Search results for: commuting traffic
1180 Life-Cycle Assessment of Residential Buildings: Addressing the Influence of Commuting
Authors: J. Bastos, P. Marques, S. Batterman, F. Freire
Abstract:
Due to demands of a growing urban population, it is crucial to manage urban development and its associated environmental impacts. While most of the environmental analyses have addressed buildings and transportation separately, both the design and location of a building affect environmental performance and focusing on one or the other can shift impacts and overlook improvement opportunities for more sustainable urban development. Recently, several life-cycle (LC) studies of residential buildings have integrated user transportation, focusing exclusively on primary energy demand and/or greenhouse gas emissions. Additionally, most papers considered only private transportation (mainly car). Although it is likely to have the largest share both in terms of use and associated impacts, exploring the variability associated with mode choice is relevant for comprehensive assessments and, eventually, for supporting decision-makers. This paper presents a life-cycle assessment (LCA) of a residential building in Lisbon (Portugal), addressing building construction, use and user transportation (commuting with private and public transportation). Five environmental indicators or categories are considered: (i) non-renewable primary energy (NRE), (ii) greenhouse gas intensity (GHG), (iii) eutrophication (EUT), (iv) acidification (ACID), and (v) ozone layer depletion (OLD). In a first stage, the analysis addresses the overall life-cycle considering the statistical model mix for commuting in the residence location. Then, a comparative analysis compares different available transportation modes to address the influence mode choice variability has on the results. The results highlight the large contribution of transportation to the overall LC results in all categories. NRE and GHG show strong correlation, as the three LC phases contribute with similar shares to both of them: building construction accounts for 6-9%, building use for 44-45%, and user transportation for 48% of the overall results. However, for other impact categories there is a large variation in the relative contribution of each phase. Transport is the most significant phase in OLD (60%); however, in EUT and ACID building use has the largest contribution to the overall LC (55% and 64%, respectively). In these categories, transportation accounts for 31-38%. A comparative analysis was also performed for four alternative transport modes for the household commuting: car, bus, motorcycle, and company/school collective transport. The car has the largest results in all impact categories. When compared to the overall LC with commuting by car, mode choice accounts for a variability of about 35% in NRE, GHG and OLD (the categories where transportation accounted for the largest share of the LC), 24% in EUT and 16% in ACID. NRE and GHG show a strong correlation because all modes have internal combustion engines. The second largest results for NRE, GHG and OLD are associated with commuting by motorcycle; however, for ACID and EUT this mode has better performance than bus and company/school transport. No single transportation mode performed best in all impact categories. Integrated assessments of buildings are needed to avoid shifts of impacts between life-cycle phases and environmental categories, and ultimately to support decision-makers.Keywords: environmental impacts, LCA, Lisbon, transport
Procedia PDF Downloads 3651179 COVID–19 Impact on Passenger and Cargo Traffic: A Case Study
Authors: Maja Čović, Josipa Bojčić, Bruna Bacalja, Gorana Jelić Mrčelić
Abstract:
The appearance of the COVID-19 disease and its fast-spreading brought global pandemic and health crisis. In order to prevent the further spreading of the virus, the governments had implemented mobility restriction rules which left a negative mark on the world’s economy. Although there is numerous research on the impact of COVID-19 on marine traffic around the world, the objective of this paper is to consider the impact of COVID-19 on passenger and cargo traffic in Port of Split, in the Republic of Croatia. Methods used to make the theoretical and research part of the paper are descriptive method, comparative method, compilation, inductive method, deductive method, and statistical method. Paper relies on data obtained via Port of Split Authority and analyses trends in passenger and cargo traffic, including the year 2020, when the pandemic broke. Significant reductions in income, disruptions in transportation and traffic, as well as other maritime services are shown in the paper. This article also observes a significant decline in passenger traffic, cruising traffic and also observes the dynamic of cargo traffic inside the port of Split.Keywords: COVID-19, pandemic, passenger traffic, ports, trends, cargo traffic
Procedia PDF Downloads 2161178 Form of Distribution of Traffic Accident and Environment Factors of Road Affecting of Traffic Accident in Dusit District, Only Area Responsible of Samsen Police Station
Authors: Musthaya Patchanee
Abstract:
This research aimed to study form of traffic distribution and environmental factors of road that affect traffic accidents in Dusit District, only areas responsible of Samsen Police Station. Data used in this analysis is the secondary data of traffic accident case from year 2011. Observed area units are 15 traffic lines that are under responsible of Samsen Police Station. Technique and method used are the Cartographic Method, the Correlation Analysis, and the Multiple Regression Analysis. The results of form of traffic accidents show that, the Samsen Road area had most traffic accidents (24.29%), second was Rachvithi Road (18.10%), third was Sukhothai Road (15.71%), fourth was Rachasrima Road (12.38%), and fifth was Amnuaysongkram Road (7.62%). The result from Dusit District, only areas responsible of Samsen police station, has suggested that the scale of accidents have high positive correlation with statistic significant at level 0.05 and the frequency of travel (r=0.857). Traffic intersection point (r=0.763)and traffic control equipments (r=0.713) are relevant factors respectively. By using the Multiple Regression Analysis, travel frequency is the only one that has considerable influences on traffic accidents in Dusit district only Samsen Police Station area. Also, a factor in frequency of travel can explain the change in traffic accidents scale to 73.40 (R2 = 0.734). By using the Multiple regression summation from analysis was Y ̂=-7.977+0.044X6.Keywords: form of traffic distribution, environmental factors of road, traffic accidents, Dusit district
Procedia PDF Downloads 3911177 Classification of Traffic Complex Acoustic Space
Abstract:
After years of development, the study of soundscape has been refined to the types of urban space and building. Traffic complex takes traffic function as the core, with obvious design features of architectural space combination and traffic streamline. The acoustic environment is strongly characterized by function, space, material, user and other factors. Traffic complex integrates various functions of business, accommodation, entertainment and so on. It has various forms, complex and varied experiences, and its acoustic environment is turned rich and interesting with distribution and coordination of various functions, division and unification of the mass, separation and organization of different space and the cross and the integration of multiple traffic flow. In this study, it made field recordings of each space of various traffic complex, and extracted and analyzed different acoustic elements, including changes in sound pressure, frequency distribution, steady sound source, sound source information and other aspects, to make cluster analysis of each independent traffic complex buildings. It divided complicated traffic complex building space into several typical sound space from acoustic environment perspective, mainly including stable sound space, high-pressure sound space, rhythm sound space and upheaval sound space. This classification can further deepen the study of subjective evaluation and control of the acoustic environment of traffic complex.Keywords: soundscape, traffic complex, cluster analysis, classification
Procedia PDF Downloads 2531176 Research on Evaluation Method of Urban Road Section Traffic Safety Status Based on Video Information
Authors: Qiang Zhang, Xiaojian Hu
Abstract:
Aiming at the problem of the existing real-time evaluation methods for traffic safety status, a video information-based urban road section traffic safety status evaluation method was established, and the rapid detection method of traffic flow parameters based on video information is analyzed. The concept of the speed dispersion of the road section that affects the traffic safety state of the urban road section is proposed, and the method of evaluating the traffic safety state of the urban road section based on the speed dispersion of the road section is established. Experiments show that the proposed method can reasonably evaluate the safety status of urban roads in real-time, and the evaluation results can provide a corresponding basis for the traffic management department to formulate an effective urban road section traffic safety improvement plan.Keywords: intelligent transportation system, road traffic safety, video information, vehicle speed dispersion
Procedia PDF Downloads 1641175 Multi-Objective Optimization of Intersections
Authors: Xiang Li, Jian-Qiao Sun
Abstract:
As the crucial component of city traffic network, intersections have significant impacts on urban traffic performance. Despite of the rapid development in transportation systems, increasing traffic volumes result in severe congestions especially at intersections in urban areas. Effective regulation of vehicle flows at intersections has always been an important issue in the traffic control system. This study presents a multi-objective optimization method at intersections with cellular automata to achieve better traffic performance. Vehicle conflicts and pedestrian interference are considered. Three categories of the traffic performance are studied including transportation efficiency, energy consumption and road safety. The left-turn signal type, signal timing and lane assignment are optimized for different traffic flows. The multi-objective optimization problem is solved with the cell mapping method. The optimization results show the conflicting nature of different traffic performance. The influence of different traffic variables on the intersection performance is investigated. It is observed that the proposed optimization method is effective in regulating the traffic at the intersection to meet multiple objectives. Transportation efficiency can be usually improved by the permissive left-turn signal, which sacrifices safety. Right-turn traffic suffers significantly when the right-turn lanes are shared with the through vehicles. The effect of vehicle flow on the intersection performance is significant. The display pattern of the optimization results can be changed remarkably by the traffic volume variation. Pedestrians have strong interference with the traffic system.Keywords: cellular automata, intersection, multi-objective optimization, traffic system
Procedia PDF Downloads 5811174 Service-Oriented Performance Considerations for Remotely Piloted Aircraft Systems Traffic Management
Authors: Iraj Mantegh, Charles Vidal
Abstract:
This paper considers Unmanned Aircraft Systems (UAS) Traffic Management system from a service-oriented architecture point of view and proposes a framework for its performance requirements. The architecture specifically considered is related to the Remotely Piloted Aircraft Systems (RPAS) Traffic Management that is adapted by Transport Canada, in close collaboration with other jurisdictions in the United States and European Union. First, the functional performances for each individual service that comprises the Traffic Management system are defined here, and then quantitative parameters to gauge the performances of individual services are proposed.Keywords: UAV, drone, UAS, traffic management, UTM
Procedia PDF Downloads 1781173 Heavy Vehicle Traffic Estimation Using Automatic Traffic Recorders/Weigh-In-Motion Data: Current Practice and Proposed Methods
Authors: Muhammad Faizan Rehman Qureshi, Ahmed Al-Kaisy
Abstract:
Accurate estimation of traffic loads is critical for pavement and bridge design, among other transportation applications. Given the disproportional impact of heavier axle loads on pavement and bridge structures, truck and heavy vehicle traffic is expected to be a major determinant of traffic load estimation. Further, heavy vehicle traffic is also a major input in transportation planning and economic studies. The traditional method for estimating heavy vehicle traffic primarily relies on AADT estimation using Monthly Day of the Week (MDOW) adjustment factors as well as the percent heavy vehicles observed using statewide data collection programs. The MDOW factors are developed using daily and seasonal (or monthly) variation patterns for total traffic, consisting predominantly of passenger cars and other smaller vehicles. Therefore, while using these factors may yield reasonable estimates for total traffic (AADT), such estimates may involve a great deal of approximation when applied to heavy vehicle traffic. This research aims at assessing the approximation involved in estimating heavy vehicle traffic using MDOW adjustment factors for total traffic (conventional approach) along with three other methods of using MDOW adjustment factors for total trucks (class 5-13), combination-unit trucks (class 8-13), as well as adjustment factors for each vehicle class separately. Results clearly indicate that the conventional method was outperformed by the other three methods by a large margin. Further, using the most detailed and data intensive method (class-specific adjustment factors) does not necessarily yield a more accurate estimation of heavy vehicle traffic.Keywords: traffic loads, heavy vehicles, truck traffic, adjustment factors, traffic data collection
Procedia PDF Downloads 241172 Accidents Involving Pedestrians Walking along with/against Traffic: An Evaluation of Crash Characteristics and Injuries
Authors: Chih-Wei Pai, Rong-Chang Jou
Abstract:
Using A1 A2 police-reported accident data for years 2003–2010 in Taiwan, the paper examines anatomic injuries and crash characteristics specific to pedestrians in “facing traffic” and “back to traffic” crashes. There were 2768 and 7558 accidents involving pedestrians walking along with/against traffic respectively. Injuries sustained by pedestrians and crash characteristics in these two crash types were compared with those in other crash types (nearside crash, nearside dart-out crash, offside crash, offside dart-out crash). Main findings include that “back to traffic” crashes resulted in more severe injuries, and pedestrians in “back to traffic” crashes had increased head, neck, and spine injuries than those in other crash types; and there was an elevated risk of head injuries in unlit darkness and NBU (non-built-up) roadways. Several crash features (e.g. unlit darkness, overtaking maneuvers, phone use by pedestrians and drivers, intoxicated drivers) appear to be over-involved in “back to traffic” crashes. The implications of the research findings regarding pedestrian/driver education, enforcement, and remedial engineering design are discussed.Keywords: pedestrian accident, crash characteristics, injury, facing traffic, back to traffic
Procedia PDF Downloads 3781171 Traffic Signal Control Using Citizens’ Knowledge through the Wisdom of the Crowd
Authors: Aleksandar Jovanovic, Katarina Kukic, Ana Uzelac, Dusan Teodorovic
Abstract:
Wisdom of the Crowd (WoC) is a decentralized method that uses the collective intelligence of humans. Individual guesses may be far from the target, but when considered as a group, they converge on optimal solutions for a given problem. We will utilize WoC to address the challenge of controlling traffic lights within intersections from the streets of Kragujevac, Serbia. The problem at hand falls within the category of NP-hard problems. We will employ an algorithm that leverages the swarm intelligence of bees: Bee Colony Optimization (BCO). Data regarding traffic signal timing at a single intersection will be gathered from citizens through a survey. Results obtained in that manner will be compared to the BCO results for different traffic scenarios. We will use Vissim traffic simulation software as a tool to compare the performance of bees’ and humans’ collective intelligence.Keywords: wisdom of the crowd, traffic signal control, combinatorial optimization, bee colony optimization
Procedia PDF Downloads 1101170 Traffic Congestion Problem and Possible Solution in Kabul City
Authors: Sayed Abdul Rahman Sadaat, Nsenda Lukumwena
Abstract:
Traffic congestion is a worldwide issue, especially in developing countries. This is also the case of Afghanistan, especially in Kabul-the capital city, whose rapid population growth makes it the fifth fastest growing city in the world. Traffic congestion affects not only the mobility of people and goods but also the air quality that leads to numerous deaths (3000 people) every year. There are many factors that contribute to traffic congestion. The insufficiency and inefficiency of public transportation system along with the increase of private vehicles can be considered among the most important contributing factors. This paper addresses the traffic congestion and attempts to suggest possible solutions that can help improve the current public transportation system in Kabul. To this end, the methodology used in this paper includes field work conducted in Kabul city and literature review. The outcome suggests that improving the public transportation system is likely to contribute to the reduction of traffic congestion and the improvement of air quality, thereby reducing the number of death related to air quality.Keywords: air quality, Kabul, Afghanistan, public transportation system, improvements, traffic congestion
Procedia PDF Downloads 3831169 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction
Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh
Abstract:
Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction
Procedia PDF Downloads 1731168 Design of Traffic Counting Android Application with Database Management System and Its Comparative Analysis with Traditional Counting Methods
Authors: Muhammad Nouman, Fahad Tiwana, Muhammad Irfan, Mohsin Tiwana
Abstract:
Traffic congestion has been increasing significantly in major metropolitan areas as a result of increased motorization, urbanization, population growth and changes in the urban density. Traffic congestion compromises efficiency of transport infrastructure and causes multiple traffic concerns; including but not limited to increase of travel time, safety hazards, air pollution, and fuel consumption. Traffic management has become a serious challenge for federal and provincial governments, as well as exasperated commuters. Effective, flexible, efficient and user-friendly traffic information/database management systems characterize traffic conditions by making use of traffic counts for storage, processing, and visualization. While, the emerging data collection technologies continue to proliferate, its accuracy can be guaranteed through the comparison of observed data with the manual handheld counters. This paper presents the design of tablet based manual traffic counting application and framework for development of traffic database management system for Pakistan. The database management system comprises of three components including traffic counting android application; establishing online database and its visualization using Google maps. Oracle relational database was chosen to develop the data structure whereas structured query language (SQL) was adopted to program the system architecture. The GIS application links the data from the database and projects it onto a dynamic map for traffic conditions visualization. The traffic counting device and example of a database application in the real-world problem provided a creative outlet to visualize the uses and advantages of a database management system in real time. Also, traffic data counts by means of handheld tablet/ mobile application can be used for transportation planning and forecasting.Keywords: manual count, emerging data sources, traffic information quality, traffic surveillance, traffic counting device, android; data visualization, traffic management
Procedia PDF Downloads 1961167 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time
Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani
Abstract:
This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management
Procedia PDF Downloads 851166 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems
Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa
Abstract:
Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.Keywords: day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring
Procedia PDF Downloads 5551165 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks
Authors: Khalid Ali, Manar Jammal
Abstract:
In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity
Procedia PDF Downloads 2281164 Urban Design via Estimation Model for Traffic Index of Cities Based on an Artificial Intelligence
Authors: Seyed Sobhan Alvani, Mohammad Gohari
Abstract:
By developing cities and increasing the population, traffic congestion has become a vital problem. Due to this crisis, urban designers try to present solutions to decrease this difficulty. On the other hand, predicting the model with perfect accuracy is essential for solution-providing. The current study presents a model based on artificial intelligence which can predict traffic index based on city population, growth rate, and area. The accuracy of the model was evaluated, which is acceptable and it is around 90%. Thus, urban designers and planners can employ it for predicting traffic index in the future to provide strategies.Keywords: traffic index, population growth rate, cities wideness, artificial neural network
Procedia PDF Downloads 441163 A Hybrid Traffic Model for Smoothing Traffic Near Merges
Authors: Shiri Elisheva Decktor, Sharon Hornstein
Abstract:
Highway merges and unmarked junctions are key components in any urban road network, which can act as bottlenecks and create traffic disruption. Inefficient highway merges may trigger traffic instabilities such as stop-and-go waves, pose safety conditions and lead to longer journey times. These phenomena occur spontaneously if the average vehicle density exceeds a certain critical value. This study focuses on modeling the traffic using a microscopic traffic flow model. A hybrid traffic model, which combines human-driven and controlled vehicles is assumed. The controlled vehicles obey different driving policies when approaching the merge, or in the vicinity of other vehicles. We developed a co-simulation model in SUMO (Simulation of Urban Mobility), in which the human-driven cars are modeled using the IDM model, and the controlled cars are modeled using a dedicated controller. The scenario chosen for this study is a closed track with one merge and one exit, which could be later implemented using a scaled infrastructure on our lab setup. This will enable us to benchmark the results of this study obtained in simulation, to comparable results in similar conditions in the lab. The metrics chosen for the comparison of the performance of our algorithm on the overall traffic conditions include the average speed, wait time near the merge, and throughput after the merge, measured under different travel demand conditions (low, medium, and heavy traffic).Keywords: highway merges, traffic modeling, SUMO, driving policy
Procedia PDF Downloads 1071162 A Survey on Intelligent Traffic Management with Cooperative Driving in Urban Roads
Authors: B. Karabuluter, O. Karaduman
Abstract:
Traffic management and traffic planning are important issues, especially in big cities. Due to the increase of personal vehicles and the physical constraints of urban roads, the problem of transportation especially in crowded cities over time is revealed. This situation reduces the living standards, and it can put human life at risk because the vehicles such as ambulance, fire department are prevented from reaching their targets. Even if the city planners take these problems into account, emergency planning and traffic management are needed to avoid cases such as traffic congestion, intersections, traffic jams caused by traffic accidents or roadworks. In this study, in smart traffic management issues, proposed solutions using intelligent vehicles acting in cooperation with urban roads are examined. Traffic management is becoming more difficult due to factors such as fatigue, carelessness, sleeplessness, social behavior patterns, and lack of education. However, autonomous vehicles, which remove the problems caused by human weaknesses by providing driving control, are increasing the success of practicing the algorithms developed in city traffic management. Such intelligent vehicles have become an important solution in urban life by using 'swarm intelligence' algorithms and cooperative driving methods to provide traffic flow, prevent traffic accidents, and increase living standards. In this study, studies conducted in this area have been dealt with in terms of traffic jam, intersections, regulation of traffic flow, signaling, prevention of traffic accidents, cooperation and communication techniques of vehicles, fleet management, transportation of emergency vehicles. From these concepts, some taxonomies were made out of the way. This work helps to develop new solutions and algorithms for cities where intelligent vehicles that can perform cooperative driving can take place, and at the same time emphasize the trend in this area.Keywords: intelligent traffic management, cooperative driving, smart driving, urban road, swarm intelligence, connected vehicles
Procedia PDF Downloads 3321161 Improving Urban Mobility: Analyzing Impacts of Connected and Automated Vehicles on Traffic and Emissions
Authors: Saad Roustom, Hajo Ribberink
Abstract:
In most cities in the world, traffic has increased strongly over the last decades, causing high levels of congestion and deteriorating inner-city air quality. This study analyzes the impact of connected and automated vehicles (CAVs) on traffic performance and greenhouse gas (GHG) emissions under different CAV penetration rates in mixed fleet environments of CAVs and driver-operated vehicles (DOVs) and under three different traffic demand levels. Utilizing meso-scale traffic simulations of the City of Ottawa, Canada, the research evaluates the traffic performance of three distinct CAV driving behaviors—Cautious, Normal, and Aggressive—at penetration rates of 25%, 50%, 75%, and 100%, across three different traffic demand levels. The study employs advanced correlation models to estimate GHG emissions. The results reveal that Aggressive and Normal CAVs generally reduce traffic congestion and GHG emissions, with their benefits being more pronounced at higher penetration rates (50% to 100%) and elevated traffic demand levels. On the other hand, Cautious CAVs exhibit an increase in both traffic congestion and GHG emissions. However, results also show deteriorated traffic flow conditions when introducing 25% penetration rates of any type of CAVs. Aggressive CAVs outperform all other driving at improving traffic flow conditions and reducing GHG emissions. The findings of this study highlight the crucial role CAVs can play in enhancing urban traffic performance and mitigating the adverse impact of transportation on the environment. This research advocates for the adoption of effective CAV-related policies by regulatory bodies to optimize traffic flow and reduce GHG emissions. By providing insights into the impact of CAVs, this study aims to inform strategic decision-making and stimulate the development of sustainable urban mobility solutions.Keywords: connected and automated vehicles, congestion, GHG emissions, mixed fleet environment, traffic performance, traffic simulations
Procedia PDF Downloads 921160 Comparison of Different k-NN Models for Speed Prediction in an Urban Traffic Network
Authors: Seyoung Kim, Jeongmin Kim, Kwang Ryel Ryu
Abstract:
A database that records average traffic speeds measured at five-minute intervals for all the links in the traffic network of a metropolitan city. While learning from this data the models that can predict future traffic speed would be beneficial for the applications such as the car navigation system, building predictive models for every link becomes a nontrivial job if the number of links in a given network is huge. An advantage of adopting k-nearest neighbor (k-NN) as predictive models is that it does not require any explicit model building. Instead, k-NN takes a long time to make a prediction because it needs to search for the k-nearest neighbors in the database at prediction time. In this paper, we investigate how much we can speed up k-NN in making traffic speed predictions by reducing the amount of data to be searched for without a significant sacrifice of prediction accuracy. The rationale behind this is that we had a better look at only the recent data because the traffic patterns not only repeat daily or weekly but also change over time. In our experiments, we build several different k-NN models employing different sets of features which are the current and past traffic speeds of the target link and the neighbor links in its up/down-stream. The performances of these models are compared by measuring the average prediction accuracy and the average time taken to make a prediction using various amounts of data.Keywords: big data, k-NN, machine learning, traffic speed prediction
Procedia PDF Downloads 3641159 Analysis of Traffic Crashes on Rural Roads in Oman
Authors: Mohammed Bakhit Kashoob, Mohammed Salim Al-Maashani, Ahmed Abdullah Al-Marhoon
Abstract:
Fatalities of Road Traffic Crashes (RTCs) on rural roads are usually higher than that on urban roads. The likelihood of traffic accidents may increase with the presence of factors that are associated with the rural type of community such as long-distance, road type, road geometry (e.g., curves and steepens), poor lighting, terrain, obstacles (e.g., animals crossing, boulders or tree branches), heavy truck traffic, weather conditions, and road flaws. Most of these factors are present on the rural roads of Oman. As many cities in Oman are surrounded by mountains and connected by rural roads, this is of great concern. In this paper, the causes of traffic crashes on rural roads in Oman are analyzed. The fatality rate of traffic deaths on rural roads is compared with the fatality rate on urban roads for different regions in Oman. Statistical data and police reports show that the leading cause of RTCs and deaths on rural roads is vehicle speeding, especially on long-distance roads. It is shown that crashes on rural roads result in higher fatalities than crashes on urban roads. In comparison to speed, the numbers of RTCs and deaths that resulted from other causes are small.Keywords: causes of traffic crashes, road safety, road traffic crash, rural roads
Procedia PDF Downloads 1711158 On Flow Consolidation Modelling in Urban Congested Areas
Authors: Serban Stere, Stefan Burciu
Abstract:
The challenging and continuously growing competition in the urban freight transport market emphasizes the need for optimal planning of transportation processes in terms of identifying the solution of consolidating traffic flows in congested urban areas. The aim of the present paper is to present the mathematical framework and propose a methodology of combining urban traffic flows between the distribution centers located at the boundary of a congested urban area. The three scenarios regarding traffic flow between consolidation centers that are taken into consideration in the paper are based on the same characteristics of traffic flows. The scenarios differ in terms of the accessibility of the four consolidation centers given by the infrastructure, the connections between them, and the possibility of consolidating traffic flows for one or multiple destinations. Also, synthetical indicators will allow us to compare the scenarios considered and chose the indicated for our distribution system.Keywords: distribution system, single and multiple destinations, urban consolidation centers, traffic flow consolidation schemes
Procedia PDF Downloads 1571157 Identify the Traffic Safety Needs among Risky Groups in Iraq
Authors: Aodai Abdul-Illah Ismail
Abstract:
Even though the dramatic progress that has been made in traffic safety, but still millions of peoples get killed or injured as a result of traffic crashes, besides the huge amount of economic losses due to these crashes. So traffic safety continues to be one of the most important serious issues worldwide, and it affects everyone who uses the road network system, whether you drive, walk, cycle, or push a pram. One of the most important sides that offers promise for further progress in relation to traffic safety is related to risky groups (special population groups) who may have higher potential to be involved in accidents. Traffic safety needs of risky groups are different from each other and also from the average population. Due to the various limitations between these special groups from each other and from the average population, it is not possible to address all the issues –at the same time- raising the importance ranking among the other safety issues. This paper explains a procedure used to identify the most critical traffic safety issues of five risky groups, which include younger, older and female drivers, people with disabilities and school aged children. Multi criteria used in selecting the critical issues because the single criteria is not sufficient. Highway safety professionals were surveyed to obtain the ranking of importance among the risky groups and then to develop the final ranking among issues by applying weight for each of the criteria.Keywords: traffic safety, risky groups, old drivers, young drivers
Procedia PDF Downloads 3511156 A Comparison of Alternative Traffic Controls for Interchange Ramp Areas Using Synchro Software
Authors: Mohamed Mesbah, Bruce Janson
Abstract:
An interchange is the most important component of freeway and highway facilities. It is working as a connector between the highway’s elements. The main goal of designing interchanges is to provide an acceptable level of service and delay to make vehicles move smoothly when they are entering and exiting the interchange. There are many factors that can have a significant impact on the level of service; the main factors are traffic volumes, and type of interchange. This paper will discuss interchange with roundabouts under various values of traffic volumes to determine the level of service of the interchanges that will be studied in this paper and replace the system of interchange from roundabout to traffic signal to make a significant compression between these systems. A secondary goal is to propose improvements for scenarios where the level of service is deemed unacceptable. This will be achieved using Synchro traffic simulation software, which facilitates the simulation and optimization of interchanges to enhance operational efficiency and safety.Keywords: interchange, roundabout, traffic signal, Synchro, delay, level of service, traffic volumes, vehicles, simulation, optimization, adjustment
Procedia PDF Downloads 261155 Possibilities, Challenges and the State of the Art of Automatic Speech Recognition in Air Traffic Control
Authors: Van Nhan Nguyen, Harald Holone
Abstract:
Over the past few years, a lot of research has been conducted to bring Automatic Speech Recognition (ASR) into various areas of Air Traffic Control (ATC), such as air traffic control simulation and training, monitoring live operators for with the aim of safety improvements, air traffic controller workload measurement and conducting analysis on large quantities controller-pilot speech. Due to the high accuracy requirements of the ATC context and its unique challenges, automatic speech recognition has not been widely adopted in this field. With the aim of providing a good starting point for researchers who are interested bringing automatic speech recognition into ATC, this paper gives an overview of possibilities and challenges of applying automatic speech recognition in air traffic control. To provide this overview, we present an updated literature review of speech recognition technologies in general, as well as specific approaches relevant to the ATC context. Based on this literature review, criteria for selecting speech recognition approaches for the ATC domain are presented, and remaining challenges and possible solutions are discussed.Keywords: automatic speech recognition, asr, air traffic control, atc
Procedia PDF Downloads 4001154 Mapping of Traffic Noise in Riyadh City-Saudi Arabia
Authors: Khaled A. Alsaif, Mosaad A. Foda
Abstract:
The present work aims at development of traffic noise maps for Riyadh City using the software Lima. Road traffic data were estimated or measured as accurate as possible in order to obtain consistent noise maps. The predicted noise levels at some selected sites are validated by actual field measurements, which are obtained by a system that consists of a sound level meter, a GPS receiver and a database to manage the measured data. The maps show that noise levels remain over 50 dBA and can exceed 70 dBA at the nearside of major roads and highways.Keywords: noise pollution, road traffic noise, LimA predictor, GPS
Procedia PDF Downloads 3871153 Traffic Calming Measures at Rural Roads in Dhofar
Authors: Mohammed Bakhit Kashoob, Mohammed Salim Al-Maashani, Ahmed Abdullah Al-Marhoon
Abstract:
Traffic calming measures are different design features or strategies used to reduce the speed of a traveling vehicle on a particular road. These calming measures are common on rural roads of Oman. Some of these measures are road speed limits, vertical deflections, horizontal deflections, and road signs. In general, vertical deflections such as rumble strips, road studs (cat’s eye), speed tables, and speed humps are widely used. In this paper, as vehicle speeding is a major cause of road traffic crashes and high fatalities in Oman, the effectiveness of existing traffic calming measures at current locations on rural roads is assessed. The study was conducted on the rural roads of Dhofar Governorate, which is located in the south of Oman. A special focus is given to the calming measures implemented on the mountain roads of Dhofar. It is shown that vertical deflection calming measures are effective in reducing vehicle speed to 20 to 40 kph, depending on the vertical deflection type and spacing. Calming measures are also proposed at locations with a high probability of traffic crashes based on the number of traffic crashes at these locations, road type, and road geometry.Keywords: road safety, rural roads, speed, traffic calming measures, traffic crash
Procedia PDF Downloads 1201152 Traffic Congestions Modeling and Predictions by Social Networks
Authors: Bojan Najdenov, Danco Davcev
Abstract:
Reduction of traffic congestions and the effects of pollution and waste of resources that come with them has been a big challenge in the past decades. Having reliable systems to facilitate the process of modeling and prediction of traffic conditions would not only reduce the environmental pollution, but will also save people time and money. Social networks play big role of people’s lives nowadays providing them means of communicating and sharing thoughts and ideas, that way generating huge knowledge bases by crowdsourcing. In addition to that, crowdsourcing as a concept provides mechanisms for fast and relatively reliable data generation and also many services are being used on regular basis because they are mainly powered by the public as main content providers. In this paper we present the Social-NETS-Traffic-Control System (SNTCS) that should serve as a facilitator in the process of modeling and prediction of traffic congestions. The main contribution of our system is to integrate data from social networks as Twitter and also implements a custom created crowdsourcing subsystem with which users report traffic conditions using an android application. Our first experience of the usage of the system confirms that the integrated approach allows easy extension of the system with other social networks and represents a very useful tool for traffic control.Keywords: traffic, congestion reduction, crowdsource, social networks, twitter, android
Procedia PDF Downloads 4831151 Reduction of the Number of Traffic Accidents by Function of Driver's Anger Detection
Authors: Masahiro Miyaji
Abstract:
When a driver happens to be involved in some traffic congestion or after traffic incidents, the driver may fall in a state of anger. State of anger may encounter decisive risk resulting in severer traffic accidents. Preventive safety function using driver’s psychosomatic state with regard to anger may be one of solutions which would avoid that kind of risks. Identifying driver’s anger state is important to create countermeasures to prevent the risk of traffic accidents. As a first step, this research figured out root cause of traffic incidents by means of using Internet survey. From statistical analysis of the survey, dominant psychosomatic states immediately before traffic incidents were haste, distraction, drowsiness and anger. Then, we replicated anger state of a driver while driving, and then, replicated it by means of using driving simulator on bench test basis. Six types of facial expressions including anger were introduced as alternative characteristics. Kohonen neural network was adopted to classify anger state. Then, we created a methodology to detect anger state of a driver in high accuracy. We presented a driving support safety function. The function adapts driver’s anger state in cooperation with an autonomous driving unit to reduce the number of traffic accidents. Consequently, e evaluated reduction rate of driver’s anger in the traffic accident. To validate the estimation results, we referred the reduction rate of Advanced Safety Vehicle (ASV) as well as Intelligent Transportation Systems (ITS).Keywords: Kohonen neural network, driver’s anger state, reduction of traffic accidents, driver’s state adaptive driving support safety
Procedia PDF Downloads 359