Search results for: dye degradation/removal
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3190

Search results for: dye degradation/removal

2650 Bio-Electrochemical Process Coupled with MnO2 Nanowires for Wastewater Treatment

Authors: A. Giwa, S. M. Jung, W. Fang, J. Kong, S. W. Hasan

Abstract:

MnO2 nanowires were developed as filtration media for wastewater treatment that uniquely combines several advantages. The resulting material demonstrated strong capability to remove the pollution of heavy metal ions and organic contents in water. In addition, the manufacture process of such material is practical and economical. In this work, MnO2 nanowires were integrated with the state-of-art bio-electrochemical system for wastewater treatment, to overcome problems currently encountered with organic, inorganic, heavy metal, and microbe removal, and to minimize the unit footprint (land/space occupation) at low cost. Results showed that coupling the bio-electrochemical with MnO2 resulted in very encouraging results with higher removal efficiencies of such pollutants.

Keywords: bio-electrochemical, nanowires, novel, wastewater

Procedia PDF Downloads 387
2649 Drying of Agro-Industrial Wastes Using an Indirect Solar Dryer

Authors: N. Metidji, N. Kasbadji Merzouk, O. Badaoui, R. Sellami, A. Djebli

Abstract:

The Agro-industry is considered as one of the most waste producing industrial fields as a result of food processing. Upgrading and reuse of these wastes as animal or poultry food seems to be a promising alternative. Combined with the use of clean energy resources, the recovery process would contribute more to the environment protection. It is in this framework that a new solar dryer has been designed in the Unit of Solar Equipments Development. Indirect solar drying has, also, many advantages compared to natural sun drying. In fact, the first does not cause product degradation as it is protected by the drying chamber from direct sun, insects and exterior environment. The aim of this work is to study the drying kinetics of waste, generated during the processing of orange to make fruit juice, by using an indirect forced convection solar dryer at 50 °C and 60 °C, the rate of moisture removal from the product to be dried has been found to be directly related to temperature, humidity and flow rate. The characterization of these parameters has allowed the determination of the appropriate drying time for this product namely orange waste.

Keywords: solar energy, solar dryer, energy conversion, orange drying, forced convection solar dryer

Procedia PDF Downloads 354
2648 Sorption of Cesium Ions from Aqueous Solutions by Magnetic Multi-Walled Carbon Nanotubes Functionalized with Zinc Hexacyanoferrate

Authors: H. H. Lee, D. Y. Kim, S. W. Lee, J. H. Kim, J. H. Kim, W. Z. Oh, S. J. Choi

Abstract:

In recent years, carbon nanotubes (CNTs) have been widely employed as a sorbent for the removal of various metal ions from water due to their unique properties such as large surface area, light mass density, high porous and hollow structure, and strong interaction between the pollutant molecules and CNTs. To apply CNTs to the sorption of Cs+ from aqueous solutions, they must first be functionalized to increase their hydrophilicity and therefore, enhance their applicability to the sorption of polar and relatively low-molecular-weight species. The objective of this study is to investigate the preparation of magnetically separable multi-walled carbon nanotubes (MWCNTs-m) as a sorbents for the removal of Cs+ from aqueous solutions. The MWCNTs-m was prepared using pristine MWCNTs and iron precursor Fe(acac)3. For the selective removal of Cs+ from aqueous solutions, the MWCNTs-m was functionalized with zinc hexacyanoferrate (MWCNTs-m-ZnFC). The physicochemical properties of the synthesized sorbents were characterized with various techniques, including transmission electron microscopy (TEM), specific surface area analysis, Fourier transform-infrared (FT-IR) spectroscopy, and vibrating-sample magnetometer. The MWCNTs-m-ZnFC was found to be easily separated from aqueous solutions by using magnetic field. The MWCNTs-m-ZnFC exhibited a high capacity for sorbing Cs+ from aqueous solutions because of their strong affinity for Cs+ and specific surface area. The sorption ability of the MWCNTs-m-ZnFC for Cs+ was maintained even in the presence of co-existing ions (Na+). Considering these results, the CNT-m-ZnFCs have great potential for use as an effective sorbent for the selective removal of radioactive Cs+ ions from aqueous solutions.

Keywords: multi-walled carbon nanotubes, magnetic materials, cesium, zinc hexacyanoferrate, sorption

Procedia PDF Downloads 324
2647 Electrochemical Treatment and Chemical Analyses of Tannery Wastewater Using Sacrificial Aluminum Electrode, Ethiopia

Authors: Dessie Tibebe, Muluken Asmare, Marye Mulugeta, Yezbie Kassa, Zerubabel Moges, Dereje Yenealem, Tarekegn Fentie, Agmas Amare

Abstract:

The performance of electrocoagulation (EC) using Aluminium electrodes for the treatment of effluent-containing chromium metal using a fixed bed electrochemical batch reactor was studied. In the present work, the efficiency evaluation of EC in removing physicochemical and heavy metals from real industrial tannery wastewater in the Amhara region, collected from Bahirdar, Debre Brihan, and Haik, was investigated. The treated and untreated samples were determined by AAS and ICP OES spectrophotometers. The results indicated that selected heavy metals were removed in all experiments with high removal percentages. The optimal results were obtained regarding both cost and electrocoagulation efficiency with initial pH = 3, initial concentration = 40 mg/L, electrolysis time = 30 min, current density = 40 mA/cm2, and temperature = 25oC favored metal removal. The maximum removal percentages of selected metals obtained were 84.42% for Haik, 92.64% for Bahir Dar and 94.90% for Debre Brihan. The sacrificial electrode and sludge were characterized by FT-IR, SEM and XRD. After treatment, some metals like chromium will be used again as a tanning agent in leather processing to promote a circular economy.

Keywords: electrochemical, treatment, aluminum, tannery effluent

Procedia PDF Downloads 110
2646 Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography−Mass Spectrometry

Authors: Yanghui Xu, Qin Ou, Xintu Wang, Feng Hou, Peng Li, Jan Peter van der Hoek, Gang Liu

Abstract:

The level and removal of microplastics (MPs) in wastewater treatment plants (WWTPs) has been well evaluated by the particle number, while the mass concentration of MPs and especially nanoplastics (NPs) remains unclear. In this study, microfiltration, ultrafiltration and hydrogen peroxide digestion were used to extract MPs and NPs with different size ranges (0.01−1, 1−50, and 50−1000 μm) across the whole treatment schemes in two WWTPs. By identifying specific pyrolysis products, pyrolysis gas chromatography−mass spectrometry were used to quantify their mass concentrations of selected six types of polymers (i.e., polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polyamide (PA)). The mass concentrations of total MPs and NPs decreased from 26.23 and 11.28 μg/L in the influent to 1.75 and 0.71 μg/L in the effluent, with removal rates of 93.3 and 93.7% in plants A and B, respectively. Among them, PP, PET and PE were the dominant polymer types in wastewater, while PMMA, PS and PA only accounted for a small part. The mass concentrations of NPs (0.01−1 μm) were much lower than those of MPs (>1 μm), accounting for 12.0−17.9 and 5.6− 19.5% of the total MPs and NPs, respectively. Notably, the removal efficiency differed with the polymer type and size range. The low-density MPs (e.g., PP and PE) had lower removal efficiency than high-density PET in both plants. Since particles with smaller size could pass the tertiary sand filter or membrane filter more easily, the removal efficiency of NPs was lower than that of MPs with larger particle size. Based on annual wastewater effluent discharge, it is estimated that about 0.321 and 0.052 tons of MPs and NPs were released into the river each year. Overall, this study investigated the mass concentration of MPs and NPs with a wide size range of 0.01−1000 μm in wastewater, which provided valuable information regarding the pollution level and distribution characteristics of MPs, especially NPs, in WWTPs. However, there are limitations and uncertainties in the current study, especially regarding the sample collection and MP/NP detection. The used plastic items (e.g., sampling buckets, ultrafiltration membranes, centrifugal tubes, and pipette tips) may introduce potential contamination. Additionally, the proposed method caused loss of MPs, especially NPs, which can lead to underestimation of MPs/NPs. Further studies are recommended to address these challenges about MPs/NPs in wastewater.

Keywords: microplastics, nanoplastics, mass concentration, WWTPs, Py-GC/MS

Procedia PDF Downloads 281
2645 Heterogeneous Photocatalytic Degradation of Methylene Blue by Montmorillonite/CuxCd1-xs Nanomaterials

Authors: Horiya Boukhatem, Lila Djouadi, Hussein Khalaf, Rufino Manuel Navarro Yerga, Fernando Vaquero Gonzalez

Abstract:

Heterogeneous photo catalysis is an alternative method for the removal of organic pollutants in water. The photo excitation of a semi-conductor under ultra violet (UV) irradiation entails the production of hydroxyl radicals, one of the most oxidative chemical species. The objective of this study is the synthesis of nano materials based on montmorillonite and CuxCd1-xS with different Cu concentration (0.3 < x < 0.7) and their application in photocatalysis of a cationic dye: methylene blue. The synthesized nano materials and montmorillonite were characterized by fourier transform infrared (FTIR). Test results of photo catalysis of methylene blue under UV-Visible irradiation show that the photoactivity of nano materials montmorillonite/ CuxCd1-xS increase with the increasing of Cu concentration and it is significantly higher compared to that of sodium montmorillonite alone. The application of the kinetic model of Langmuir-Hinshelwood (L-H) to the photocatalytic test results showed that the reaction rate obeys to the first-order kinetic model.

Keywords: heterogeneous photo catalysis, methylene blue, montmorillonite, nano material

Procedia PDF Downloads 339
2644 Lactate Biostimulation for Remediation of Aquifers Affected by Recalcitrant Sources of Chloromethanes

Authors: Diana Puigserver Cuerda, Jofre Herrero Ferran, José M. Carmona Perez

Abstract:

In the transition zone between aquifers and basal aquitards, DNAPL-pools of chlorinated solvents are more recalcitrant than at other depths in the aquifer. Although degradation of carbon tetrachloride (CT) and chloroform (CF) occurs in this zone, this is a slow process, which is why an adequate remediation strategy is necessary. The working hypothesis of this study is that the biostimulation of the transition zone of an aquifer contaminated by CT and CF can be an effective remediation strategy. This hypothesis has been tested in a site on an unconfined aquifer in which the major contaminants were CT and CF of industrial origin and where the hydrochemical background was rich in other compounds that can hinder natural attenuation of chloromethanes. Field studies and five laboratory microcosm experiments were carried out at the level of groundwater and sediments to identify: i) the degradation processes of CT and CF; ii) the structure of microbial communities; and iii) the microorganisms implicated on this degradation. For this, concentration of contaminants and co-contaminants (nitrate and sulfate), Compound Specific Isotope Analysis, molecular techniques (Denaturing Gradient Gel Electrophoresis) and clone library analysis were used. The main results were: i) degradation processes of CT and CF occurred in groundwater and in the lesser conductive sediments; ii) sulfate-reducing conditions in the transition zone were high and similar to those in the source of contamination; iii) two microorganisms (Azospira suillum and a bacterium of the Clostridiales order) were identified in the transition zone at the field and lab experiments that were compatible with the role of carrying out the reductive dechlorination of CT, CF and their degradation products (dichloromethane and chloromethane); iv) these two microorganisms were present at the high starting concentrations of the microcosm experiments (similar to those in the source of DNAPL) and continued being present until the last day of the lactate biostimulation; and v) the lactate biostimulation gave rise to the fastest and highest degradation rates and promoted the elimination of other electron acceptors (e.g. nitrate and sulfate). All these results are evidence that lactate biostimulation can be effective in remediating the source and plume, especially in the transition zone, and highlight the environmental relevance of the treatment of contaminated transition zones in industrial contexts similar to that studied.

Keywords: Azospira suillum, lactate biostimulation of carbon tetrachloride and chloroform, reductive dechlorination, transition zone between aquifer and aquitard

Procedia PDF Downloads 176
2643 Box-Behnken Design for the Biosorption of Cationic Dye from Aqueous Solution Using a Zero-Valent Iron Nano Algal Composite

Authors: V. Sivasubramanian, M. Jerold

Abstract:

The advancement of adsorption is the development of nano-biocomposite for the sorption dyes and heavy metal ions. In fact, Nanoscale zerovalent iron (NZVI) is cost-effective reducing agent and a most reliable biosorbent for the dye biosorption. In this study, nano zero valent iron Sargassum swartzii (nZVI-SS) biocomposite, a novel marine algal based biosorbent, was used for the removal of simulated crystal violet (CV) in batch mode of operation. The Box-Behnen design (BBD) experimental results revealed the biosoprtion was maximum at pH 7.5, biosorbent dosage 0.1 g/L and initial CV concentration of 100 mg/L. Therefore, the result implies that nZVI-SS biocomposite is a cheap and most promising biosorbent for the removal of CV from wastewater.

Keywords: algae, biosorption, zero-valent, dye, waste water

Procedia PDF Downloads 247
2642 Sustainable Urban Landscape Practices: A New Concept to Reduce Ecological Degradation

Authors: Manjari Rai

Abstract:

Urbanization is an inevitable process of development of human society and an outcome of economic development and scientific and technological progress. While urbanization process in promoting the development of human civilization, also no doubt, urban landscape has been a corresponding impact. Urban environment has suffered unprecedented damage majorly due to the increase in urban population density and heavy migration rate, traffic congestion, and environmental pollution. All this have however led to a major ecological degradation and imbalance. As lands are used for the rapid and unplanned urbanization, the green lands are diminished, and severe pollution is created by waste products. Plastic, the most alarming waste at landfill sites, is yet uncontrolled. Therefore, initiatives must be taken to reduce plastic mediated pollution and increase green application. However, increasing green land is not possible due to the landfill by urban structures. In order to create a harmonious environment, sustainable development in the urban landscape becomes a matter of prime focus. This paper thus discusses the concept of ecological design combined with the urban landscape design, green landscape design on urban structures and sustainable development through the use of recyclable waste materials which is also a low costing approach of urban landscape design.

Keywords: ecological, degradation sustainable, landscape, urban

Procedia PDF Downloads 423
2641 A Case Study of Alkali-Silica Reaction Induced Consistent Damage and Strength Degradation Evaluation in a Textile Mill Building Due to Slow-Reactive Aggregates

Authors: Ahsan R. Khokhar, Fizza Hassan

Abstract:

Alkali-Silica Reaction (ASR) has been recognized as a potential cause of concrete degradation in the world since the 1940s. In Pakistan, mega hydropower structures like dams, weirs constructed from aggregates extracted from a local riverbed exhibited different levels of alkali-silica reactivity over an extended service period. The concrete expansion potential due to such aggregates has been categorized as slow-reactive. Apart from hydropower structures, ASR existence has been identified in the concrete structural elements of a Textile Mill building which used aggregates extracted from the nearby riverbed. The original structure of the Textile Mill was erected in the 80s with the addition of a textile ‘sizing and wrapping’ hall constructed in the 90s. In the years to follow, intensive spalling was observed in the structural members of the subject hall; enough to threat to the overall stability of the building. Limitations such as incomplete building data posed hurdles during the detailed structural investigation. The paper lists observations made while assessing the extent of damage and its effect on the building hall structure. Core testing and Petrographic tests were carried out as per the ASTM standards for strength degradation analysis followed by the identifying its root cause. Results confirmed significant structural strength reduction because of ASR which necessitated the formulation of an immediate re-strengthening solution. The paper also discusses the possible tracks of rehabilitative measures which are being adapted to stabilize the structure and seize further concrete expansion.

Keywords: Alkali-Silica Reaction (ASR), concrete strength degradation, damage assessment, damage evaluation

Procedia PDF Downloads 129
2640 Statistical Analysis and Optimization of a Process for CO2 Capture

Authors: Muftah H. El-Naas, Ameera F. Mohammad, Mabruk I. Suleiman, Mohamed Al Musharfy, Ali H. Al-Marzouqi

Abstract:

CO2 capture and storage technologies play a significant role in contributing to the control of climate change through the reduction of carbon dioxide emissions into the atmosphere. The present study evaluates and optimizes CO2 capture through a process, where carbon dioxide is passed into pH adjusted high salinity water and reacted with sodium chloride to form a precipitate of sodium bicarbonate. This process is based on a modified Solvay process with higher CO2 capture efficiency, higher sodium removal, and higher pH level without the use of ammonia. The process was tested in a bubble column semi-batch reactor and was optimized using response surface methodology (RSM). CO2 capture efficiency and sodium removal were optimized in terms of major operating parameters based on four levels and variables in Central Composite Design (CCD). The operating parameters were gas flow rate (0.5–1.5 L/min), reactor temperature (10 to 50 oC), buffer concentration (0.2-2.6%) and water salinity (25-197 g NaCl/L). The experimental data were fitted to a second-order polynomial using multiple regression and analyzed using analysis of variance (ANOVA). The optimum values of the selected variables were obtained using response optimizer. The optimum conditions were tested experimentally using desalination reject brine with salinity ranging from 65,000 to 75,000 mg/L. The CO2 capture efficiency in 180 min was 99% and the maximum sodium removal was 35%. The experimental and predicted values were within 95% confidence interval, which demonstrates that the developed model can successfully predict the capture efficiency and sodium removal using the modified Solvay method.

Keywords: CO2 capture, water desalination, Response Surface Methodology, bubble column reactor

Procedia PDF Downloads 287
2639 Ambiguity Resolution for Ground-based Pulse Doppler Radars Using Multiple Medium Pulse Repetition Frequency

Authors: Khue Nguyen Dinh, Loi Nguyen Van, Thanh Nguyen Nhu

Abstract:

In this paper, we propose an adaptive method to resolve ambiguities and a ghost target removal process to extract targets detected by a ground-based pulse-Doppler radar using medium pulse repetition frequency (PRF) waveforms. The ambiguity resolution method is an adaptive implementation of the coincidence algorithm, which is implemented on a two-dimensional (2D) range-velocity matrix to resolve range and velocity ambiguities simultaneously, with a proposed clustering filter to enhance the anti-error ability of the system. Here we consider the scenario of multiple target environments. The ghost target removal process, which is based on the power after Doppler processing, is proposed to mitigate ghosting detections to enhance the performance of ground-based radars using a short PRF schedule in multiple target environments. Simulation results on a ground-based pulsed Doppler radar model will be presented to show the effectiveness of the proposed approach.

Keywords: ambiguity resolution, coincidence algorithm, medium PRF, ghosting removal

Procedia PDF Downloads 151
2638 Enhancing Industrial Wastewater Treatment: Efficacy and Optimization of Ultrasound-Assisted Laccase Immobilized on Magnetic Fe₃O₄ Nanoparticles

Authors: K. Verma, v. S. Moholkar

Abstract:

In developed countries, water pollution caused by industrial discharge has emerged as a significant environmental concern over the past decades. However, despite ongoing efforts, a fully effective and sustainable remediation strategy has yet to be identified. This paper describes how enzymatic and sonochemical treatments have demonstrated great promise in degrading bio-refractory pollutants. Mainly, a compelling area of interest lies in the combined technique of sono-enzymatic treatment, which has exhibited a synergistic enhancement effect surpassing that of the individual techniques. This study employed the covalent attachment method to immobilize Laccase from Trametes versicolor onto amino-functionalized magnetic Fe₃O₄ nanoparticles. To comprehensively characterize the synthesized free nanoparticles and the laccase-immobilized nanoparticles, various techniques such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), vibrating sample magnetometer (VSM), and surface area through Brunauer-Emmett-Teller (BET) were employed. The size of immobilized Fe₃O₄@Laccase was found to be 60 nm, and the maximum loading of laccase was found to be 24 mg/g of nanoparticle. An investigation was conducted to study the effect of various process parameters, such as immobilized Fe₃O₄ Laccase dose, temperature, and pH, on the % Chemical oxygen demand (COD) removal as a response. The statistical design pinpointed the optimum conditions (immobilized Fe₃O₄ Laccase dose = 1.46 g/L, pH = 4.5, and temperature = 66 oC), resulting in a remarkable 65.58% COD removal within 60 minutes. An even more significant improvement (90.31% COD removal) was achieved with ultrasound-assisted enzymatic reaction utilizing a 10% duty cycle. The investigation of various kinetic models for free and immobilized laccase, such as the Haldane, Yano, and Koga, and Michaelis-Menten, showed that ultrasound application impacted the kinetic parameters Vmax and Km. Specifically, Vmax values for free and immobilized laccase were found to be 0.021 mg/L min and 0.045 mg/L min, respectively, while Km values were 147.2 mg/L for free laccase and 136.46 mg/L for immobilized laccase. The lower Km and higher Vmax for immobilized laccase indicate its enhanced affinity towards the substrate, likely due to ultrasound-induced alterations in the enzyme's confirmation and increased exposure of active sites, leading to more efficient degradation. Furthermore, the toxicity and Liquid chromatography-mass spectrometry (LC-MS) analysis revealed that after the treatment process, the wastewater exhibited 70% less toxicity than before treatment, with over 25 compounds degrading by more than 75%. At last, the prepared immobilized laccase had excellent recyclability retaining 70% activity up to 6 consecutive cycles. A straightforward manufacturing strategy and outstanding performance make the recyclable magnetic immobilized Laccase (Fe₃O₄ Laccase) an up-and-coming option for various environmental applications, particularly in water pollution control and treatment.

Keywords: kinetic, laccase enzyme, sonoenzymatic, ultrasound irradiation

Procedia PDF Downloads 67
2637 Autonomic Management for Mobile Robot Battery Degradation

Authors: Martin Doran, Roy Sterritt, George Wilkie

Abstract:

The majority of today’s mobile robots are very dependent on battery power. Mobile robots can operate untethered for a number of hours but eventually they will need to recharge their batteries in-order to continue to function. While computer processing and sensors have become cheaper and more powerful each year, battery development has progress very little. They are slow to re-charge, inefficient and lagging behind in the general progression of robotic development we see today. However, batteries are relatively cheap and when fully charged, can supply high power output necessary for operating heavy mobile robots. As there are no cheap alternatives to batteries, we need to find efficient ways to manage the power that batteries provide during their operational lifetime. This paper proposes the use of autonomic principles of self-adaption to address the behavioral changes a battery experiences as it gets older. In life, as we get older, we cannot perform tasks in the same way as we did in our youth; these tasks generally take longer to perform and require more of our energy to complete. Batteries also suffer from a form of degradation. As a battery gets older, it loses the ability to retain the same charge capacity it would have when brand new. This paper investigates how we can adapt the current state of a battery charge and cycle count, to the requirements of a mobile robot to perform its tasks.

Keywords: autonomic, self-adaptive, self-optimising, degradation

Procedia PDF Downloads 385
2636 Characterization and Degradation of 3D Printed Polycaprolactone-Freeze Dried Bone Matrix Constructs for Use in Critical Sized Bone Defects

Authors: Samantha Meyr, Eman Mirdamadi, Martha Wang, Tao Lowe, Ryan Smith, Quinn Burke

Abstract:

Critical-sized bone defects (CSD) treatment options remain a major clinical orthopedic challenge. They are uniquely contoured diseased or damaged bones and can be defined as those that will not heal spontaneously and require surgical intervention. Autografts are the current gold standard CSD treatment, which are histocompatible and provoke a minimal immunogenic response; however, they can cause donor site morbidity and will not suffice for the size required for replacement. As an alternative to traditional surgical methods, bone tissue engineering will be implemented via 3D printing methods. A freeze-dried bone matrix (FDBM) is a type of graft material available but will only function as desired when in the presence of bone growth factors. Polycaprolactone (PCL) is a known biodegradable material with good biocompatibility that has been proven manageable in 3D printing as a medical device. A 3D-extrusion printing strategy is introduced to print these materials into scaffolds for bone grafting purposes, which could be more accessible and rapid than the current standard. Mechanical, thermal, cytotoxic, and physical properties were investigated throughout a degradation period of 6 months using fibroblasts and dental pulp stem cells. PCL-FDBM scaffolds were successfully printed with high print fidelity in their respective pore sizes and allograft content. Additionally, we have created a method for evaluating PCL using differential scanning calorimetry (DSC) and have evaluated PCL degradation over roughly 6 months.

Keywords: 3D printing, bone tissue engineering, cytotoxicity, degradation, scaffolds

Procedia PDF Downloads 106
2635 Removal of Samarium in Environmental Water Samples by Modified Yeast Cells

Authors: Homayon Ahmad Panahi, Seyed Mehdi Seyed Nejad, Elham Moniri

Abstract:

A novel bio-adsorbent is fabricated by attaching a cibacron blue to yeast cells. The modified bio-sorbent has been characterized by some techniques like Fourier transform infrared spectroscopy (FT-IR) and elemental analysis (CHN) and applied for the preconcentration and determination of samarium from aqueous water samples. The best pH value for adsorption of the brilliant crecyle blue by yeast cells- cibacron blue was 7. The sorption capacity of modified biosorbent was 18.5 mg. g⁻¹. A recovery of 95.3% was obtained for Sm(III) when eluted with 0.5 M nitric acid. The method was applied for Sm(III) preconcentration and determination in river water sample.

Keywords: samarium, solid phase extraction, yeast cells, water sample, removal

Procedia PDF Downloads 255
2634 Effects of Operating Conditions on Creep Life of Industrial Gas Turbine

Authors: Enyia James Diwa, Dodeye Ina Igbong, Archibong Eso Archibong

Abstract:

The creep life of an industrial gas turbine is determined through a physics-based model used to investigate the high pressure temperature (HPT) of the blade in use. A performance model was carried out via the Cranfield University TURBOMATCH simulation software to size the blade and to determine the corresponding stress. Various effects such as radial temperature distortion factor, turbine entry temperature, ambient temperature, blade metal temperature, and compressor degradation on the blade creep life were investigated. The output results show the difference in creep life and the location of failure along the span of the blade enabling better-informed advice for the gas turbine operator.

Keywords: creep, living, performance, degradation

Procedia PDF Downloads 402
2633 Adsorption of Paracetamol Using Activated Carbon of Dende and Babassu Coconut Mesocarp

Authors: R. C. Ferreira, H. H. C. De Lima, A. A. Cândido, O. M. Couto Junior, P. A. Arroyo, K. Q De Carvalho, G. F. Gauze, M. A. S. D. Barros

Abstract:

Removal of the widespread used drug paracetamol from water was investigated using activated carbon originated from dende coconut mesocarp and babassu coconut mesocarp. Kinetic and equilibrium data were obtained at different values of pH. Babassu activated carbon showed higher efficiency due to its acidity and higher microporosity. Pseudo-second order model was better adjusted to the kinetic results. Equilibrium data may be represented by Langmuir equation. Lower solution pH provided better removal efficiency as the carbonil groups may be attracted by the positively charged carbon surface.

Keywords: adsorption, activated carbon, babassu, dende

Procedia PDF Downloads 371
2632 Dairy Wastewater Remediation Using Electrochemical Oxidation on Boron Doped Diamond (BDD) Anode

Authors: Arwa Abdelhay, Inshad Jum’h, Abeer Albsoul, Khalideh Alrawashdeh, Dina Al Tarazi

Abstract:

Treated wastewater reuse has been considered recently as one of the successful management strategies to overcome water shortage in countries suffering from water scarcity. The non-readily biodegradable and recalcitrant pollutants in wastewater cannot be destructed by conventional treatment methods. This paper deals with the electrochemical treatment of dairy wastewater using a promising non-conventional Boron-Doped Diamond (BDD) anode. During the electrochemical process, different operating parameters were investigated, such as electrolysis time, current density, supporting electrolyte, chemical oxygen demand (COD), turbidity as well as absorbance/color. The experimental work revealed that electrochemical oxidation carried out with no added electrolyte has significantly reduced the COD, turbidity, and color (absorbance) by 72%, 76%, and 78% respectively. Results also showed that raising the current density from 5.1 mA/cm² to 7.7 mA/cm² has boosted COD, and color removal to 82.5%, and 83% respectively. However, the current density did not show any significant effect on the turbidity. Interestingly, it was observed that adding Na₂SO₄ and FeCl₃ as supporting electrolytes brought the COD removal to 91% and 97% respectively. Likewise, turbidity and color removal has been enhanced by the addition of the same supporting electrolytes.

Keywords: boron doped-diamond anode, dairy wastewater, electrochemical oxidation, supporting electrolytes

Procedia PDF Downloads 157
2631 Utilization of Torula Yeast (Zymomonas mobilis) as Main/Reciprocal for Degradation of Municipal Organic Waste as Feed for Goats

Authors: Nkutere Chikezie Kanu, Nnamdi M. Anigbogu, Johnson C. Ezike

Abstract:

The study was carried out to investigate the performance of Red Sokoto goats fed Municipal Oranic Wastes (MOW) subjected to two methods of in vivo degradation by Torula Yeast and Zymomonas mobilis. Two combination, Torula Yeast + Zymomonas mobilis (main degradation), and Zymomonas mobilis + Torula Yeast (Reciprocal degradation) were used to degrade MOW. Eighteen Red Sokoto goats of both sexes (9 males and 9 females) of ages between 6-8 were used for the study. The goats were randomly assigned into 3 treatments groups A, B and C respectively with 6 goats per treatment. The experiment was laid in a Completely Randomized Design and replicated 3 times. Treatment A groups were fed 30% Undegraded MOW base diet +concentrate mixture, Treatment B groups were fed 30% Main degraded MOW base diet +concentrate mixture, Treatment C groups were fed 30% Reciprocal degraded MOW base diet +concentrate mixture. The result of the daily weight gain was significantly (P<0.05) better than on the other Treatments. There was significant improvement (P<0.05) on the daily feed consumption in Treatment B than on the Treatments A and C. The feed conversion ratio revealed no significant (P>0.05) differences among the treatment groups but much better in the treatment B and C, the cost of feed consumed was much higher (P>0.05) in Treatment B followed by Treatment C, while Treatment A had the lowest. The cost/ kg weight gain that was recorded in Treatment A was better (P<0.05) than the Treatment B, followed by Treatment C, while the cost of production was high (P<0.05) in Treatment B than in other treatments. The gross profit was observed best (P<0.05) on the Treatment B, followed by Treatment C while Treatment A had the lowest. The net profit as noted in this study was much better (P<0.05) in Treatment B, and Treatment C, while the least was observed in Treatment A, where the return on investment was high in Treatments B and C, while Treatment A had the lowest.

Keywords: reciprocal, torula yeast, Zymomonas mobilis, organic waste

Procedia PDF Downloads 296
2630 Synergistic Sorption of Cr(VI) and Cu(II) onto Sweet Potato Vine from Binary Mixtures Cr(VI)-Cu(II)

Authors: Chang Liu, Nuria Fiol, Isabel Villaescusa, Jordi Poch

Abstract:

Over the last decades, biosorption has been an alternative to costly wastewaters treatment for metal removal. Most of the literature on metal biosorption was devoted to studying of single metal ions but nowadays studies on multi-components biosorption are booming. Hexavalent chromium is usually found in mixtures with divalent metal ions in industries wastewaters. However, studies on the simultaneous removal of Cr(VI) and divalent metals are hardly found and the cooperative or competitive mechanism governing each metal ions sorption is still unclear. In this work, simultaneous sorption of Cr(VI) and Cu(II) from their binary mixtures by using sweet potato vine (SPV) was investigated. Sweet potato is one of the four major grain crops in China. Each year about 2000 tons of SPV are generated as by-products. SPV could be a low-cost biosorbent for metal ions due to its rich in cellulose and lignin. In this work, the sorption of Cr(VI) and Cu(II) from their binary mixtures solutions was studied by using SPV sorbent. Equilibrium studies were carried out in binary mixtures in which Cr(VI) and Cu(II) concentration was both varied between 0.1 mM and 0.3 mM, Cr(VI) and Cu(II) single solutions were also prepared as comparison. All the experiments were performed at pH 3±0.05 under 30±2°C for 7 days to make sure sorption achieved equilibrium. Results showed that (i) chromium was partially (10.93%-42.04%) eliminated under studied conditions through reduction and sorption of hexavalent and trivalent forms. The presence of Cu(II) exerts a synergistic effect on the overall sorption process in all the cases of the 0.1-0.3 mM binary mixtures concentration range. (ii) Cr(VI) removal by SPV is favoured by the presence of Cu(II) in solution, because more protons needed for Cr(VI) reduction are available due to Cu(II)-proton competition; however sorption of the formed Cr(III) is unfavoured as a result of the competition between Cr(III) and Cu(II) for protons and sorbent active sites. (iii) Copper was partially (9.26%-13.91%) sorbed onto SPV under studied conditions. The presence of Cr(VI) in binary mixtures also exerts a synergistic effect on the Cu(II) removal in all the cases of the 0.1-0.3 mM binary mixtures concentration range. The results of the present work indicate that sweet potato vine can be successfully employed for the simultaneously removal of Cr(VI) and Cu(II) in binary mixtures, taking advantage of the synergistic effect provoked by one of the metal ion to each other, even though the acquisition of higher removal yields has to be further investigated. Acknowledgements—This work has been financially supported by Ministry of Human Resources and Social Security of PRC (Anhui15), Education Department of Anhui Province (KJ2016A270) and Anhui Normal University (2015rcpy33, 2014bsqdjj53).

Keywords: sweet potato vine, chromium reduction, divalent metal, synergistic sorption

Procedia PDF Downloads 169
2629 The Synthesis of AgInS₂/SnS₂ Nanocomposites with Enhanced Photocatalytic Degradation of Norfloxacin

Authors: Mingmei Zhang, Xinyong Li

Abstract:

AgInS₂/SnS₂ (AIS) nanocomposites were synthesized by a simple hydrothermal method. The morphology and composition of the fabricated AIS nanocomposites were investigated by field-emission scanning electron microscopy (SEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). Moreover, the as-prepared AIS photocatalysts exhibited excellent photocatalytic activities for the degradation of Norfloxacin (NOR), mainly due to its high optical absorption and separation efficiency of photogenerated electron-hole pairs, as evidenced by UV–vis diffusion reflection spectra (DRS) and Surface photovoltage (SPV) spectra. Furthermore, the interfacial charges transfer mechanism was also discussed by DFT calculations.

Keywords: AIS nanocomposites, electron-hole pairs, charges transfer, DFTcaculations

Procedia PDF Downloads 188
2628 Removal of Tar Contents in Syngas by Using Different Fuel from Downdraft Biomass Gasification System

Authors: Muhammad Awais, Wei Li, Anjum Munir

Abstract:

Biomass gasification is a process of converting solid biomass ingredients into a combustible gas which can be used in electricity generation. Regardless of their applications in many fields, biomass gasification technology is still facing many cleaning issues of syngas. Tar production in biomass gasification process is one of the biggest challenges for this technology. The aimed of this study is to evaluate the tar contents in syngas produced from wood chips, corn cobs, coconut shells and mixture of corn cobs and wood chips as biomass fuel and tar removal efficiency of different cleaning units integrated with gassifier. Performance of different cleaning units, i.e., cyclone separator, wet scrubber, biomass filter, and auxiliary filter was tested under two biomass fuels. Results of this study indicate that wood chips produced less tar of 1736 mg/Nm³ as compared to corn cobs which produced tor 2489 mg/Nm³. It is also observed that coconut shells produced a high amount of tar. It was observed that when wood chips were used as a fuel, syngas tar contents were reduced from 6600 to 112 mg/Nm³ while in case of corn cob, they were reduced from 7500 mg/Nm³ to 220 mg/Nm³. Overall tar removal efficiencies of cyclone separator, wet scrubber, biomass filter, and auxiliary filter was 72%, 63%, 74%, 35% respectively.

Keywords: biomass, gasification, tar, cleaning system, biomass filter

Procedia PDF Downloads 174
2627 Environmental Degradation and Globalization with Special Reference to Developing Economics

Authors: Indira Sinha

Abstract:

According to the Oxford Advanced Learner's English Dictionary of Current English, environment is the complex of physical, chemical and biotic factors that act upon an organism or an ecological community and ultimately determines its form and survival. It is defined as conditions and circumstances which are affecting people's lives. The meaning of environmental degradation is the degradation of the environment through depletion of resources such as air, water and soil and the destruction of ecosystems and extinction of wildlife. Globalization is a significant feature of recent world history. The aim of this phenomenon is to integrate societies, economies and cultures through a common link of trading policies, technology and communication. Undoubtedly it has opened up the world economy at a very high speed but at the same time it has an adverse impact on the environment. The purpose of the present study is to investigate the impact of globalization on the environmental conditions. An overview of what the forces of globalization have in store for the environment with constructing large number of industries and destroying large forests lands will be given in this paper. The forces of globalization have created many serious environmental problems like high temperature, extinction of many species of plant and animal and outlet of poisonous chemicals from industries. The revelation of this study is that in case of developing economics these problems are more critical. In developing countries like India many factories are built with less environmental regulations, while developed economies maintain positive environmental practices. The present study is a micro level study which aims to employ a combination of theoretical, descriptive, empirical and analytical approach in addition to the time tested case method.

Keywords: globalization, trade policies, environmental degradation, developing economies, large industries

Procedia PDF Downloads 239
2626 Desalination via Electrodialysis: A Newly Designed Fixed Bed Reactor Powered by Renewable Energy Source

Authors: Hend Mesbah, Yehia Youssef, Ibrahim Hassan, Shaaban Nosier, Ahmed El-Shazly, Ahmed Helal

Abstract:

The problem of drinking water shortage is becoming more crucial nowadays as a result of the increased demand due to the population growth and the rise in the standard living. In recent years, desalination using electrodialysis powered by solar energy (PV-ED) is being widely used to help provide treated water and reduce the scarcity in water supply. In the present study, a water desalination laboratory scale ED cell with a fixed bed circulation system was designed, developed, and tested. The effect of three parameters (namely, cell voltage , flowrate, and salt concentration) on the removal percentage of salt ions was studied. The cell voltage was adjusted at 3 , 4 and 6 V. A flow rate of 5, 10, and 20 ml/s and an initial salt concentration of 2000, 5000, and 7000 ppm were investigated. The maximum salt percentage removal obtained was 52.5% at the lowest initial concentration (2000 ppm) and at the highest cell voltage (6 V). There was no significant effect of the flow rate on the removal percentage. A model of PV module has also been developed to calculate the dimensions of a solar cell based on the amount of energy consumed and it was calculated from the Overall ED cell voltage.

Keywords: desalination, electrodialysis, solar desalination, photovoltaic electrodialysis

Procedia PDF Downloads 146
2625 Adsorption Studies of Lead from Aqueos Solutions on Cocount Shell Activated Carbon

Authors: G. E. Sharaf El-Deen, S. E. A. Sharaf El-Deen

Abstract:

Activated carbon was prepared from coconut shell (ACS); a discarded agricultural waste was used to produce bioadsorbent through easy and environmental friendly processes. This activated carbon based biosorbent was evaluated for adsorptive removal of lead from water. The characterisation results showed this biosorbent had very high specific surface area and functional groups. The adsorption equilibrium data was well described by Langmuir, whilst kinetics data by pseudo-first order, pseudo-second order and Intraparticle diffusion models. The adsorption process could be described by the pseudo-second order kinetic.

Keywords: coconut shell, activated carbon, adsorption isotherm and kinetics, lead removal

Procedia PDF Downloads 308
2624 Biodegradation of Phenazine-1-Carboxylic Acid by Rhodanobacter sp. PCA2 Proceeds via Decarboxylation and Cleavage of Nitrogen-Containing Ring

Authors: Miaomiao Zhang, Sabrina Beckmann, Haluk Ertan, Rocky Chau, Mike Manefield

Abstract:

Phenazines are a large class of nitrogen-containing aromatic heterocyclic compounds, which are almost exclusively produced by bacteria from diverse genera including Pseudomonas and Streptomyces. Phenazine-1-carboxylic acid (PCA) as one of 'core' phenazines are converted from chorismic acid before modified to other phenazine derivatives in different cells. Phenazines have attracted enormous interests because of their multiple roles on biocontrol, bacterial interaction, biofilm formation and fitness of their producers. However, in spite of ecological importance, degradation as a part of phenazines’ fate only have extremely limited attention now. Here, to isolate PCA-degrading bacteria, 200 mg L-1 PCA was supplied as sole carbon, nitrogen and energy source in minimal mineral medium. Quantitative PCR and Reverse-transcript PCR were employed to study abundance and activity of functional gene MFORT 16269 in PCA degradation, respectively. Intermediates and products of PCA degradation were identified with LC-MS/MS. After enrichment and isolation, a PCA-degrading strain was selected from soil and was designated as Rhodanobacter sp. PCA2 based on full 16S rRNA sequencing. As determined by HPLC, strain PCA2 consumed 200 mg L-1 (836 µM) PCA at a rate of 17.4 µM h-1, accompanying with significant cells yield from 1.92 × 105 to 3.11 × 106 cells per mL. Strain PCA2 was capable of degrading other phenazines as well, including phenazine (4.27 µM h-1), pyocyanin (2.72 µM h-1), neutral red (1.30 µM h-1) and 1-hydroxyphenazine (0.55 µM h-1). Moreover, during the incubation, transcript copies of MFORT 16269 gene increased significantly from 2.13 × 106 to 8.82 × 107 copies mL-1, which was 2.77 times faster than that of the corresponding gene copy number (2.20 × 106 to 3.32 × 107 copies mL-1), indicating that MFORT 16269 gene was activated and played roles on PCA degradation. As analyzed by LC-MS/MS, decarboxylation from the ring structure was determined as the first step of PCA degradation, followed by cleavage of nitrogen-containing ring by dioxygenase which catalyzed phenazine to nitrosobenzene. Subsequently, phenylhydroxylamine was detected after incubation for two days and was then transferred to aniline and catechol. Additionally, genomic and proteomic analyses were also carried out for strain PCA2. Overall, the findings presented here showed that a newly isolated strain Rhodanobacter sp. PCA2 was capable of degrading phenazines through decarboxylation and cleavage of nitrogen-containing ring, during which MFORT 16269 gene was activated and played important roles.

Keywords: decarboxylation, MFORT16269 gene, phenazine-1-carboxylic acid degradation, Rhodanobacter sp. PCA2

Procedia PDF Downloads 223
2623 Abridging Pharmaceutical Analysis and Drug Discovery via LC-MS-TOF, NMR, in-silico Toxicity-Bioactivity Profiling for Therapeutic Purposing Zileuton Impurities: Need of Hour

Authors: Saurabh B. Ganorkar, Atul A. Shirkhedkar

Abstract:

The need for investigations protecting against toxic impurities though seems to be a primary requirement; the impurities which may prove non - toxic can be explored for their therapeutic potential if any to assist advanced drug discovery. The essential role of pharmaceutical analysis can thus be extended effectively to achieve it. The present study successfully achieved these objectives with characterization of major degradation products as impurities for Zileuton which has been used for to treat asthma since years. The forced degradation studies were performed to identify the potential degradation products using Ultra-fine Liquid-chromatography. Liquid-chromatography-Mass spectrometry (Time of Flight) and Proton Nuclear Magnetic Resonance Studies were utilized effectively to characterize the drug along with five major oxidative and hydrolytic degradation products (DP’s). The mass fragments were identified for Zileuton and path for the degradation was investigated. The characterized DP’s were subjected to In-Silico studies as XP Molecular Docking to compare the gain or loss in binding affinity with 5-Lipooxygenase enzyme. One of the impurity of was found to have the binding affinity more than the drug itself indicating for its potential to be more bioactive as better Antiasthmatic. The close structural resemblance has the ability to potentiate or reduce bioactivity and or toxicity. The chances of being active biologically at other sites cannot be denied and the same is achieved to some extent by predictions for probability of being active with Prediction of Activity Spectrum for Substances (PASS) The impurities found to be bio-active as Antineoplastic, Antiallergic, and inhibitors of Complement Factor D. The toxicological abilities as Ames-Mutagenicity, Carcinogenicity, Developmental Toxicity and Skin Irritancy were evaluated using Toxicity Prediction by Komputer Assisted Technology (TOPKAT). Two of the impurities were found to be non-toxic as compared to original drug Zileuton. As the drugs are purposed and repurposed effectively the impurities can also be; as they can have more binding affinity; less toxicity and better ability to be bio-active at other biological targets.

Keywords: UFLC, LC-MS-TOF, NMR, Zileuton, impurities, toxicity, bio-activity

Procedia PDF Downloads 194
2622 Implementing Bioremediation Technologies to Degrade Chemical Warfare Agents and Explosives from War Affected Regions in Sri Lanka

Authors: Elackiya Sithamparanathan

Abstract:

Chemical agents used during the Sri Lankan civil war continue to threaten human and environmental health as affected areas are re-settled. Bioremediation is a cost-effective and eco-friendly approach to degrading chemical agents, and has greater public acceptance than chemical degradation. Baseline data on contaminant distribution, environmental parameters, and indigenous microbes are required before bioremediation can commence. The culture and isolate of suitable microbes and enzymes should be followed by laboratory trials, before field application and long-term monitoring of contaminant concentration, soil parameters, microbial ecology, and public health to monitor environmental and public health. As local people are not aware of the persistence of warfare chemicals and do not understand the potential impacts on human health, community awareness programs are required. Active community participation, and collaboration with international and local agencies, would contribute to the success of bioremediation and the effective removal of chemical agents in war affected areas of Sri Lanka.

Keywords: bioremediation, environmental protection, human health, war affected regions in Sri Lanka

Procedia PDF Downloads 383
2621 Removal of Brilliant Green in Environmental Samples by Poly Ethylene Terephthalate Granule

Authors: Homayon Ahmad Panahi, Nika Shakerin, Farahnaz Zolriasatain, Elham Moniri

Abstract:

In this research, poly-ethylene terephthalate granule was prepared from Tak Corporation. The granule was characterized by fourier transform infra-red spectroscopy. Then the effects of various parameters on brilliant green sorption such as pH, contact time were studied. The optimum pH value for sorption of brilliant green was 6. The sorption capacity of the granule for brilliant green was 4.6 mg g−1. The profile of brilliant green uptake on this sorbent reflects a good accessibility of the chelating sites in the poly-ethylene terephthalate granule. The developed method was utilized for the determination of brilliant green in environmental water samples by UV/Vis spectrophotometry with satisfactory results.

Keywords: poly-ethylene terephthalate granule, brilliant green, environmental sample, removal

Procedia PDF Downloads 431