Search results for: mediterranean forest
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1304

Search results for: mediterranean forest

734 Assessing Adoption Trends of Mukau (Melia volkensii (Gürke)) Enterprises in Eastern and Coastal Regions of Kenya

Authors: Lydia Murugi Mugendi

Abstract:

The promotion of tree growing as a lucrative enterprise is the focus of this paper as management practices have shifted focus from protection of natural forest resources to community/government partnerships with the aim of resource conservation, management and increase of on-farm tree growing. Using KEFRI as (the source) of information pertaining Melia volkensii (the medium or message) being transferred, this paper investigates the current perception towards forestry and the behavioural attitudes of recipients of forest intervention activities. The two objectives explored in this paper are to find out the level of adoption of Mukau in Kitui, Kibwezi and Samburu/Taru and secondly, to find out the characteristics of the adoption process between Kitui, Kibwezi and Samburu/Taru. The methodologies used during data collection were participatory rural appraisal tools in conjunction with the social survey questionnaires. Simple random sampling and snowball sampling were used to identify respondents within the three target sites and analysis was done using SPSS. Results of the study of indicating that adoption rates of the Mukau in Samburu/Taru, where forestry-related activities were introduced within the past one decade had significantly increase despite initial resistance. The other areas, which had benefited from numerous decades of intense forestry extension projects and activities, indicated a decline in re-adoption rates of Mukau as an enterprise. This study has brought out the reality of adoption trends and state of Mukau population within the three counties while providing a glimpse towards the communities’ perception in regards to adoption of forestry and other environmental innovations. The outcome of the study is to provide a guideline for extension/ dissemination officers in KEFRI and related stakeholders to promote seamless cohesive interaction between the recipient communities of the proposed interventions.

Keywords: adoption, innovation, enterprise, extension, DOI Theory

Procedia PDF Downloads 113
733 Monitoring Future Climate Changes Pattern over Major Cities in Ghana Using Coupled Modeled Intercomparison Project Phase 5, Support Vector Machine, and Random Forest Modeling

Authors: Stephen Dankwa, Zheng Wenfeng, Xiaolu Li

Abstract:

Climate change is recently gaining the attention of many countries across the world. Climate change, which is also known as global warming, referring to the increasing in average surface temperature has been a concern to the Environmental Protection Agency of Ghana. Recently, Ghana has become vulnerable to the effect of the climate change as a result of the dependence of the majority of the population on agriculture. The clearing down of trees to grow crops and burning of charcoal in the country has been a contributing factor to the rise in temperature nowadays in the country as a result of releasing of carbon dioxide and greenhouse gases into the air. Recently, petroleum stations across the cities have been on fire due to this climate changes and which have position Ghana in a way not able to withstand this climate event. As a result, the significant of this research paper is to project how the rise in the average surface temperature will be like at the end of the mid-21st century when agriculture and deforestation are allowed to continue for some time in the country. This study uses the Coupled Modeled Intercomparison Project phase 5 (CMIP5) experiment RCP 8.5 model output data to monitor the future climate changes from 2041-2050, at the end of the mid-21st century over the ten (10) major cities (Accra, Bolgatanga, Cape Coast, Koforidua, Kumasi, Sekondi-Takoradi, Sunyani, Ho, Tamale, Wa) in Ghana. In the models, Support Vector Machine and Random forest, where the cities as a function of heat wave metrics (minimum temperature, maximum temperature, mean temperature, heat wave duration and number of heat waves) assisted to provide more than 50% accuracy to predict and monitor the pattern of the surface air temperature. The findings identified were that the near-surface air temperature will rise between 1°C-2°C (degrees Celsius) over the coastal cities (Accra, Cape Coast, Sekondi-Takoradi). The temperature over Kumasi, Ho and Sunyani by the end of 2050 will rise by 1°C. In Koforidua, it will rise between 1°C-2°C. The temperature will rise in Bolgatanga, Tamale and Wa by 0.5°C by 2050. This indicates how the coastal and the southern part of the country are becoming hotter compared with the north, even though the northern part is the hottest. During heat waves from 2041-2050, Bolgatanga, Tamale, and Wa will experience the highest mean daily air temperature between 34°C-36°C. Kumasi, Koforidua, and Sunyani will experience about 34°C. The coastal cities (Accra, Cape Coast, Sekondi-Takoradi) will experience below 32°C. Even though, the coastal cities will experience the lowest mean temperature, they will have the highest number of heat waves about 62. Majority of the heat waves will last between 2 to 10 days with the maximum 30 days. The surface temperature will continue to rise by the end of the mid-21st century (2041-2050) over the major cities in Ghana and so needs to be addressed to the Environmental Protection Agency in Ghana in order to mitigate this problem.

Keywords: climate changes, CMIP5, Ghana, heat waves, random forest, SVM

Procedia PDF Downloads 200
732 Strategies for Conserving Ecosystem Functions of the Aravalli Range to Combat Land Degradation: Case of Kishangarh and Tijara Tehsil in Rajasthan, India

Authors: Saloni Khandelwal

Abstract:

The Aravalli hills are one of the oldest and most distinctive mountain chains of peninsular India spanning in around 692 Km. More than 60% of it falls in the state of Rajasthan and influences ecological equilibrium in about 30% of the state. Because of natural and human-induced activities, physical gaps in the Aravallis are increasing, new gaps are coming up, and its physical structure is changing. There are no strict regulations to protect and monitor the Aravallis and no comprehensive research and study has been done for the enhancement of ecosystem functions of these ranges. Through this study, various factors leading to Aravalli’s degradation are identified and its impacts on selected areas are analyzed. A literature study is done to identify factors responsible for the degradation. To understand the severity of the problem at the lowest level, two tehsils from different districts in Rajasthan, which are the most affected due to illegal mining and increasing physical gaps are selected for the study. Case-1 of three-gram panchayats in Kishangarh Tehsil of Ajmer district focuses on the expanding physical gaps in the Aravalli range, and case-2 of three-gram panchayats in Tijara Tehsil of Alwar district focuses on increasing illegal mining in the Aravalli range. For measuring the degradation, physical, biological and social indicators are identified through literature review and for both the cases analysis is done on the basis of these indicators. Primary survey and focus group discussions are done with villagers, mining owners, illegal miners, and various government officials to understand dependency of people on the Aravalli and its importance to them along with the impact of degradation on their livelihood and environment. From the analysis, it has been found that green cover is continuously decreasing in both cases, dense forest areas do not exist now, the groundwater table is depleting at a very fast rate, soil is losing its moisture resulting in low yield and shift in agriculture. Wild animals which were easily seen earlier are now extinct. Cattles of villagers are dependent on the forest area in the Aravalli range for food, but with a decrease in fodder, their cattle numbers are decreasing. There is a decrease in agricultural land and an increase in scrub and salt-affected land. Analysis of various national and state programmes, acts which were passed to conserve biodiversity has been done showing that none of them is helping much to protect the Aravalli. For conserving the Aravalli and its forest areas, regional level and local level initiatives are required and are proposed in this study. This study is an attempt to formulate conservation and management strategies for the Aravalli range. These strategies will help in improving biodiversity which can lead to the revival of its ecosystem functions. It will also help in curbing the pollution at the regional and local level. All this will lead to the sustainable development of the region.

Keywords: Aravalli, ecosystem, LULC, Rajasthan

Procedia PDF Downloads 136
731 Modelling the Impact of Installation of Heat Cost Allocators in District Heating Systems Using Machine Learning

Authors: Danica Maljkovic, Igor Balen, Bojana Dalbelo Basic

Abstract:

Following the regulation of EU Directive on Energy Efficiency, specifically Article 9, individual metering in district heating systems has to be introduced by the end of 2016. These directions have been implemented in member state’s legal framework, Croatia is one of these states. The directive allows installation of both heat metering devices and heat cost allocators. Mainly due to bad communication and PR, the general public false image was created that the heat cost allocators are devices that save energy. Although this notion is wrong, the aim of this work is to develop a model that would precisely express the influence of installation heat cost allocators on potential energy savings in each unit within multifamily buildings. At the same time, in recent years, a science of machine learning has gain larger application in various fields, as it is proven to give good results in cases where large amounts of data are to be processed with an aim to recognize a pattern and correlation of each of the relevant parameter as well as in the cases where the problem is too complex for a human intelligence to solve. A special method of machine learning, decision tree method, has proven an accuracy of over 92% in prediction general building consumption. In this paper, a machine learning algorithms will be used to isolate the sole impact of installation of heat cost allocators on a single building in multifamily houses connected to district heating systems. Special emphasises will be given regression analysis, logistic regression, support vector machines, decision trees and random forest method.

Keywords: district heating, heat cost allocator, energy efficiency, machine learning, decision tree model, regression analysis, logistic regression, support vector machines, decision trees and random forest method

Procedia PDF Downloads 249
730 Regulating Transnational Corporations and Protecting Human Rights: Analyzing the Efficiency of International Legal Framework

Authors: Stellina Jolly

Abstract:

July 18th to August 19th 2013 has gone down in the history of India for undertaking the country’s first environment referendum. The Supreme Court had ruled that the Vedanta Group's bauxite mining project in the Niyamgiri Hills of Orissa will have to get clearance from the gram sabha, which will consider the cultural and religious rights of the tribals and forest dwellers living in Rayagada and Kalahandi districts. In the Niyamgiri hills, people of small tribal hamlets were asked to voice their opinion on bauxite mining in their habitat. The ministry has reiterated its stand that mining cannot be allowed on the Niyamgiri hills because it will affect the rights of the Dongria Kondhs. The tribal person who occupies the Niyamgiri Hills in Eastern India accomplished their first success in 2010 in their struggle to protect and preserve their existence, culture and land against Vedanta a London-based mining giant. In August, 2010 Government of India revoked permission for Vedanta Resources to mine bauxite from hills in Orissa State where the Dongria Kondh live as forest dwellers. This came after various protests and reports including amnesty report wherein it highlighted that an alumina refinery in eastern India operated by a subsidiary of mining company. Vedanta was accused of causing air and water pollution that threatens the health of local people and their access to water. The abuse of human rights by corporate is not a new issue it has occurred in Africa, Asia and other parts of the world. Paper focuses on the instances and extent of human right especially in terms of environment violations by corporations. Further Paper details on corporations and sustainable development. Paper finally comes up with certain recommendation including call for a declaration by United Nations on Corporate environment Human Rights Liability.

Keywords: environment, corporate, human rights, sustainable development

Procedia PDF Downloads 475
729 Geochemistry of Silt Size Fraction of the Beach Sands Along the Coast Between Al Kuwifia and Tolmeita, NE Libya

Authors: Basem A. El Werfallia, Osama R. Shaltamiab, Ragab M. Al Alwanyc

Abstract:

The present work aims to characterize the geochemistry of the beach sands along the Mediterranean Coast from Al Kuwifia to Tolmeita, NE Libya. The major oxides CaO and MgO are the main constituents of the carbonate minerals; calcite and aragonite. SiO2 is mainly in the form of quartz. Sometimes a high quotient of SiO2 together with the oxides; Al2O3, K2O and partly of Na2O, TiO2 and Fe2O3 are essentially allocated within the structure of the feldspars. Part of Na2O and the content of Cl belong mainly to halite. Part of Fe2O3 and TiO2 may be accommodated as iron oxyhydroxides. Part of CaO and the content of SO3 are allotted within the gypsum structure. Ba, Sr, Th, U and REE are basicallycontrolled by the carbonate fraction, while Cu, Zn, V and Cr are strongly correlated with Al2O3.

Keywords: geochemistry, major oxides, Al Kuwifia, Tolmeita

Procedia PDF Downloads 94
728 Burden of Cardiovascular Diseases in Dubrovnik- Neretva County 2018-2021

Authors: Tarnai Tena, Strinić Dean

Abstract:

Chronic non-communicable diseases are today the leading cause of mortality, morbidity and mortality disability at the world level and in Croatia. Among them are the most represented precisely cardiovascular diseases (CVD), so today we are talking about their global card epidemic. From 2018 to 2021, cardiovascular diseases are the leading cause of death for both women and men in the Dubrovnik- Neretva County. With regard to the COVID-19 pandemic, which has taken over, without forgetting how much these patients are additionally affected, we are still talking about the primary cause of sickness and death in the population of this county and region. In this record, we present collected data processed according to gender and disease classification. We also bring a kind of overview because, for years, we have been following how the population of one of the origins of the Mediterranean diet has been struggling with cardiovascular diseases.

Keywords: cardiovascular disease, burden, COVID-19, epidemiology, ishemic heart disease, cardiovascular medicine

Procedia PDF Downloads 83
727 Geochemistry of Silt Size Fraction of the Beach Sands Along the Coast Between Al Kuwifia and Tolmeita, NE Libya

Authors: Basem A. El Werfalli, Osama R. Shaltamiab, Ragab M. Al Alwany

Abstract:

The present work aims to characterize the geochemistry of the beach sands along the Mediterranean Coast from Al Kuwifia to Tolmeita, NE Libya. The major oxides CaO and MgO are the main constituents of the carbonate minerals; calcite and aragonite. SiO₂ is mainly in the form of quartz. Sometimes a high quotient of SiO₂ together with the oxides; Al₂O₃, K₂O and partly of Na₂O, TiO₂ and Fe₂O₃ are essentially allocated within the structure of the feldspars. Part of Na₂O and the content of Cl belong mainly to halite. Part of Fe₂O₃ and TiO₂ may be accommodated as iron oxyhydroxides. Part of CaO and the content of SO₃ are allotted within the gypsum structure. Ba, Sr, Th, U and REE are basically controlled by the carbonate fraction, while Cu, Zn, V and Cr are strongly correlated with Al₂O₃.

Keywords: geochemistry, major oxides, Al Kuwifia, Tolmeita

Procedia PDF Downloads 137
726 Indian Premier League (IPL) Score Prediction: Comparative Analysis of Machine Learning Models

Authors: Rohini Hariharan, Yazhini R, Bhamidipati Naga Shrikarti

Abstract:

In the realm of cricket, particularly within the context of the Indian Premier League (IPL), the ability to predict team scores accurately holds significant importance for both cricket enthusiasts and stakeholders alike. This paper presents a comprehensive study on IPL score prediction utilizing various machine learning algorithms, including Support Vector Machines (SVM), XGBoost, Multiple Regression, Linear Regression, K-nearest neighbors (KNN), and Random Forest. Through meticulous data preprocessing, feature engineering, and model selection, we aimed to develop a robust predictive framework capable of forecasting team scores with high precision. Our experimentation involved the analysis of historical IPL match data encompassing diverse match and player statistics. Leveraging this data, we employed state-of-the-art machine learning techniques to train and evaluate the performance of each model. Notably, Multiple Regression emerged as the top-performing algorithm, achieving an impressive accuracy of 77.19% and a precision of 54.05% (within a threshold of +/- 10 runs). This research contributes to the advancement of sports analytics by demonstrating the efficacy of machine learning in predicting IPL team scores. The findings underscore the potential of advanced predictive modeling techniques to provide valuable insights for cricket enthusiasts, team management, and betting agencies. Additionally, this study serves as a benchmark for future research endeavors aimed at enhancing the accuracy and interpretability of IPL score prediction models.

Keywords: indian premier league (IPL), cricket, score prediction, machine learning, support vector machines (SVM), xgboost, multiple regression, linear regression, k-nearest neighbors (KNN), random forest, sports analytics

Procedia PDF Downloads 53
725 Illicit Return Practices of Irregular Migrants from Greece to Turkey

Authors: Enkelejda Koka, Denard Veshi

Abstract:

Since 2011, in the name of ‘humanitarianism’ and deaths in the Mediterranean Sea, the legal and political justification delivered by Greece to manage the refugee crisis is pre-emptive interception. Although part of the EU, Greece adopted its own strategy. These practices have also created high risks for migrants generally resulting in non-rescue episodes and push-back practices having lethal consequences to the life of the irregular migrant. Thus, this article provides an analysis of the Greek ‘compassionate border work’ policy, a practice known as push-back. It is argued that these push-back practices violate international obligations, notably the ‘right to life’, the ‘duty to search and rescue’, the prohibition of inhuman or degrading treatment or punishment and the principle of non-refoulement.

Keywords: Greece, migrants, push-back policy, violation of international law

Procedia PDF Downloads 138
724 Application of Sentinel-2 Data to Evaluate the Role of Mangrove Conservation and Restoration on Aboveground Biomass

Authors: Raheleh Farzanmanesh, Christopher J. Weston

Abstract:

Mangroves are forest ecosystems located in the inter-tidal regions of tropical and subtropical coastlines that provide many valuable economic and ecological benefits for millions of people, such as preventing coastal erosion, providing breeding, and feeding grounds, improving water quality, and supporting the well-being of local communities. In addition, mangroves capture and store high amounts of carbon in biomass and soils that play an important role in combating climate change. The decline in mangrove area has prompted government and private sector interest in mangrove conservation and restoration projects to achieve multiple Sustainable Development Goals, from reducing poverty to improving life on land. Mangrove aboveground biomass plays an essential role in the global carbon cycle, climate change mitigation and adaptation by reducing CO2 emissions. However, little information is available about the effectiveness of mangrove sustainable management on mangrove change area and aboveground biomass (AGB). Here, we proposed a method for mapping, modeling, and assessing mangrove area and AGB in two Global Environment Facility (GEF) blue forests projects based on Sentinel-2 Level 1C imagery during their conservation lifetime. The SVR regression model was used to estimate AGB in Tahiry Honko project in Madagascar and the Abu Dhabi Blue Carbon Demonstration Project (Abu Dhabi Emirates. The results showed that mangrove forests and AGB declined in the Tahiry Honko project, while in the Abu Dhabi project increased after the conservation initiative was established. The results provide important information on the impact of mangrove conservation activities and contribute to the development of remote sensing applications for mapping and assessing mangrove forests in blue carbon initiatives.

Keywords: blue carbon, mangrove forest, REDD+, aboveground biomass, Sentinel-2

Procedia PDF Downloads 72
723 The Efficiency of Mechanization in Weed Control in Artificial Regeneration of Oriental Beech (Fagus orientalis Lipsky.)

Authors: Tuğrul Varol, Halil Barış Özel

Abstract:

In this study which has been conducted in Akçasu Forest Range District of Devrek Forest Directorate; 3 methods (cover removal with human force, cover removal with Hitachi F20 Excavator, and cover removal with agricultural equipment mounted on a Ferguson 240S agriculture tractor) utilized in weed control efforts in regeneration of degraded oriental beech forests have been compared. In this respect, 3 methods have been compared by determining certain work hours and standard durations of unit areas (1 hectare). For this purpose, evaluating the tasks made with human and machine force from the aspects of duration, productivity and costs, it has been aimed to determine the most productive method in accordance with the actual ecological conditions of research field. Within the scope of the study, the time studies have been conducted for 3 methods used in weed control efforts. While carrying out those studies, the performed implementations have been evaluated by dividing them into business stages. Also, the actual data have been used while calculating the cost accounts. In those calculations, the latest formulas and equations which are also used in developed countries have been utilized. The variance of analysis (ANOVA) was used in order to determine whether there is any statistically significant difference among obtained results, and the Duncan test was used for grouping if there is significant difference. According to the measurements and findings carried out within the scope of this study, it has been found during living cover removal efforts in regeneration efforts in demolished oriental beech forests that the removal of weed layer in 1 hectare of field has taken 920 hours with human force, 15.1 hours with excavator and 60 hours with an equipment mounted on a tractor. On the other hand, it has been determined that the cost of removal of living cover in unit area (1 hectare) was 3220.00 TL for man power, 788.70 TL for excavator and 2227.20 TL for equipment mounted on a tractor. According to the obtained results, it has been found that the utilization of excavator in weed control effort in regeneration of degraded oriental beech regions under actual ecological conditions of research field has been found to be more productive from both of aspects of duration and costs. These determinations carried out should be repeated in weed control efforts in degraded forest fields with different ecological conditions, it is compulsory for finding the most efficient weed control method. These findings will light the way of technical staff of forestry directorate in determination of the most effective and economic weed contol method. Thus, the more actual data will be used while preparing the weed control budgets, and there will be significant contributions to national economy. Also the results of this and similar studies are very important for developing the policies for our forestry in short and long term.

Keywords: artificial regeneration, weed control, oriental beech, productivity, mechanization, man power, cost analysis

Procedia PDF Downloads 418
722 A Study of Social and Cultural Context for Tourism Management by Community Kamchanoad District, Amphoe Ban Dung, Udon Thani Province

Authors: Phusit Phukamchanoad, Chutchai Ditchareon, Suwaree Yordchim

Abstract:

This research was to study on background and social and cultural context of Kamchanoad community for sustainable tourism management. All data was collected through in-depth interview with village headmen, community committees, teacher, monks, Kamchanoad forest field officers and respected senior citizen above 60 years old in the community who have lived there for more than 40 years. Altogether there were 30 participants for this research. After analyzing the data, content from interview and discussion, Kamchanoad has both high land and low land in the region as well as swamps that are very capable of freshwater animals’ conservation. Kamchanoad is also good for agriculture and animal farming. 80% of Kamchanoad’s land are forest, freshwater and rice farms. Kamchanoad was officially set up as community in 1994 as “Baan Nonmuang”. Inhabitants in Kamchanoad make a living by farming based on sufficiency economy. They have rice farm, eucalyptus farm, cassava farm and rubber tree farm. Local people in Kamchanoad still believe in the myth of Srisutto Naga. They are still religious and love to preserve their traditional way of life. In order to understand how to create successful tourism business in Kamchanoad, we have to study closely on local culture and traditions. Outstanding event in Kamchanoad is the worship of Grand Srisutto, which is on the full-moon day of 6th month or Visakhabucha Day. Other big events are also celebration at the end of Buddhist lent, Naga firework, New Year celebration, Boon Mahachart, Songkran, Buddhist Lent, Boon Katin and Loy Kratong. Buddhism is the main religion in Kamchanoad. The promotion of tourism in Kamchanoad is expected to help spreading more income for this region. More infrastructures will be provided for local people as well as funding for youth support and people activities.

Keywords: social and culture area, tourism management, Kamchanoad Community, Udon Thani Province

Procedia PDF Downloads 216
721 Quantitative Ethno-Botanical Analysis and Conservation Issues of Medicinal Flora from Alpine and Sub-Alpine, Hindukush Region of Pakistan

Authors: Gul Jan

Abstract:

It is the first quantitative ethno-botanical analysis and conservation issues of medicinal flora of Alpine and Sub-alpine, Hindikush region of Pakistan. The objective of the study aims to report, compare the uses and highlight the ethno-Botanical significance of medicinal plants for treatment of various diseases. A total of 250 (242 males and 8 females) local informants including 10 Local Traditional Healers were interviewed. Information was collected through semi-structured interviews, analyzed and compared by quantitative ethno-botanical indices such as Jaccard index (JI), Informant Consensus Factor (ICF), use value (UV) and Relative frequency of citation (RFC).Thorough survey indicated that 57 medicinal plants belongs to 43 families were investigated to treat various illnesses. The highest ICF is recorded for digestive system (0.69%), Circolatory system (0.61%), urinary tract system, (0.53%) and respiratory system (0.52%). Used value indicated that, Achillea mellefolium (UV = 0.68), Aconitum violaceum (UV = 0.69), Valeriana jatamansi (UV = 0.63), Berberis lyceum (UV = 0.65) and are exceedingly medicinal plant species used in the region. In comparison, highest similarity index is recorded in these studies with JI 17.72 followed by 16.41. According to DMR output, Pinus williciana ranked first due to multipurpose uses among all species and was found most threatened with higher market value. Unwise used of natural assets pooled with unsuitable harvesting practices have exaggerated pressure on plant species of the research region. The main issues causative to natural variety loss found were over grazing of animals, forest violation, wild animal hunting, fodder, plant collection as medicine, fuel wood, forest fire, and invasive species negatively affect the natural resources. For viable utilization, in situ and ex situ conservation, skillful collecting, and reforestation project may be the resolution. Further wide field management research is required.

Keywords: quantitative analysis, conservations issues, medicinal flora, alpine and sub-alpine, Hindukush region

Procedia PDF Downloads 306
720 Using 3D Satellite Imagery to Generate a High Precision Canopy Height Model

Authors: M. Varin, A. M. Dubois, R. Gadbois-Langevin, B. Chalghaf

Abstract:

Good knowledge of the physical environment is essential for an integrated forest planning. This information enables better forecasting of operating costs, determination of cutting volumes, and preservation of ecologically sensitive areas. The use of satellite images in stereoscopic pairs gives the capacity to generate high precision 3D models, which are scale-adapted for harvesting operations. These models could represent an alternative to 3D LiDAR data, thanks to their advantageous cost of acquisition. The objective of the study was to assess the quality of stereo-derived canopy height models (CHM) in comparison to a traditional LiDAR CHM and ground tree-height samples. Two study sites harboring two different forest stand types (broadleaf and conifer) were analyzed using stereo pairs and tri-stereo images from the WorldView-3 satellite to calculate CHM. Acquisition of multispectral images from an Unmanned Aerial Vehicle (UAV) was also realized on a smaller part of the broadleaf study site. Different algorithms using two softwares (PCI Geomatica and Correlator3D) with various spatial resolutions and band selections were tested to select the 3D modeling technique, which offered the best performance when compared with LiDAR. In the conifer study site, the CHM produced with Corelator3D using only the 50-cm resolution panchromatic band was the one with the smallest Root-mean-square deviation (RMSE: 1.31 m). In the broadleaf study site, the tri-stereo model provided slightly better performance, with an RMSE of 1.2 m. The tri-stereo model was also compared to the UAV, which resulted in an RMSE of 1.3 m. At individual tree level, when ground samples were compared to satellite, lidar, and UAV CHM, RMSE were 2.8, 2.0, and 2.0 m, respectively. Advanced analysis was done for all of these cases, and it has been noted that RMSE is reduced when the canopy cover is higher when shadow and slopes are lower and when clouds are distant from the analyzed site.

Keywords: very high spatial resolution, satellite imagery, WorlView-3, canopy height models, CHM, LiDAR, unmanned aerial vehicle, UAV

Procedia PDF Downloads 126
719 Biofungicides in Nursery Production

Authors: Miroslava Markovic, Snezana Rajkovic, Ljubinko Rakonjac, Aleksandar Lucic

Abstract:

Oak powdery mildew is a serious problem on seedlings in nurseries as well as on naturally and artificially introduced progeny. The experiments were set on oak seedlings in two nurseries located in Central Serbia, where control of oak powdery mildew Microsphaera alphitoides Griff. et Maubl. had been conducted through alternative protection measures by means of various dosages of AQ-10 biofungicide, with and without added polymer (which has so far never been used in this country for control of oak powdery mildew). Simultaneous testing was conducted on the efficiency of a chemical sulphur-based preparation (used in this area for many years as a measure of suppression of powdery mildews, without the possibility of developing resistance of the pathogen to the active matter). To date, the Republic of Serbia has registered no fungicides for suppression of pathogens in the forest ecosystems. In order to introduce proper use of new disease-fighting agents into a country, certain relevant principles, requirements and criteria prescribed by the Forest Stewardship Council (FSC) must be observed, primarily with respect to measures of assessment and mitigation of risks, the list of dangerous and highly dangerous pesticides with the possibility of alternative protection. One of the main goals of the research was adjustment of the protective measures to the FSC policy through selection of eco-toxicologically favourable fungicides, given the fact that only preparations named on the list of permitted active matters are approved for use in certified forests. The results of the research have demonstrated that AQ-10 biofungicide can be used as a part of integrated disease management programmes as an alternative, through application of several treatments during vegetation and combination with other active matters registered for these purposes, so as to curtail the use of standard fungicides for control of powdery mildews on oak seedlings in nurseries. The best results in suppression of oak powdery mildew were attained through use of AQ-10 biofungicide (dose 50 or 70g/ha) with added polymer Nu Film-17 (dose 1.0 or 1.5 l/ha). If the treatment is applied at the appropriate time, even fewer number of treatments and smaller doses will be just as efficient.

Keywords: oak powdery mildew, biofungicides, polymers, Microsphaera alphitoides

Procedia PDF Downloads 375
718 Designing, Manufacturing and Testing a Portable Tractor Unit Biocoal Harvester Combine of Agriculture and Animal Wastes

Authors: Ali Moharrek, Hosein Mobli, Ali Jafari, Ahmad Tabataee Far

Abstract:

Biomass is a material generally produced by plants living on soil or water and their derivatives. The remains of agricultural and forest products contain biomass which is changeable into fuel. Besides, you can obtain biogas and ethanol from the charcoal produced from biomass through specific actions. this technology was designed for as a useful Native Fuel and Technology in Energy disasters Management Due to the sudden interruption of the flow of heat energy One of the problems confronted by mankind in the future is the limitations of fossil energy which necessitates production of new energies such as biomass. In order to produce biomass from the remains of the plants, different methods shall be applied considering factors like cost of production, production technology, area of requirement, speed of work easy utilization, ect. In this article we are focusing on designing a biomass briquetting portable machine. The speed of installation of the machine on a tractor is estimated as 80 MF 258. Screw press is used in designing this machine. The needed power for running this machine which is estimated as 17.4 kW is provided by the power axis of tractor. The pressing speed of the machine is considered to be 375 RPM Finally the physical and mechanical properties of the product were compared with utilized material which resulted in appropriate outcomes. This machine is designed for Gathering Raw materials of the ground by Head Section. During delivering the raw materials to Briquetting section, they Crushed, Milled & Pre Heated in Transmission section. This machine is a Combine Portable Tractor unit machine and can use all type of Agriculture, Forest & Livestock Animals Resides as Raw material to make Bio fuel. The Briquetting Section was manufactured and it successfully made bio fuel of Sawdust. Also this machine made a biofuel with Ethanol of sugarcane Wastes. This Machine is using P.T.O power source for Briquetting and Hydraulic Power Source for Pre Processing of Row Materials.

Keywords: biomass, briquette, screw press, sawdust, animal wastes, portable, tractors

Procedia PDF Downloads 316
717 Data about Loggerhead Sea Turtle (Caretta caretta) and Green Turtle (Chelonia mydas) in Vlora Bay, Albania

Authors: Enerit Sacdanaku, Idriz Haxhiu

Abstract:

This study was conducted in the area of Vlora Bay, Albania. Data about Sea Turtles Caretta caretta and Chelonia mydas, belonging to two periods of time (1984–1991; 2008–2014) are given. All data gathered were analyzed using recent methodologies. For all turtles captured (as by catch), the Curve Carapace Length (CCL) and Curved Carapace Width (CCW) were measured. These data were statistically analyzed, where the mean was 67.11 cm for CCL and 57.57 cm for CCW of all individuals studied (n=13). All untagged individuals of marine turtles were tagged using metallic tags (Stockbrand’s titanium tag) with an Albanian address. Sex was determined and resulted that 45.4% of individuals were females, 27.3% males and 27.3% juveniles. All turtles were studied for the presence of the epibionts. The area of Vlora Bay is used from marine turtles (Caretta caretta) as a migratory corridor to pass from the Mediterranean to the northern part of the Adriatic Sea.

Keywords: Caretta caretta, Chelonia mydas, CCL, CCW, tagging, Vlora Bay

Procedia PDF Downloads 179
716 Establishment of a Classifier Model for Early Prediction of Acute Delirium in Adult Intensive Care Unit Using Machine Learning

Authors: Pei Yi Lin

Abstract:

Objective: The objective of this study is to use machine learning methods to build an early prediction classifier model for acute delirium to improve the quality of medical care for intensive care patients. Background: Delirium is a common acute and sudden disturbance of consciousness in critically ill patients. After the occurrence, it is easy to prolong the length of hospital stay and increase medical costs and mortality. In 2021, the incidence of delirium in the intensive care unit of internal medicine was as high as 59.78%, which indirectly prolonged the average length of hospital stay by 8.28 days, and the mortality rate is about 2.22% in the past three years. Therefore, it is expected to build a delirium prediction classifier through big data analysis and machine learning methods to detect delirium early. Method: This study is a retrospective study, using the artificial intelligence big data database to extract the characteristic factors related to delirium in intensive care unit patients and let the machine learn. The study included patients aged over 20 years old who were admitted to the intensive care unit between May 1, 2022, and December 31, 2022, excluding GCS assessment <4 points, admission to ICU for less than 24 hours, and CAM-ICU evaluation. The CAMICU delirium assessment results every 8 hours within 30 days of hospitalization are regarded as an event, and the cumulative data from ICU admission to the prediction time point are extracted to predict the possibility of delirium occurring in the next 8 hours, and collect a total of 63,754 research case data, extract 12 feature selections to train the model, including age, sex, average ICU stay hours, visual and auditory abnormalities, RASS assessment score, APACHE-II Score score, number of invasive catheters indwelling, restraint and sedative and hypnotic drugs. Through feature data cleaning, processing and KNN interpolation method supplementation, a total of 54595 research case events were extracted to provide machine learning model analysis, using the research events from May 01 to November 30, 2022, as the model training data, 80% of which is the training set for model training, and 20% for the internal verification of the verification set, and then from December 01 to December 2022 The CU research event on the 31st is an external verification set data, and finally the model inference and performance evaluation are performed, and then the model has trained again by adjusting the model parameters. Results: In this study, XG Boost, Random Forest, Logistic Regression, and Decision Tree were used to analyze and compare four machine learning models. The average accuracy rate of internal verification was highest in Random Forest (AUC=0.86), and the average accuracy rate of external verification was in Random Forest and XG Boost was the highest, AUC was 0.86, and the average accuracy of cross-validation was the highest in Random Forest (ACC=0.77). Conclusion: Clinically, medical staff usually conduct CAM-ICU assessments at the bedside of critically ill patients in clinical practice, but there is a lack of machine learning classification methods to assist ICU patients in real-time assessment, resulting in the inability to provide more objective and continuous monitoring data to assist Clinical staff can more accurately identify and predict the occurrence of delirium in patients. It is hoped that the development and construction of predictive models through machine learning can predict delirium early and immediately, make clinical decisions at the best time, and cooperate with PADIS delirium care measures to provide individualized non-drug interventional care measures to maintain patient safety, and then Improve the quality of care.

Keywords: critically ill patients, machine learning methods, delirium prediction, classifier model

Procedia PDF Downloads 75
715 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation

Authors: Fidelia A. Orji, Julita Vassileva

Abstract:

This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.

Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning

Procedia PDF Downloads 128
714 Modelization of Land Degradation by Desertification Using Medalus Method, Case Study of the Wilaya of Saida, Algeria

Authors: Fekir Youcef, Mederbal Khalladi, M. A. Hamadouche, D. Anteur

Abstract:

Algeria is one of the countries that are highly affected by desertification which is the consequence of several factors. For this purpose, there is a need to study this problem by quantitative approaches. In this study, we apply the MEDALUS method (Mediterranean Desertification and Land Use) to a watershed located in Saida town in semi-arid environment in the south west of Algeria. The method is based on sensitive areas identification by making use of the different parameters that may affect the desertification process such as vegetation, soil, climate and management. Spatial analyses are strong tools that allow modelization of each indicator. Results show that according to European standards, a large scale of the watershed falls into critical classes. And therefore, the modelization approach can be an effective way to study and understand the desertification showing an example of the project of the green dam that limits the desertification process to affect the north areas off Algeria.

Keywords: Algeria, desertification, MEDALUS, modelization

Procedia PDF Downloads 389
713 Status of Artisanal Fishery in Libya

Authors: Esmail Shakman, Khaled Etyab, Ibraheim Taboni, Mohamed Et-wail, Abdallah Ben Abdallah

Abstract:

This study was carried out along the Libyan coast during the period from 1st February to 31st March 2013. More than 120 landing sites have been visited in order to investigate their status and fishing activities. The study found that more than 91% of the landing sites were permanent and around 8% were seasonal. The type of landing sites were mostly harbors (42.86%), 31.75% protected bays and 25.4% are open beach. However, seven types of fishing boats were observed; flouka type was the largest percentage (70.06%), then 18.14% for mator, 3.28% for lampara, 0.41% for Tarrad, Gayag (0.16%), 5.97 for Daghesa, and 1.98% for batah. Moreover, the majority of them were concentrated in the western region of the country. The most common used fishing gearsare the trammel nets about 80%, which are used by flouka, mator, Tarrad, and batah. The using of trammel nets rely on the fishing season, fishes size and the target fish species. The other fishing gears are also used but occasionally.

Keywords: fishery, South Mediterranean, landing sites, marine biology

Procedia PDF Downloads 517
712 Machine Learning Approaches to Water Usage Prediction in Kocaeli: A Comparative Study

Authors: Kasim Görenekli, Ali Gülbağ

Abstract:

This study presents a comprehensive analysis of water consumption patterns in Kocaeli province, Turkey, utilizing various machine learning approaches. We analyzed data from 5,000 water subscribers across residential, commercial, and official categories over an 80-month period from January 2016 to August 2022, resulting in a total of 400,000 records. The dataset encompasses water consumption records, weather information, weekends and holidays, previous months' consumption, and the influence of the COVID-19 pandemic.We implemented and compared several machine learning models, including Linear Regression, Random Forest, Support Vector Regression (SVR), XGBoost, Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), and Gated Recurrent Units (GRU). Particle Swarm Optimization (PSO) was applied to optimize hyperparameters for all models.Our results demonstrate varying performance across subscriber types and models. For official subscribers, Random Forest achieved the highest R² of 0.699 with PSO optimization. For commercial subscribers, Linear Regression performed best with an R² of 0.730 with PSO. Residential water usage proved more challenging to predict, with XGBoost achieving the highest R² of 0.572 with PSO.The study identified key factors influencing water consumption, with previous months' consumption, meter diameter, and weather conditions being among the most significant predictors. The impact of the COVID-19 pandemic on consumption patterns was also observed, particularly in residential usage.This research provides valuable insights for effective water resource management in Kocaeli and similar regions, considering Turkey's high water loss rate and below-average per capita water supply. The comparative analysis of different machine learning approaches offers a comprehensive framework for selecting appropriate models for water consumption prediction in urban settings.

Keywords: mMachine learning, water consumption prediction, particle swarm optimization, COVID-19, water resource management

Procedia PDF Downloads 15
711 CookIT: A Web Portal for the Preservation and Dissemination of Traditional Italian Recipes

Authors: M. T. Artese, G. Ciocca, I. Gagliardi

Abstract:

Food is a social and cultural aspect of every individual. Food products, processing, and traditions have been identified as cultural objects carrying history and identity of social groups. Traditional recipes are passed down from one generation to the other, often to strengthen the link with the territory. The paper presents CookIT, a web portal developed to collect Italian traditional recipes related to regional cuisine, with the purpose to disseminate the knowledge of typical Italian recipes and the Mediterranean diet which is a significant part of Italian cuisine. The system designed is completed with multimodal means of browsing and data retrieval. Stored recipes can be retrieved integrating and combining a number of different methods and keys, while the results are displayed using classical styles, such as list and mosaic, and also using maps and graphs, with which users can play using available keys for interaction.

Keywords: collaborative portal, Italian cuisine, intangible cultural heritage, traditional recipes, searching and browsing

Procedia PDF Downloads 149
710 An Overview of the SIAFIM Connected Resources

Authors: Tiberiu Boros, Angela Ionita, Maria Visan

Abstract:

Wildfires are one of the frequent and uncontrollable phenomena that currently affect large areas of the world where the climate, geographic and social conditions make it impossible to prevent and control such events. In this paper we introduce the ground concepts that lie behind the SIAFIM (Satellite Image Analysis for Fire Monitoring) project in order to create a context and we introduce a set of newly created tools that are external to the project but inherently in interventions and complex decision making based on geospatial information and spatial data infrastructures.

Keywords: wildfire, forest fire, natural language processing, mobile applications, communication, GPS

Procedia PDF Downloads 581
709 Landslide Susceptibility Mapping Using Soft Computing in Amhara Saint

Authors: Semachew M. Kassa, Africa M Geremew, Tezera F. Azmatch, Nandyala Darga Kumar

Abstract:

Frequency ratio (FR) and analytical hierarchy process (AHP) methods are developed based on past landslide failure points to identify the landslide susceptibility mapping because landslides can seriously harm both the environment and society. However, it is still difficult to select the most efficient method and correctly identify the main driving factors for particular regions. In this study, we used fourteen landslide conditioning factors (LCFs) and five soft computing algorithms, including Random Forest (RF), Support Vector Machine (SVM), Logistic Regression (LR), Artificial Neural Network (ANN), and Naïve Bayes (NB), to predict the landslide susceptibility at 12.5 m spatial scale. The performance of the RF (F1-score: 0.88, AUC: 0.94), ANN (F1-score: 0.85, AUC: 0.92), and SVM (F1-score: 0.82, AUC: 0.86) methods was significantly better than the LR (F1-score: 0.75, AUC: 0.76) and NB (F1-score: 0.73, AUC: 0.75) method, according to the classification results based on inventory landslide points. The findings also showed that around 35% of the study region was made up of places with high and very high landslide risk (susceptibility greater than 0.5). The very high-risk locations were primarily found in the western and southeastern regions, and all five models showed good agreement and similar geographic distribution patterns in landslide susceptibility. The towns with the highest landslide risk include Amhara Saint Town's western part, the Northern part, and St. Gebreal Church villages, with mean susceptibility values greater than 0.5. However, rainfall, distance to road, and slope were typically among the top leading factors for most villages. The primary contributing factors to landslide vulnerability were slightly varied for the five models. Decision-makers and policy planners can use the information from our study to make informed decisions and establish policies. It also suggests that various places should take different safeguards to reduce or prevent serious damage from landslide events.

Keywords: artificial neural network, logistic regression, landslide susceptibility, naïve Bayes, random forest, support vector machine

Procedia PDF Downloads 82
708 Stock Prediction and Portfolio Optimization Thesis

Authors: Deniz Peksen

Abstract:

This thesis aims to predict trend movement of closing price of stock and to maximize portfolio by utilizing the predictions. In this context, the study aims to define a stock portfolio strategy from models created by using Logistic Regression, Gradient Boosting and Random Forest. Recently, predicting the trend of stock price has gained a significance role in making buy and sell decisions and generating returns with investment strategies formed by machine learning basis decisions. There are plenty of studies in the literature on the prediction of stock prices in capital markets using machine learning methods but most of them focus on closing prices instead of the direction of price trend. Our study differs from literature in terms of target definition. Ours is a classification problem which is focusing on the market trend in next 20 trading days. To predict trend direction, fourteen years of data were used for training. Following three years were used for validation. Finally, last three years were used for testing. Training data are between 2002-06-18 and 2016-12-30 Validation data are between 2017-01-02 and 2019-12-31 Testing data are between 2020-01-02 and 2022-03-17 We determine Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate as benchmarks which we should outperform. We compared our machine learning basis portfolio return on test data with return of Hold Stock Portfolio, Best Stock Portfolio and USD-TRY Exchange rate. We assessed our model performance with the help of roc-auc score and lift charts. We use logistic regression, Gradient Boosting and Random Forest with grid search approach to fine-tune hyper-parameters. As a result of the empirical study, the existence of uptrend and downtrend of five stocks could not be predicted by the models. When we use these predictions to define buy and sell decisions in order to generate model-based-portfolio, model-based-portfolio fails in test dataset. It was found that Model-based buy and sell decisions generated a stock portfolio strategy whose returns can not outperform non-model portfolio strategies on test dataset. We found that any effort for predicting the trend which is formulated on stock price is a challenge. We found same results as Random Walk Theory claims which says that stock price or price changes are unpredictable. Our model iterations failed on test dataset. Although, we built up several good models on validation dataset, we failed on test dataset. We implemented Random Forest, Gradient Boosting and Logistic Regression. We discovered that complex models did not provide advantage or additional performance while comparing them with Logistic Regression. More complexity did not lead us to reach better performance. Using a complex model is not an answer to figure out the stock-related prediction problem. Our approach was to predict the trend instead of the price. This approach converted our problem into classification. However, this label approach does not lead us to solve the stock prediction problem and deny or refute the accuracy of the Random Walk Theory for the stock price.

Keywords: stock prediction, portfolio optimization, data science, machine learning

Procedia PDF Downloads 80
707 Biodiversity Conservation Practices Among Indigenous Peoples in Caraga Region, Mindanao, Philippines

Authors: Milagros S. Salibad, Levita B. Grana

Abstract:

The presence and role of Indigenous Peoples residing in key biodiversity, protected, and watershed areas within the ancestral domain in the Caraga Region hold immense significance. This study aimed to determine the level of biodiversity conservation practices among the Mamanwas, Manobos, and Higaonons, and identify facilitating or hindering factors. Employing a mixed-method research design, 421 respondents participated through a researcher-made questionnaire. Focus group discussions, key informant interviews, researcher field notes, community immersions, and secondary sources were done. The three groups have demonstrated a high level of biodiversity conservation practices manifesting their commitment to conserving their natural resources and ecosystems. Evidently, selecting and cutting only mature trees for shelter and tribal usage, and preservation of large trees that harbor ancestors’ spirits and worship through rituals (Mambabaja). Each group exhibited unique environmental practices shaped by their distinct cultures, traditions, customary knowledge, and access to information. The Mamanwa practiced traditional hunting and gathering by using traps while Manobo practiced shifting cultivation to maintain soil fertility and biodiversity, and Higaonon managed forest resources through traditional forest management (establishment of sacred forests and conservation areas). Various facilitating and hindering factors influenced their conservation efforts. Their traditional knowledge and practices, partnership and collaboration, legal recognition and support, access to information, and biodiversity monitoring system facilitate practices. Insufficient government assistance, political and social issues, scarce financial support, inadequate policy enforcement, lack of livelihood opportunities, and land use conflicts hinder them. Monitoring the sustainability of IPs' local biodiversity conservation practices is essential as they contribute to conservation endeavors.

Keywords: biodiversity, conservation, indigenous peoples, traditional knowledge

Procedia PDF Downloads 77
706 Optimization of the Energy Management for a Solar System of an Agricultural Greenhouse

Authors: Nora Arbaoui, Rachid Tadili, Ilham Ihoume

Abstract:

To improve the climatic conditions and increase production in the greenhouse during the winter season under the Mediterranean climate, this thesis project proposes a design of an integrated and autonomous solar system for heating, cooling, and conservation of production in an agricultural greenhouse. To study the effectiveness of this system, experiments are conducted in two similar agricultural greenhouses oriented north-south. The first greenhouse is equipped with an active solar system integrated into the double glazing of the greenhouse’s roof, while the second greenhouse has no system, it serves as a controlled greenhouse for comparing thermal and agronomic performance The solar system allowed for an average increase in the indoor temperature of the experimental greenhouse of 6°C compared to the outdoor environment and 4°C compared to the control greenhouse. This improvement in temperature has a favorable effect on the plants' climate and subsequently positively affects their development, quality, and production.

Keywords: solar system, agricultural greenhouse, heating, cooling, storage, drying

Procedia PDF Downloads 100
705 Secondary Metabolites from Turkish Marine-Derived Fungi Hypocrea nigricans

Authors: H. Heydari, B. Konuklugil, P. Proksch

Abstract:

Marine-derived fungi can produce interesting bioactive secondary metabolites that can be considered the potential for drug development. Turkey is a country of a peninsula surrounded by the Black Sea at the north, the Aegean Sea at the west, and the Mediterranean Sea at the south. Despite the approximately 8400 km of coastline, studies on marine secondary metabolites and their biological activity are limited. In our ongoing search for new natural products with different bioactivities produced by the marine-derived fungi, we have investigated secondary metabolites of Turkish collection of the marine sea slug (Peltodoris atromaculata) associated fungi Hypocrea nigricans collected from Seferihisar in the Egean sea. According to the author’s best knowledge, no study was found on this fungal species in terms of secondary metabolites. Isolated from ethyl acetate extract of the culture of Hypocrea nigricans were (isodihydroauroglaucin,tetrahydroauroglaucin and dihydroauroglaucin. The structures of the compounds were established based on an NMR and MS analysis. Structural elucidation of another isolated secondary metabolite/s continues.

Keywords: Hypocrea nigricans, isolation, marine fungi, secondary metabolites

Procedia PDF Downloads 162