SSA-U gave a potential maximum bioethanol concentration (Pₘ) of 31.06 g/L compared to 30.49, 23.26 and 21.79g/L for SSA-F, MSA-F and MSA-U respectively. An insignificant difference was observed in the μmax and Pm for the filtered and unfiltered enzymatic hydrolysate for both SSA and MSA pretreatments, thus potentially reducing a unit operation. These findings provide significant insights for process scale up.

Keywords: lignocellulosic bioethanol, microwave pretreatment, sugarcane leaves, kinetics

Procedia PDF Downloads 124
7467 A Zero-Flaring Flowback Solution to Revive Liquid Loaded Gas Wells

Authors: Elsayed Amer, Tarek Essam, Abdullah Hella, Mohammed Al-Ajmi

Abstract:

Hydrocarbon production decline in mature gas fields is inevitable, and mitigating these circumstances is essential to ensure a longer production period. Production decline is not only influenced by reservoir pressure and wellbore integrity; however, associated liquids in the reservoir rock have a considerable impact on the production process. The associated liquid may result in liquid loading, near wellbore damage, condensate banking, fine sand migration, and wellhead pressure depletion. Consequently, the producing well will suffocate, and the liquid column will seize the well from flowing. A common solution in such circumstances is reducing the surface pressure by opening the well to the atmospheric pressure and flaring the produced liquids. This practice may not be applicable to many cases since the atmospheric pressure is not low enough to create a sufficient driving force to flow the well. In addition, flaring the produced hydrocarbon is solving the issue on account of the environment, which is against the world's efforts to mitigate the impact of climate change. This paper presents a novel approach and a case study that utilizes a multi-phase mobile wellhead gas compression unit (MMWGC) to reduce surface pressure to the sub-atmospheric level and transfer the produced hydrocarbons to the sales line. As a result, the liquid column will unload in a zero-flaring manner, and the life of the producing well will extend considerably. The MMWGC unit was able to successfully kick off a dead well to produce up to 10 MMSCFD after reducing the surface pressure for 3 hours. Applying such novelty on a broader scale will not only extend the life of the producing wells yet will also provide a zero-flaring, economically and environmentally preferred solution.

Keywords: petroleum engineering, zero-flaring, liquid loading, well revival

Procedia PDF Downloads 101
7466 A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure

Authors: Mohamed Ouzzane, Mahmoud Bady

Abstract:

Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season).

Keywords: air cooling system, refrigeration, thermal ejector, thermal compression

Procedia PDF Downloads 160
7465 Ear Protectors and Their Action in Protecting Hearing System of Workers against Occupational Noise

Authors: F. Forouharmajd, S. Pourabdian, N. Ziayi Ghahnavieh

Abstract:

For many years, the ear protectors have been used to preventing the audio and non-audio effects of received noise from occupation environments. Despite performing hearing protection programs, there are many people which still suffer from noise-induced hearing loss. This study was conducted with the aim of determination of human hearing system response to received noise and the effectiveness of ear protectors on preventing of noise-induced hearing loss. Sound pressure microphones were placed in a simulated ear canal. The severity of noise measured inside and outside of ear canal. The noise reduction values due to installing ear protectors were calculated in the octave band frequencies and LabVIEW programmer. The results of noise measurement inside and outside of ear canal showed a different in received sound levels by ear canal. The effectiveness of ear protectors has been considerably reduced for the low frequency limits. A change in resonance frequency also was observed after using ear protectors. The study indicated the ear canal structure may affect the received noise and it may lead a difference between the received sound from the measured sound by a sound level meter, and hearing system. It means the human hearing system may probably respond different from a sound level meter. Hearing protectors’ efficiency declines by increasing the noise levels, and thus, they are not suitable to protect workers against industrial noise particularly low frequency noise. Hearing protectors may be solely a reason to damaging of hearing system in a special frequency via changing of human hearing system acoustical structure. We need developing the subjective method of hearing protectors testing, because their evaluation is not designed based on industrial noise or in the field.

Keywords: ear protector, hearing system, occupational noise, workers

Procedia PDF Downloads 170
7464 Effect of Inspiratory Muscle Training on Diaphragmatic Strength Following Coronary Revascularization

Authors: Abeer Ahmed Abdelhamed

Abstract:

Introduction: Postoperative pulmonary complications (PPCs) are the most common complications observed and managed after abdominal or cardiothoracic surgery. Hypoxemia, atelectasis, pleural effusion, or diaphragmatic dysfunction, are often a source of morbidity in cardiac surgery patients, and are more common in patients receiving unilateral or bilateral internal mammary artery (IMT) grafts than patients receiving saphenous vein (SV) grafts alone. Purpose: The aim of this work was to investigate the effect of Threshold load inspiratory muscle training on pulmonary gas exchange and maximum inspiratory pressure (MIP) in patient undergoing coronary revascularization. Subject: Thirty three male patients eligible for coronary revascularization were selected to participate in the study. Method: They were divided into two groups(17 patients in the intervention group and 16 patients in the control group), the interventional group received inspiratory muscle training at 30% of their maximum inspiratory pressure throughout the hospitalization period in addition to routine post operative care. Result: The results of this study showed a significant improvement on maximum inspiratory pressure(MIP), Arterial-alveolar pressure gradient (A-a gradient) and oxygen saturation in the intervention group. Conclusion: Inspiratory muscle training using threshold mode significantly improves maximum inspiratory pressure, pulmonary gas exchange tested by alveolar-arterial gradient and oxygen saturation in Patients undergoing coronary revascularization.

Keywords: coronary revascularization, inspiratory muscle training, maximum inspiratory pressure, pulmonary gas exchange

Procedia PDF Downloads 301
7463 Correlation of SPT N-Value and Equipment Drilling Parameters in Deep Soil Mixing

Authors: John Eric C. Bargas, Maria Cecilia M. Marcos

Abstract:

One of the most common ground improvement techniques is Deep Soil Mixing (DSM). As the technique progresses, there is still lack in the development when it comes to depth control. This was the issue experienced during the installation of DSM in one of the National projects in the Philippines. This study assesses the feasibility of using equipment drilling parameters such as hydraulic pressure, drilling speed and rotational speed in determining the Standard Penetration Test N-value of a specific soil. Hydraulic pressure and drilling speed with a constant rotational speed of 30 rpm have a positive correlation with SPT N-value for cohesive soil and sand. A linear trend was observed for cohesive soil. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.5377 while the correlation of SPT N-value and drilling speed has a R²=0.6355. While the best fitted model for sand is polynomial trend. The correlation of SPT N-value and hydraulic pressure yielded a R²=0.7088 while the correlation of SPT N-value and drilling speed has a R²=0.4354. The low correlation may be attributed to the behavior of sand when the auger penetrates. Sand tends to follow the rotation of the auger rather than resisting which was observed for very loose to medium dense sand. Specific Energy and the product of hydraulic pressure and drilling speed yielded same R² with a positive correlation. Linear trend was observed for cohesive soil while polynomial trend for sand. Cohesive soil yielded a R²=0.7320 which has a strong relationship. Sand also yielded a strong relationship having a coefficient of determination, R²=0.7203. It is feasible to use hydraulic pressure and drilling speed to estimate the SPT N-value of the soil. Also, the product of hydraulic pressure and drilling speed can be a substitute to specific energy when estimating the SPT N-value of a soil. However, additional considerations are necessary to account for other influencing factors like ground water and physical and mechanical properties of soil.

Keywords: ground improvement, equipment drilling parameters, standard penetration test, deep soil mixing

Procedia PDF Downloads 56
7462 Statistical Correlation between Logging-While-Drilling Measurements and Wireline Caliper Logs

Authors: Rima T. Alfaraj, Murtadha J. Al Tammar, Khaqan Khan, Khalid M. Alruwaili

Abstract:

OBJECTIVE/SCOPE (25-75): Caliper logging data provides critical information about wellbore shape and deformations, such as stress-induced borehole breakouts or washouts. Multiarm mechanical caliper logs are often run using wireline, which can be time-consuming, costly, and/or challenging to run in certain formations. To minimize rig time and improve operational safety, it is valuable to develop analytical solutions that can estimate caliper logs using available Logging-While-Drilling (LWD) data without the need to run wireline caliper logs. As a first step, the objective of this paper is to perform statistical analysis using an extensive datasetto identify important physical parameters that should be considered in developing such analytical solutions. METHODS, PROCEDURES, PROCESS (75-100): Caliper logs and LWD data of eleven wells, with a total of more than 80,000 data points, were obtained and imported into a data analytics software for analysis. Several parameters were selected to test the relationship of the parameters with the measured maximum and minimum caliper logs. These parameters includegamma ray, porosity, shear, and compressional sonic velocities, bulk densities, and azimuthal density. The data of the eleven wells were first visualized and cleaned.Using the analytics software, several analyses were then preformed, including the computation of Pearson’s correlation coefficients to show the statistical relationship between the selected parameters and the caliper logs. RESULTS, OBSERVATIONS, CONCLUSIONS (100-200): The results of this statistical analysis showed that some parameters show good correlation to the caliper log data. For instance, the bulk density and azimuthal directional densities showedPearson’s correlation coefficients in the range of 0.39 and 0.57, which wererelatively high when comparedto the correlation coefficients of caliper data with other parameters. Other parameters such as porosity exhibited extremely low correlation coefficients to the caliper data. Various crossplots and visualizations of the data were also demonstrated to gain further insights from the field data. NOVEL/ADDITIVE INFORMATION (25-75): This study offers a unique and novel look into the relative importance and correlation between different LWD measurements and wireline caliper logs via an extensive dataset. The results pave the way for a more informed development of new analytical solutions for estimating the size and shape of the wellbore in real-time while drilling using LWD data.

Keywords: LWD measurements, caliper log, correlations, analysis

Procedia PDF Downloads 122
7461 The Effect of a Test Pump Supplement on the Physiological and Functional Performance of Futsal Women

Authors: Samaneh Rahsepar, Mehrzad Moghadasi

Abstract:

To evaluate the effect of Test Pump supplement on the physiological and functional performance of futsal women, twenty female futsal subjects were divided into two groups: placebo (n = 10) and supplement (n = 10) and were given buccal tablets for 7 days and 12 g daily supplement each day. The placebo group used starch powder during this period. Speed, agility with ball, agility without ball and dribbling time were measured before and after supplementation. In addition, the rate of heart rate and blood pressure changes were measured before and after the YOYO test. The results showed that the test pump had no significant effect on improving speed, agility with ball, agility without ball, dribbling time and heart rate changes and diastolic blood pressure, and only affect the maximum oxygen consumption and systolic blood pressure (P <0.05). In general, the use of the test-pump supplement does not have a significant effect on the physiological and functional performance of futsal women. The results of this study showed that the use of supplementary pump tests on women's futsal heart rate changes after loading period had a significant difference between the two groups in resting heart rate with heart rate after exercise and 5 minutes after exercise. However, it did not have a significant effect on the increase in heart rate. Supplementation significantly increased systolic blood pressure after exercise compared to resting blood pressure, as well as a significant increase in systolic blood pressure after exercise compared to resting systolic blood pressure and 5 minutes after exercise in both groups from the loading period. On the other hand, there was a significant difference in systolic blood pressure in both placebo and supplemented groups.

Keywords: test pump supplement, women, speed, dribble, agility, maximum oxygen consumption, cardiovascular

Procedia PDF Downloads 176
7460 Challenges in Early Diagnosis of Enlarged Vestibular Aqueduct (EVA) in Pediatric Population: A Single Case Report

Authors: Asha Manoharan, Sooraj A. O, Anju K. G

Abstract:

Enlarged vestibular aqueduct (EVA) refers to the presence of congenital sensorineural hearing loss with an enlarged vestibular aqueduct. The Audiological symptoms of EVA are fluctuating and progressive in nature and the diagnosis of EVAS can be confirmed only with radiological evaluation. Hence it is difficult to differentiate EVA from conditions like Meniere’s disease, semi-circular dehiscence, etc based on audiological findings alone. EVA in adults is easy to identify due to distinct vestibular symptoms. In children, EVA can remain either unidentified or misdiagnosed until the vestibular symptoms are evident. Motor developmental delay, especially the ones involving a change of body alignment, has been reported in the pediatric population with EVA. So, it should be made mandatory to recommend radiological evaluation in young children with fluctuating hearing loss reporting with motor developmental delay. This single case study of a baby with Enlarged Vestibular Aqueduct (EVA) primarily aimed to address the following: a) Challenges while diagnosing young patients with EVA and fluctuating hearing loss, b) Importance of radiological evaluation in audiological diagnosis in the pediatric population, c) Need for regular monitoring of hearing, hearing aid performance, and cochlear implant mapping closely for potential fluctuations in such populations, d) Importance of reviewing developmental, language milestones in very young children with fluctuating hearing loss.

Keywords: enlarged vestibular aqueduct (EVA), motor delay, radiological evaluation, fluctuating hearing loss, cochlear implant

Procedia PDF Downloads 168
7459 The Role of Physical Activity on Some Factors Affecting Cardiovascular Disease

Authors: M. J. Pourvaghar, M. E. Bahram, Sh. Khoshemehry

Abstract:

Hyperlipidemia or an increase in blood lipids is a condition that has been rising, especially during the last decade, with the advancement of the life-span of the car, as an important disease. In fact, it is one of the complications of industrial life and semi-industrial. Hyperlipidemia alone is not a disease, but it is recognized as an important risk factor for coronary artery disease. The methodology of this review article is the use of research to provide the best solution for physical activity and exercise in relation to lowering blood lipids and lowering blood pressure. Also, factors that contribute to improving the health status of humans should be introduced. Research findings in this article show that physical activity with a specific duration and severity can keep a person away from the cardiovascular disease. The result shows that regular physical activity with low intensity and long periods of time is essential for human health. Physical mobility reduces blood pressure, reduces the harmful fats and does not cause cardiovascular disease. More than half of the patients suffering from cardiovascular problems are afflicted with blood lipids. On the other hand, high blood pressure is one of the serious health hazards in the world today, which causes a large number of cardiovascular problems and mortality in the world. Undoubtedly, the second most common risk factor for heart disease is high blood pressure after cigarette smoking.

Keywords: blood pressure, cardiovascular, hyperlipidemia, risk factor

Procedia PDF Downloads 241
7458 Theoretical Study of the Structural and Elastic Properties of Semiconducting Rare Earth Chalcogenide Sm1-XEuXS under Pressure

Authors: R. Dubey, M. Sarwan, S. Singh

Abstract:

We have investigated the phase transition pressure and associated volume collapse in Sm1– X EuX S alloy (0≤x≤1) which shows transition from discontinuous to continuous as x is reduced. The calculated results from present approach are in good agreement with experimental data available for the end point members (x=0 and x=1). The results for the alloy counter parts are also in fair agreement with experimental data generated from the vegard’s law. An improved interaction potential model has been developed which includes coulomb, three body interaction, polarizability effect and overlap repulsive interaction operative up to second neighbor ions. It is found that the inclusion of polarizability effect has improved our results.

Keywords: elastic constants, high pressure, phase transition, rare earth compound

Procedia PDF Downloads 423
7457 Intensifying Approach for Separation of Bio-Butanol Using Ionic Liquid as Green Solvent: Moving Towards Sustainable Biorefinery

Authors: Kailas L. Wasewar

Abstract:

Biobutanol has been considered as a potential and alternative biofuel relative to the most popular biodiesel and bioethanol. End product toxicity is the major problems in commercialization of fermentation based process which can be reduce to some possible extent by removing biobutanol simultaneously. Several techniques have been investigated for removing butanol from fermentation broth such as stripping, adsorption, liquid–liquid extraction, pervaporation, and membrane solvent extraction. Liquid–liquid extraction can be performed with high selectivity and is possible to carry out inside the fermenter. Conventional solvents have few drawbacks including toxicity, loss of solvent, high cost etc. Hence alternative solvents must be explored for the same. Room temperature ionic liquids (RTILs) composed entirely of ions are liquid at room temperature having negligible vapor pressure, non-flammability, and tunable physiochemical properties for a particular application which term them as “designer solvents”. Ionic liquids (ILs) have recently gained much attention as alternatives for organic solvents in many processes. In particular, ILs have been used as alternative solvents for liquid–liquid extraction. Their negligible vapor pressure allows the extracted products to be separated from ILs by conventional low pressure distillation with the potential for saving energy. Morpholinium, imidazolium, ammonium, phosphonium etc. based ionic liquids have been employed for the separation biobutanol. In present chapter, basic concepts of ionic liquids and application in separation have been presented. Further, type of ionic liquids including, conventional, functionalized, polymeric, supported membrane, and other ionic liquids have been explored. Also the effect of various performance parameters on separation of biobutanol by ionic liquids have been discussed and compared for different cation and anion based ionic liquids. The typical methodology for investigation have been adopted such as contacting the equal amount of biobutanol and ionic liquids for a specific time say, 30 minutes to confirm the equilibrium. Further, biobutanol phase were analyzed using GC to know the concentration of biobutanol and material balance were used to find the concentration in ionic liquid.

Keywords: biobutanol, separation, ionic liquids, sustainability, biorefinery, waste biomass

Procedia PDF Downloads 93
7456 Regression-Based Approach for Development of a Cuff-Less Non-Intrusive Cardiovascular Health Monitor

Authors: Pranav Gulati, Isha Sharma

Abstract:

Hypertension and hypotension are known to have repercussions on the health of an individual, with hypertension contributing to an increased probability of risk to cardiovascular diseases and hypotension resulting in syncope. This prompts the development of a non-invasive, non-intrusive, continuous and cuff-less blood pressure monitoring system to detect blood pressure variations and to identify individuals with acute and chronic heart ailments, but due to the unavailability of such devices for practical daily use, it becomes difficult to screen and subsequently regulate blood pressure. The complexities which hamper the steady monitoring of blood pressure comprises of the variations in physical characteristics from individual to individual and the postural differences at the site of monitoring. We propose to develop a continuous, comprehensive cardio-analysis tool, based on reflective photoplethysmography (PPG). The proposed device, in the form of an eyewear captures the PPG signal and estimates the systolic and diastolic blood pressure using a sensor positioned near the temporal artery. This system relies on regression models which are based on extraction of key points from a pair of PPG wavelets. The proposed system provides an edge over the existing wearables considering that it allows for uniform contact and pressure with the temporal site, in addition to minimal disturbance by movement. Additionally, the feature extraction algorithms enhance the integrity and quality of the extracted features by reducing unreliable data sets. We tested the system with 12 subjects of which 6 served as the training dataset. For this, we measured the blood pressure using a cuff based BP monitor (Omron HEM-8712) and at the same time recorded the PPG signal from our cardio-analysis tool. The complete test was conducted by using the cuff based blood pressure monitor on the left arm while the PPG signal was acquired from the temporal site on the left side of the head. This acquisition served as the training input for the regression model on the selected features. The other 6 subjects were used to validate the model by conducting the same test on them. Results show that the developed prototype can robustly acquire the PPG signal and can therefore be used to reliably predict blood pressure levels.

Keywords: blood pressure, photoplethysmograph, eyewear, physiological monitoring

Procedia PDF Downloads 279
7455 Dietary Index Associated With Plantar Pressure in Older Women

Authors: Lovro Štefan

Abstract:

The main purpose of the study was to explore if a higher level of Elderly Dietary index score was correlated with lower peak plantar pressures. One-hundred and twenty older adults aged ≥60 years participated in this cross-sectional study. To assess the level of adherence to nutritional recommendations for older adults, we used Elderly Dietary Index score. Plantar pressures beneath the forefoot, midfootandhindfootregions of the foot were determined by pressure platform. Pearson’s coefficient of correlations and partial correlations were used to calculate the relationships. In the unadjusted model, higher Elderly Dietary Index was significantly correlated with lower peak plantar pressure beneath the forefoot (r = -0.45, p<0.001) and hindfoot (r = -0.37, p<0.001) the region, while no significant correlation with peak plantar pressure beneath the (r = -0.15, p=0.113) was observed. When we adjusted for age, body-mass index and gait velocity, higher Elderly Dietary Index remained significantly correlated with lower peak plantar pressure beneath the forefoot (r = -0.41, p<0.001) and hintfoot (r = -0.32, p<0.001) region. This study shows that higher adherence to nutritional recommendations is significantly correlated with lower forefoot and hindfoot peak plantar pressures in older women.

Keywords: elderly, biomechanics, nutrition, associations, force

Procedia PDF Downloads 86
7454 The Effect of Energy Consumption and Losses on the Nigerian Manufacturing Sector: Evidence from the ARDL Approach

Authors: Okezie A. Ihugba

Abstract:

The bounds testing ARDL (2, 2, 2, 2, 0) technique to cointegration was used in this study to investigate the effect of energy consumption and energy loss on Nigeria's manufacturing sector from 1981 to 2020. The model was created to determine the relationship between these three variables while also accounting for interactions with control variables such as inflation and commercial bank loans to the manufacturing sector. When the dependent variables are energy consumption and energy loss, the bounds tests show that the variables of interest are bound together in the long run. Because electricity consumption is a critical factor in determining manufacturing value-added in Nigeria, some intriguing observations were made. According to the findings, the relationship between LELC and LMVA is statistically significant. According to the findings, electricity consumption reduces manufacturing value-added. The target variable (energy loss) is statistically significant and has a positive sign. In Nigeria, a 1% reduction in energy loss increases manufacturing value-added by 36% in the first lag and 35% in the second. According to the study, the government should speed up the ongoing renovation of existing power plants across the country, as well as the construction of new gas-fired power plants. This will address a number of issues, including overpricing of electricity as a result of grid failure.

Keywords: L60, Q43, H81, C52, E31, ARDL, cointegration, Nigeria's manufacturing

Procedia PDF Downloads 178
7453 Effect of Forging Pressure on Mechanical Properties and Microstructure of Similar and Dissimilar Friction Welded Joints (Aluminium, Copper, Steel)

Authors: Sagar Pandit

Abstract:

The present work focuses on the effect of various process parameters on the mechanical properties and microstructure of joints produced by continuous drive friction welding and linear friction welding. An attempt is made to investigate the feasibility of obtaining an acceptable weld joint between similar as well as dissimilar components and the microstructural changes have also been assessed once the good weld joints were considered (using Optical Microscopy and Scanning Electron Microscopy techniques). The impact of forging pressure in the microstructure of the weld joint has been studied and the variation in joint strength with varying forge pressure is analyzed. The weld joints were obtained two pair of dissimilar materials and one pair of similar materials, which are listed respectively as: Al-AA5083 & Cu-C101 (dissimilar), Aluminium alloy-3000 series & Mild Steel (dissimilar) and High Nitrogen Austenitic Stainless Steel pair (similar). Intermetallic phase formation was observed at the weld joints in the Al-Cu joint, which consequently harmed the properties of the joint (less tensile strength). It was also concluded that the increase in forging pressure led to both increment and decrement in the tensile strength of the joint depending on the similarity or dissimilarity of the components. The hardness was also observed to possess maximum as well as minimum values at the weld joint depending on the similarity or dissimilarity of workpieces. It was also suggested that a higher forging pressure is needed to obtain complete joining for the formation of the weld joint.

Keywords: forging pressure, friction welding, mechanical properties, microstructure

Procedia PDF Downloads 118
7452 Evolution of Nettlespurge Oil Mud for Drilling Mud System: A Comparative Study of Diesel Oil and Nettlespurge Oil as Oil-Based Drilling Mud

Authors: Harsh Agarwal, Pratikkumar Patel, Maharshi Pathak

Abstract:

Recently the low prices of Crude oil and increase in strict environmental regulations limit limits the use of diesel based muds as these muds are relatively costlier and toxic, as a result disposal of cuttings into the eco-system is a major issue faced by the drilling industries. To overcome these issues faced by the Oil Industry, an attempt has been made to develop oil-in-water emulsion mud system using nettlespurge oil. Nettlespurge oil could be easily available and its cost is around ₹30/litre which is about half the price of diesel in India. Oil-based mud (OBM) was formulated with Nettlespurge oil extracted from Nettlespurge seeds using the Soxhlet extraction method. The formulated nettlespurge oil mud properties were analysed with diesel oil mud properties. The compared properties were rheological properties, yield point and gel strength, and mud density and filtration loss properties, fluid loss and filter cake. The mud density measurement showed that nettlespurge OBM was slightly higher than diesel OBM with mud density values of 9.175 lb/gal and 8.5 lb/gal, respectively, at barite content of 70 g. Thus it has a higher lubricating property. Additionally, the filtration loss test results showed that nettlespurge mud fluid loss volumes, oil was 11 ml, compared to diesel oil mud volume of 15 ml. The filtration loss test indicated that the nettlespurge oil mud with filter cake thickness of 2.2 mm had a cake characteristic of thin and squashy while the diesel oil mud resulted in filter cake thickness of 2.7 mm with cake characteristic of tenacious, rubbery and resilient. The filtration loss test results showed that nettlespurge oil mud fluid loss volumes was much less than the diesel based oil mud. The filtration loss test indicated that the nettlespurge oil mud filter cake thickness less than the diesel oil mud filter cake thickness. So Low formation damage and the emulsion stability effect was analysed with this experiment. The nettlespurge oil-in-water mud system had lower coefficient of friction than the diesel oil based mud system. All the rheological properties have shown better results relative to the diesel based oil mud. Therefore, with all the above mentioned factors and with the data of the conducted experiment we could conclude that the Nettlespurge oil based mud is economically and well as eco-logically much more feasible than the worn out and shabby diesel-based oil mud in the Drilling Industry.

Keywords: economical feasible, ecological feasible, emulsion stability, nettle spurge oil, rheological properties, soxhlet extraction method

Procedia PDF Downloads 203
7451 Fundamental Research Dissension between Hot and Cold Chamber High Pressure Die Casting

Authors: Sahil Kumar, Surinder Pal, Rahul Kapoor

Abstract:

This paper is focused on to define the basic difference between hot and cold chamber high pressure die casting process which is not fully defined in a research before paper which we have studied. The pressure die casting is basically defined into two types (1) Hot chamber Die Casting (2) Cold chamber Die Casting. Cold chamber die casting is used for casting alloys that require high pressure and have a high melting temperature, such as brass, aluminum, magnesium, copper based alloys and other high melting point nonferrous alloys. Hot chamber die casting is suitable for casting zinc, tin, lead, and low melting point alloys. In hot chamber die casting machine, the molten metal is an integral pan of the machine. It mainly consists of hot chamber and gooseneck type metal container made of cast iron. This machine is mainly used for low melting alloys and alloys of metals like zinc, lead etc. Metals and alloys having a high melting point and those which are having an affinity for iron cannot be cast by this machine, which could otherwise attack the shot sleeve and damage the machine.

Keywords: hot chamber die casting, cold chamber die casting, metals and alloys, casting technology

Procedia PDF Downloads 619
7450 The Liability of Renewal: The Impact of Changes in Organizational Capability, Performance, Legitimacy and Pressure for Change

Authors: Alshehri Sultan

Abstract:

Organizational change has remained an important subject for many researchers in the field of organizations theory. We propose the importance of organizational liability of renewal through a model that examines how an organization can overcome potential rigidities in organizational capabilities from learning by changing capabilities. We examine whether an established organization can overcome liability of renewal by changes in organizational capabilities and how the organizational renewal process reflect on the balance between the dynamic aspect of organizational learning as demonstrated by changes in capabilities and the stabilizing aspects of organizational inertia. We found both positive relationship between organizational learning and performance, and between legitimacy and performance. Performance and legitimacy have, however, a negative relationship on the pressure for change.

Keywords: organizational capabilities, organizational liability, liability of renewal, pressure for change

Procedia PDF Downloads 527
7449 An Experimental Study to Mitigate Swelling Pressure of Expansive Tabuk Shale, Saudi Arabia

Authors: A. A. Embaby, A. Abu Halawa, M. Ramadan

Abstract:

In Kingdom of Saudi Arabia, there are several areas where expansive soil exists in the form of variable-thicknesses layers in the developed regions. Severe distress to infrastructures can be caused by the development of heave and swelling pressure in this kind of expansive shale. Among the various techniques for expansive soil mitigation, the removal and replacement technique is very popular for lightly loaded structures and shallow foundations. This paper presents the result of an experimental study conducted for evaluating the effect of type and thickness of the cushion soils on mitigation of swelling characteristics of expanded shale. Seven undisturbed shale samples collected from Al Qadsiyah district, which is located in the Tabuk town north Kingdom of Saudi Arabia, are treated with two types of cushion coarse-grained sediments (CCS); sand and gravel. Each type is represented with three thicknesses, 22%, 33% and 44% in relation to the depth of the active zone. The test results indicated that the replacement of expansive shale by CCS reduces the swelling potential and pressure. It is found that the reduction in swelling depends on the type and thickness of CCS. The treatment by removing the original expansive shale and replacing it by cushion sand with 44% thickness reduced the swelling potential and pressure of about 53.29% and 62.78 %, respectively.

Keywords: cushion coarse-grained sediments (CCS), expansive soil, Saudi Arabia, swelling pressure, Tabuk Shale

Procedia PDF Downloads 317
7448 Stigma and Discrimination toward Mental Illness: Translation and Validation of the Attribution Questionnaire-27 (AQ-27)

Authors: Gokcen Akyurek, Hulya Kayihan, Deniz Yuce, Selen Yilmaz

Abstract:

The stigma towards mental illness is still very rooted in our society, despite the number of studies, campaigns, and anti-stigma programs developed in recent years. Stigma represents a serious obstacle to recovery and social integration for people who experience a mental illness, affecting directly their well-being and quality of life. It implies that these persons have to deal with many other barriers apart from the disease symptoms (1-5). Convergent, recent literature suggests that less positive attitudes by mental health professionals interfere with the self-determination and recovery process (4-10).The aim of this study was to translate the Attribution Questionnaire-27 (AQ-27) to the Turkish language (AQ-27-T), and to examine the reliability and validity of this new Turkish version. Cultural adaptation was implemented according to the internationally suggested method. To determine the understandability and appropriateness of this measure for the Turkish culture, a pretest was administered and the final form was generated. Then, 424 randomly chosen people took part in the study. Participant’s mean age was 36.9±12.7 years and %52 of them female. Cronbach's alpha and intra-class coefficients were used to estimate instrument reliability. The AQ-27-T was assessed again 14 days later for test retest reliability. The AQ-27-T demonstrated acceptable internal consistency, with a Cronbach's alpha of 0.88 for the total scale and ranging between 0.86 and 0.89 for the items. The test-retest reliability was good, with Pearson correlation coefficients of 0.79 for the total scale and ranging between 0.35 and 0.77 for the items (p<0.05). Correlation between subscales was moderate-good, with Pearson correlation coefficients of 0.18-0.88 (p<0.05). Fit indices of the model supported the factor structure and paths. The AQ-27-T is a reliable measure to assess stigmatizing attitudes in Turkish.

Keywords: attribution questionnaire, validity, reliability, stigma

Procedia PDF Downloads 444
7447 Influence of Geometry on Performance of Type-4 Filament Wound Composite Cylinder for Compressed Gas Storage

Authors: Pranjali Sharma, Swati Neogi

Abstract:

Composite pressure vessels are low weight structures mainly used in a variety of applications such as automobiles, aeronautics and chemical engineering. Fiber reinforced polymer (FRP) composite materials offer the simplicity of design and use, high fuel storage capacity, rapid refueling capability, excellent shelf life, minimal infrastructure impact, high safety due to the inherent strength of the pressure vessel, and little to no development risk. Apart from these preliminary merits, the subsidized weight of composite vessels over metallic cylinders act as the biggest asset to the automotive industry, increasing the fuel efficiency. The result is a lightweight, flexible, non-explosive, and non-fragmenting pressure vessel that can be tailor-made to attune with specific applications. The winding pattern of the composite over-wrap is a primary focus while designing a pressure vessel. The critical stresses in the system depend on the thickness, angle and sequence of the composite layers. The composite over-wrap is wound over a plastic liner, whose geometry can be varied for the ease of winding. In the present study, we aim to optimize the FRP vessel geometry that provides an ease in winding and also aids in weight reduction for enhancing the vessel performance. Finite element analysis is used to study the effect of dome geometry, yielding a design with maximum value of burst pressure and least value of vessel weight. The stress and strain analysis of different dome ends along with the cylindrical portion is carried out in ANSYS 19.2. The failure is predicted using different failure theories like Tsai-Wu theory, Tsai-Hill theory and Maximum stress theory. Corresponding to a given winding sequence, the optimum dome geometry is determined for a fixed internal pressure to identify the theoretical value of burst pressure. Finally, this geometry is used to decrease the number of layers to reach the set value of safety in accordance with the available safety standards. This results in decrease in the weight of the composite over-wrap and manufacturing cost of the pressure vessel. An improvement in the overall weight performance of the pressure vessel gives higher fuel efficiency for its use in automobile applications.

Keywords: Compressed Gas Storage, Dome geometry, Theoretical Analysis, Type-4 Composite Pressure Vessel, Improvement in Vessel Weight Performance

Procedia PDF Downloads 147
7446 Optimizing Fire Tube Boiler Design for Efficient Saturated Steam Production: A Cost-Minimization Approach

Authors: Yoftahe Nigussie Worku

Abstract:

This report unveils a meticulous project focused on the design intricacies of a Fire Tube Boiler tailored for the efficient generation of saturated steam. The overarching objective is to produce 2000kg/h of saturated steam at 12-bar design pressure, achieved through the development of an advanced fire tube boiler. This design is meticulously crafted to harmonize cost-effectiveness and parameter refinement, with a keen emphasis on material selection for component parts, construction materials, and production methods throughout the analytical phases. The analytical process involves iterative calculations, utilizing pertinent formulas to optimize design parameters, including the selection of tube diameters and overall heat transfer coefficients. The boiler configuration incorporates two passes, a strategic choice influenced by tube and shell size considerations. The utilization of heavy oil fuel no. 6, with a higher heating value of 44000kJ/kg and a lower heating value of 41300kJ/kg, results in a fuel consumption of 140.37kg/hr. The boiler achieves an impressive heat output of 1610kW with an efficiency rating of 85.25%. The fluid flow pattern within the boiler adopts a cross-flow arrangement strategically chosen for inherent advantages. Internally, the welding of the tube sheet to the shell, secured by gaskets and welds, ensures structural integrity. The shell design adheres to European Standard code sections for pressure vessels, encompassing considerations for weight, supplementary accessories (lifting lugs, openings, ends, manhole), and detailed assembly drawings. This research represents a significant stride in optimizing fire tube boiler technology, balancing efficiency and safety considerations in the pursuit of enhanced saturated steam production.

Keywords: fire tube, saturated steam, material selection, efficiency

Procedia PDF Downloads 84
7445 The Effects of Extracorporeal Shock Wave Therapy on Plantar Pressure in Patients with Calcaneal Spur

Authors: Zehra Betül Karakoç

Abstract:

Aim: The aim of our study is to determine the changement pf plantar pressure after extracorporeal shock wave therapy (ESWT) in a patient with calcaneal spur (CS). Method: Thirty patients with CS who received ESWT treatment at Kartal Yavuz Selim State Hospital between May 2020 and November 2022 participated in this study. Demographic information of the cases was obtained. Pain levels and plantar pressure were measured with Visuel Analog Scale (VAS) and pedobarography, respectively. Pedobarography measured the maximal strength, peak pressure level, and contact area values of the hind, middle, forefoot, and toes. The cases were re-evaluated 4 weeks after the application of 15 Hz, 2-3 bar, 2,000 beats ESWT for 3 sessions. 22 cases participated in the second evaluation. The data of all patients were evaluated bilaterally. Results: Pain intensity levels after treatment were statistically significantly decreased compared to before treatment (p=0.012). Maximum force and contact area values of total foot and forefoot increased significantly (p < 0.05). Conclusion: We consider that the increased max force value of total foot and forefoot area after ESWT is due to the normal walking rate gained related to decreased pain. ESWT treatment may have positive effects on foot pressure distribution and body biomechanics. In order to interpret the results of our study more clearly, randomized controlled studies with a larger number of cases were planned in the future.

Keywords: calcaneal spur, ESWT, plantar pressure, pain

Procedia PDF Downloads 72