Search results for: autonomic
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 57

Search results for: autonomic

57 Autonomic Threat Avoidance and Self-Healing in Database Management System

Authors: Wajahat Munir, Muhammad Haseeb, Adeel Anjum, Basit Raza, Ahmad Kamran Malik

Abstract:

Databases are the key components of the software systems. Due to the exponential growth of data, it is the concern that the data should be accurate and available. The data in databases is vulnerable to internal and external threats, especially when it contains sensitive data like medical or military applications. Whenever the data is changed by malicious intent, data analysis result may lead to disastrous decisions. Autonomic self-healing is molded toward computer system after inspiring from the autonomic system of human body. In order to guarantee the accuracy and availability of data, we propose a technique which on a priority basis, tries to avoid any malicious transaction from execution and in case a malicious transaction affects the system, it heals the system in an isolated mode in such a way that the availability of system would not be compromised. Using this autonomic system, the management cost and time of DBAs can be minimized. In the end, we test our model and present the findings.

Keywords: autonomic computing, self-healing, threat avoidance, security

Procedia PDF Downloads 475
56 Identifying Psychosocial, Autonomic, and Pain Sensitivity Risk Factors of Chronic Temporomandibular Disorder by Using Ridge Logistic Regression and Bootstrapping

Authors: Haolin Li, Eric Bair, Jane Monaco, Quefeng Li

Abstract:

The temporomandibular disorder (TMD) is a series of musculoskeletal disorders ranging from jaw pain to chronic debilitating pain, and the risk factors for the onset and maintenance of TMD are still unclear. Prior researches have shown that the potential risk factors for chronic TMD are related to psychosocial factors, autonomic functions, and pain sensitivity. Using data from the Orofacial Pain: Prospective Evaluation and Risk Assessment (OPPERA) study’s baseline case-control study, we examine whether the risk factors identified by prior researches are still statistically significant after taking all of the risk measures into account in one single model, and we also compare the relative influences of the risk factors in three different perspectives (psychosocial factors, autonomic functions, and pain sensitivity) on the chronic TMD. The statistical analysis is conducted by using ridge logistic regression and bootstrapping, in which the performance of the algorithms has been assessed using extensive simulation studies. The results support most of the findings of prior researches that there are many psychosocial and pain sensitivity measures that have significant associations with chronic TMD. However, it is surprising that most of the risk factors of autonomic functions have not presented significant associations with chronic TMD, as described by a prior research.

Keywords: autonomic function, OPPERA study, pain sensitivity, psychosocial measures, temporomandibular disorder

Procedia PDF Downloads 149
55 Autonomic Nervous System Changes Associated with Rheumatoid Arthritis: Clinical and Electrophysiological Study

Authors: Emmanuel Kamal Aziz Saba, Hussein Al-Moghazy Sultan

Abstract:

The aim of this study was to evaluate clinically and electro physiologically the autonomic nervous system changes associated with rheumatoid arthritis (RA). The present study included 25 patients with RA [22 women (88%)] and 30 apparently healthy control subjects [27 women (90%)]. A thorough clinical examination was carried out. Disease activity and functional disability were assessed. Tests for assessment of autonomic functions include active and passive orthostatic stress tests, and sympathetic skin response (SSR). The presence of abnormality in 2 tests or more was a clue for the presence of autonomic neuropathy (AN). Sural sensory nerve conduction study and posterior tibial motor nerve conduction study were done. There was a statistically significant decrease in standing systolic and diastolic blood pressure (BP) components of the active orthostatic stress test and SSR amplitude as well as statistically significant prolongation of SSR latency of RA patients when compared to control. Three patients (12%) had clinical symptoms suggestive of AN; increased to 14 patients (56 %) when orthostatic stress tests and SSR were utilized. There were no statistically significant differences between patients with different disease activity score 28 with 4 variables grades of RA activity and SSR latency and amplitude. There were no statistically significant differences between patients with different Stanford Health Assessment Questionnaire Disability Index grades of RA functional disability and SSR latency and amplitude. In conclusion, autonomic neuropathy is a common extra-articular manifestation of RA affecting sympathetic and parasympathetic fibers.

Keywords: autonomic neuropathy, orthostatic stress test, rheumatoid arthritis, sympathetic skin response

Procedia PDF Downloads 329
54 Autonomic Recovery Plan with Server Virtualization

Authors: S. Hameed, S. Anwer, M. Saad, M. Saady

Abstract:

For autonomic recovery with server virtualization, a cogent plan that includes recovery techniques and backups with virtualized servers can be developed instead of assigning an idle server to backup operations. In addition to hardware cost reduction and data center trail, the disaster recovery plan can ensure system uptime and to meet objectives of high availability, recovery time, recovery point, server provisioning, and quality of services. This autonomic solution would also support disaster management, testing, and development of the recovery site. In this research, a workflow plan is proposed for supporting disaster recovery with virtualization providing virtual monitoring, requirements engineering, solution decision making, quality testing, and disaster management. This recovery model would make disaster recovery a lot easier, faster, and less error prone.

Keywords: autonomous intelligence, disaster recovery, cloud computing, server virtualization

Procedia PDF Downloads 135
53 Autonomic Sonar Sensor Fault Manager for Mobile Robots

Authors: Martin Doran, Roy Sterritt, George Wilkie

Abstract:

NASA, ESA, and NSSC space agencies have plans to put planetary rovers on Mars in 2020. For these future planetary rovers to succeed, they will heavily depend on sensors to detect obstacles. This will also become of vital importance in the future, if rovers become less dependent on commands received from earth-based control and more dependent on self-configuration and self-decision making. These planetary rovers will face harsh environments and the possibility of hardware failure is high, as seen in missions from the past. In this paper, we focus on using Autonomic principles where self-healing, self-optimization, and self-adaption are explored using the MAPE-K model and expanding this model to encapsulate the attributes such as Awareness, Analysis, and Adjustment (AAA-3). In the experimentation, a Pioneer P3-DX research robot is used to simulate a planetary rover. The sonar sensors on the P3-DX robot are used to simulate the sensors on a planetary rover (even though in reality, sonar sensors cannot operate in a vacuum). Experiments using the P3-DX robot focus on how our software system can be adapted with the loss of sonar sensor functionality. The autonomic manager system is responsible for the decision making on how to make use of remaining ‘enabled’ sonars sensors to compensate for those sonar sensors that are ‘disabled’. The key to this research is that the robot can still detect objects even with reduced sonar sensor capability.

Keywords: autonomic, self-adaption, self-healing, self-optimization

Procedia PDF Downloads 322
52 End-to-End Control and Management of Multi-AS Virtual Service Networks Using SDN and Autonomic Computing Architecture

Authors: Yong Xue, Daniel A. Menascé

Abstract:

Automated and end-to-end network resource management and provisioning for virtual service networks in a multiple autonomous systems (a.k.a multi-AS) environment is a challenging and open problem. This paper proposes a novel, scalable and interoperable high-level architecture that incorporates a number of emerging enabling technologies including Software Defined Network (SDN), Network Function Virtualization (NFV), Service Oriented Architecture (SOA), and Autonomic Computing. The proposed architecture can be used to not only automate network resource management and provisioning for virtual service networks across multiple autonomous substrate networks, but also provide an adaptive capability for achieving optimal network resource management and maintaining network-level end-to-end network performance as well. The paper argues that this SDN and autonomic computing based architecture lays a solid foundation that can facilitate the development of the future Internet based on the pluralistic paradigm.

Keywords: virtual network, software defined network, virtual service network, adaptive resource management, SOA, multi-AS, inter-domain

Procedia PDF Downloads 497
51 Comparison of Effects over the Autonomic Nervous System When Using Force Training and Interval Training in Indoor Cycling with University Students

Authors: Daniel Botero, Oscar Rubiano, Pedro P. Barragan, Jaime Baron, Leonardo Rodriguez Perdomo, Jaime Rodriguez

Abstract:

In the last decade interval training (IT) has gained importance when is compare with strength training (ST). However, there are few studies analyzing the impact of these training over the autonomic nervous system (ANS). This work has aimed to compare the activity of the autonomic nervous system, when is expose to an IT or ST indoor cycling mode. After approval by the ethics committee, a cross-over clinical trial with 22 healthy participants (age 21 ± 3 years) was implemented. The selection of participants for the groups with sequence force-interval (F-I) and interval-force (I-F) was made randomly with assignation of 11 participants for each group. The temporal series of heart rate was obtained before and after each training using the POLAR TEAM® heart monitor. The evaluation of the ANS was performed with spectral analysis of the heart rate variability (HRV) using the fast Fourier transform (Kubios software). A training of 8 weeks in each sequence (4 weeks with each training) with an intermediate period of two weeks of washout was implemented for each group. The power parameter of the HRV in the low frequency band (LF = 0.04-0.15Hz related to the sympathetic nervous system), high frequency (HF = 0.15-0.4Hz, related to the parasympathetic) and LF/HF (with reference to a modulation of parasympathetic over the sympathetic), were calculated. Afterward, the difference between the parameters before and after was realized. Then, to evaluate statistical differences between each training was implemented the method of Wellek (Wellek and Blettner, 2012, Medicine, 109 (15), 276-81). To determine the difference of effect over parasympathetic when FT and IT are used, the T test is implemented obtaining a T value of 0.73 with p-value ≤ 0.1. For the sympathetic was obtained a T of 0.33 with p ≤ 0.1 and for LF/HF the T was 1.44 with a p ≥ 0.1. Then, the carry over effect was evaluated and was not present. Significant changes over autonomic activity with strength or interval training were not observed. However, a modulation of the parasympathetic over the sympathetic can be observed. Probably, these findings should be explained because the sample is little and/or the time of training was insufficient to generate changes.

Keywords: autonomic nervous, force training, indoor cycling, interval training

Procedia PDF Downloads 192
50 Wharton's Jelly-Derived Mesenchymal Stem Cells Modulate Heart Rate Variability and Improve Baroreflex Sensitivity in Septic Rats

Authors: Cóndor C. José, Rodrigues E. Camila, Noronha L. Irene, Dos Santos Fernando, Irigoyen M. Claudia, Andrade Lúcia

Abstract:

Sepsis induces alterations in hemodynamics and autonomic nervous system (ASN). The autonomic activity can be calculated by measuring heart rate variability (HRV) that represents the complex interplay between ASN and cardiac pacemaker cells. Wharton’s jelly mesenchymal stem cells (WJ-MSCs) are known to express genes and secreted factors involved in neuroprotective and immunological effects, also to improve the survival in experimental septic animals. We hypothesized, that WJ-MSCs present an important role in the autonomic activity and in the hemodynamic effects in a cecal ligation and puncture (CLP) model of sepsis. Methods: We used flow cytometry to evaluate WJ-MSCs phenotypes. We divided Wistar rats into groups: sham (shamoperated); CLP; and CLP+MSC (106 WJ-MSCs, i.p., 6 h after CLP). At 24 h post-CLP, we recorded the systolic arterial pressure (SAP) and heart rate (HR) over 20 min. The spectral analysis of HR and SAP; also the spontaneous baroreflex sensitivity (measure by bradycardic and tachycardic responses) were evaluated after recording. The one-way ANOVA and the post hoc Student– Newman– Keuls tests (P< 0.05) were used to data comparison Results: WJ-MSCs were negative for CD3, CD34, CD45 and HLA-DR, whereas they were positive for CD73, CD90 and CD105. The CLP group showed a reduction in variance of overall variability and in high-frequency power of HR (heart parasympathetic activity); furthermore, there is a low-frequency reduction of SAP (blood vessels sympathetic activity). The treatment with WJ-MSCs improved the autonomic activity by increasing the high and lowfrequency power; and restore the baroreflex sensitive. Conclusions: WJ-MSCs attenuate the impairment of autonomic control of the heart and vessels and might therefore play a protective role in sepsis. (Supported by FAPESP).

Keywords: baroreflex response, heart rate variability, sepsis, wharton’s jelly-derived mesenchymal stem cells

Procedia PDF Downloads 266
49 Autonomic Management for Mobile Robot Battery Degradation

Authors: Martin Doran, Roy Sterritt, George Wilkie

Abstract:

The majority of today’s mobile robots are very dependent on battery power. Mobile robots can operate untethered for a number of hours but eventually they will need to recharge their batteries in-order to continue to function. While computer processing and sensors have become cheaper and more powerful each year, battery development has progress very little. They are slow to re-charge, inefficient and lagging behind in the general progression of robotic development we see today. However, batteries are relatively cheap and when fully charged, can supply high power output necessary for operating heavy mobile robots. As there are no cheap alternatives to batteries, we need to find efficient ways to manage the power that batteries provide during their operational lifetime. This paper proposes the use of autonomic principles of self-adaption to address the behavioral changes a battery experiences as it gets older. In life, as we get older, we cannot perform tasks in the same way as we did in our youth; these tasks generally take longer to perform and require more of our energy to complete. Batteries also suffer from a form of degradation. As a battery gets older, it loses the ability to retain the same charge capacity it would have when brand new. This paper investigates how we can adapt the current state of a battery charge and cycle count, to the requirements of a mobile robot to perform its tasks.

Keywords: autonomic, self-adaptive, self-optimising, degradation

Procedia PDF Downloads 342
48 Heart Rate Variability Responses Pre-, during, and Post-Exercise among Special Olympics Athletes

Authors: Kearney Dover, Viviene Temple, Lynneth Stuart-Hill

Abstract:

Heart Rate Variability (HRV) is the beat-to-beat variation in adjacent heartbeats. HRV is a non-invasive measure of the autonomic nervous system (ANS) and provides information about the sympathetic (SNS) and parasympathetic (PNS) nervous systems. The HRV of a well-conditioned heart is generally high at rest, whereas low HRV has been associated with adverse outcomes/conditions, including congestive heart failure, diabetic neuropathy, depression, and hospital admissions. HRV has received very little research attention among individuals with intellectual disabilities in general or Special Olympic athletes. Purpose: 1) Having a longer post-exercise rest and recovery time to establish how long it takes for the athletes’ HRV components to return to pre-exercise levels, 2) To determine if greater familiarization with the testing processes influences HRV. Participants: Two separate samples of 10 adult Special Olympics athletes will be recruited for 2 separate studies. Athletes will be between 18 and 50 years of age and will be members of Special Olympics BC. Anticipated Findings: To answer why the Special Olympics athletes display poor cardiac responsiveness to changes in autonomic modulation during exercise. By testing the cortisol levels in the athletes, we can determine their stress levels which will then explain their measured HRV.

Keywords: 6MWT, autonomic modulation, cortisol levels, intellectual disability

Procedia PDF Downloads 281
47 Effect of Tai-Chi and Cyclic Meditation on Hemodynamic Responses of the Prefrontal Cortex: A Functional near Infrared Spectroscopy

Authors: Singh Deepeshwar, N. K. Manjunath, M. Avinash

Abstract:

Meditation is a self-regulated conscious process associated with improved awareness, perception, attention and overall performance. Different traditional origin of meditation technique may have different effects on autonomic activity and brain functions. Based on this quest, the present study evaluated the effect of Tai-Chi Chuan (TCC, a Chines movement based meditation technique) and Cyclic Meditation (CM, an Indian traditional based stimulation and relaxation meditation technique) on the hemodynamic responses of the prefrontal cortex (PFC) and autonomic functions (such as R-R interval of heart rate variability and respiration). These two meditation practices were compared with simple walking. Employing 64 channel near infrared spectroscopy (NIRS), we measured hemoglobin concentration change (i.e., Oxyhemoglobin [ΔHbO], Deoxyhemoglobin [ΔHbR] and Total hemoglobin change [ΔTHC]) in the bilateral PFC before and after TCC, CM and Walking in young college students (n=25; average mean age ± SD; 23.4 ± 3.1 years). We observed the left PFC activity predominantly modulates sympathetic activity effects during the Tai-Chi whereas CM showed changes on right PFC with vagal dominance. However, the changes in oxyhemoglobin and total blood volume change after Tai-Chi was significant higher (p < 0.05, spam t-maps) on the left hemisphere, whereas after CM, there was a significant increase in oxyhemoglobin (p < 0.01) with a decrease in deoxyhemoglobin (p < 0.05) on right PFC. The normal walking showed decrease in Oxyhemoglobin with an increase in deoxyhemoglobin on left PFC. The autonomic functions result showed a significant increase in RR- interval (p < 0.05) along with significant reductions in HR (p < 0.05) in CM, whereas Tai-chi session showed significant increase in HR (p < 0.05) when compared to walking session. Within a group analysis showed a significant reduction in RR-I and significant increase in HR both in Tai-chi and walking sessions. The CM showed there were a significant improvement in the RR - interval of HRV (p < 0.01) with the reduction of heart rate and breath rate (p < 0.05). The result suggested that Tai-Chi and CM both have a positive effect on left and right prefrontal cortex and increase sympathovagal balance (alertful rest) in autonomic nervous system activity.

Keywords: brain, hemodynamic responses, yoga, meditation, Tai-Chi Chuan (TCC), walking, heart rate variability (HRV)

Procedia PDF Downloads 268
46 Comparison of the Effect of Heart Rate Variability Biofeedback and Slow Breathing Training on Promoting Autonomic Nervous Function Related Performance

Authors: Yi Jen Wang, Yu Ju Chen

Abstract:

Background: Heart rate variability (HRV) biofeedback can promote autonomic nervous function, sleep quality and reduce psychological stress. In HRV biofeedback training, it is hoped that through the guidance of machine video or audio, the patient can breathe slowly according to his own heart rate changes so that the heart and lungs can achieve resonance, thereby promoting the related effects of autonomic nerve function; while, it is also pointed out that if slow breathing of 6 times per minute can also guide the case to achieve the effect of cardiopulmonary resonance. However, there is no relevant research to explore the comparison of the effectiveness of cardiopulmonary resonance by using video or audio HRV biofeedback training and metronome-guided slow breathing. Purpose: To compare the promotion of autonomic nervous function performance between using HRV biofeedback and slow breathing guided by a metronome. Method: This research is a kind of experimental design with convenient sampling; the cases are randomly divided into the heart rate variability biofeedback training group and the slow breathing training group. The HRV biofeedback training group will conduct HRV biofeedback training in a four-week laboratory and use the home training device for autonomous training; while the slow breathing training group will conduct slow breathing training in the four-week laboratory using the mobile phone APP breathing metronome to guide the slow breathing training, and use the mobile phone APP for autonomous training at home. After two groups were enrolled and four weeks after the intervention, the autonomic nervous function-related performance was repeatedly measured. Using the chi-square test, student’s t-test and other statistical methods to analyze the results, and use p <0.05 as the basis for statistical significance. Results: A total of 27 subjects were included in the analysis. After four weeks of training, the HRV biofeedback training group showed significant improvement in the HRV indexes (SDNN, RMSSD, HF, TP) and sleep quality. Although the stress index also decreased, it did not reach statistical significance; the slow breathing training group was not statistically significant after four weeks of training, only sleep quality improved significantly, while the HRV indexes (SDNN, RMSSD, TP) all increased. Although HF and stress indexes decreased, they were not statistically significant. Comparing the difference between the two groups after training, it was found that the HF index improved significantly and reached statistical significance in the HRV biofeedback training group. Although the sleep quality of the two groups improved, it did not reach that level in a statistically significant difference. Conclusion: HRV biofeedback training is more effective in promoting autonomic nervous function than slow breathing training, but the effects of reducing stress and promoting sleep quality need to be explored after increasing the number of samples. The results of this study can provide a reference for clinical or community health promotion. In the future, it can also be further designed to integrate heart rate variability biological feedback training into the development of AI artificial intelligence wearable devices, which can make it more convenient for people to train independently and get effective feedback in time.

Keywords: autonomic nervous function, HRV biofeedback, heart rate variability, slow breathing

Procedia PDF Downloads 146
45 Recurrent Fevers with Weight Gain - Possible Rapid onset Obesity with Hypoventilation, Hypothalamic Dysfunction and Autonomic Dysregulation Syndrome

Authors: Lee Rui, Rajeev Ramachandran

Abstract:

The approach to recurrent fevers in the paediatric or adolescent age group is not a straightforward one. Causes range from infectious diseases to rheumatological conditions to endocrinopathies, and are usually accompanied by weight loss rather than weight gain. We present an interesting case of a 16-year-old girl brought by her mother to the General Pediatrics Clinic for concerns of recurrent fever paired with significant weight gain over 1.5 years, with no identifiable cause found despite extensive work-up by specialists ranging from Rheumatologists to Oncologists. This case provides a learning opportunity on the approach to weight gain paired with persistent fevers in a paediatric population, one which is not commonly encountered and prompts further evaluation and consideration of less common diagnoses. In a span of 2 years, the girl’s weight had increased from 55 kg at 13 years old (75th centile) to 73.9 kg at 16 years old (>97th centile). About 1 year into her rapid weight gain, she started developing recurrent fevers of documented temperatures > 37.5 – 38.6 every 2-3 days, resulting in school absenteeism when she was sent home after temperature-taking in school found her to be febrile. The rapid onset of weight gain paired with unexplained fevers prompted the treating physician to consider the diagnosis of ROHHAD syndrome. Rapid onset obesity with hypoventilation, hypothalamic dysfunction and autonomic dysregulation (ROHHAD) syndrome is a rare disorder first described in 2007. It is characterized by dysfunction of the autonomic and endocrine system, characterized by hyperphagia and rapid-onset weight gain. This rapid weight gain is classically followed by hypothalamic manifestations with neuroendocrine deficiencies, hypo-ventilatory breathing abnormalities, and autonomic dysregulation. ROHHAD is challenging to diagnose with and diagnosis is made based mostly on clinical judgement. However if truly diagnosed, the condition is characterized by high morbidity and mortality rates. Early recognition of sleep disorders breathing and targeted therapeutic interventions helps limit morbidity and mortality associated with ROHHAD syndrome. This case poses an interesting diagnostic challenge and a diagnosis of ROHHAD has to be considered, given the serious complications that can come with disease progression while conditions such as Munchausen’s or drug fever remain as diagnoses of exclusion until we have exhausted all other possible conditions.

Keywords: pediatrics, endocrine, weight gain, recurrent fever, adolescent

Procedia PDF Downloads 73
44 Acute Renal Failure Associated Tetanus Infection: A Case Report from Afghanistan

Authors: Shohra Qaderi

Abstract:

Introduction: Tetanus is a severe infection characterized by the spasm of skeletal muscles that often progresses toward respiratory failure. Acute Renal failure (ARF) is an important complication associated Tetanus infection, occurring in 15%-39% of cases. Presentation of cases: A previous healthy 14-year-old boy was admitted to the Tetanus ward of a hospital in Kabul, presenting with severe muscle spasms. On day four of admission, he started having cola-colored urine with decreased urine output. Due to lack of peritoneal dialysis, he went under hemodialysis in view of rapidly raising in blood urea (from baseline 32 mg/dl to 150 mg/dl) and creatinine from (baseline 0.9 mg/dl to 6.2g/dl). Despite all efforts, he had a sudden cardiac arrest and passed away on day 6 of admission. Discussion: ARF is a complication of tetanus, reported to be mild and non-oliguric. Suggested pathological mechanisms include autonomic dysfunction and rhabdomyolysis, owing to uncontrolled muscle spasms. Autonomic dysfunction, most evident in the first two weeks of infection. Conclusion: The prevalence and mortality of tetanus is high in Afghanistan. Physicians and pediatricians need to be aware of this complication of tetanus so as to take appropriate preventive measures and recognize and manage it early.

Keywords: afghanistan, acute renal failure, child, mortality

Procedia PDF Downloads 163
43 The Correlation between of Medicine and Postural Orthostatic Tachycardia Syndrome (POTS)

Authors: Dian Ariyawati, Romi Sukoco, Sinung Agung Joko

Abstract:

Background: Postural Orthostatic Tachycardia Syndrome (POTS) is a form of orthostatic intolerance caused by autonomic dysfunction. POTS predominantly occurs in young women. Regular exercise has proven to improve the organ system functions, including autonomous systems. The aim of this research was to determine the correlation between exercise frequency and POTS in young women. Method: 510 young women (16-23 years of age) were screened. They were obtained by interview and physical examination. The diagnosis of POTS was performed with Active Stand Test (AST) and heart rate measurement using a pulsemeter. There were 29 young women who suffered from POTS. The exercise frequency was obtained by interview. Data was statistically analyzed using Spearman Correlation test. Result: The subjects’, who tested positive for POTS didn’t perform regular exercise. The Spearman correlation test showed there was a moderate negative correlation between exercise frequency and POTS in young women (r = -0.487, p < 0.00). Conclusion: There is a moderate reverse correlation between exercise frequency and POTS in young women. Further studies are suggested to develop an exercise program for young who suffered from POTS.

Keywords: POTS, autonomic dysfunction, exercise frequency, young woman

Procedia PDF Downloads 519
42 Effects of Heart Rate Variability Biofeedback to Improve Autonomic Nerve Function, Inflammatory Response and Symptom Distress in Patients with Chronic Kidney Disease: A Randomized Control Trial

Authors: Chia-Pei Chen, Yu-Ju Chen, Yu-Juei Hsu

Abstract:

The prevalence and incidence of end-stage renal disease in Taiwan ranks the highest in the world. According to the statistical survey of the Ministry of Health and Welfare in 2019, kidney disease is the ninth leading cause of death in Taiwan. It leads to autonomic dysfunction, inflammatory response and symptom distress, and further increases the damage to the structure and function of the kidneys, leading to increased demand for renal replacement therapy and risks of cardiovascular disease, which also has medical costs for the society. If we can intervene in a feasible manual to effectively regulate the autonomic nerve function of CKD patients, reduce the inflammatory response and symptom distress. To prolong the progression of the disease, it will be the main goal of caring for CKD patients. This study aims to test the effect of heart rate variability biofeedback (HRVBF) on improving autonomic nerve function (Heart Rate Variability, HRV), inflammatory response (Interleukin-6 [IL-6], C reaction protein [CRP] ), symptom distress (Piper fatigue scale, Pittsburgh Sleep Quality Index [PSQI], and Beck Depression Inventory-II [BDI-II] ) in patients with chronic kidney disease. This study was experimental research, with a convenience sampling. Participants were recruited from the nephrology clinic at a medical center in northern Taiwan. With signed informed consent, participants were randomly assigned to the HRVBF or control group by using the Excel BINOMDIST function. The HRVBF group received four weekly hospital-based HRVBF training, and 8 weeks of home-based self-practice was done with StressEraser. The control group received usual care. We followed all participants for 3 months, in which we repeatedly measured their autonomic nerve function (HRV), inflammatory response (IL-6, CRP), and symptom distress (Piper fatigue scale, PSQI, and BDI-II) on their first day of study participation (baselines), 1 month, and 3 months after the intervention to test the effects of HRVBF. The results were analyzed by SPSS version 23.0 statistical software. The data of demographics, HRV, IL-6, CRP, Piper fatigue scale, PSQI, and BDI-II were analyzed by descriptive statistics. To test for differences between and within groups in all outcome variables, it was used by paired sample t-test, independent sample t-test, Wilcoxon Signed-Rank test and Mann-Whitney U test. Results: Thirty-four patients with chronic kidney disease were enrolled, but three of them were lost to follow-up. The remaining 31 patients completed the study, including 15 in the HRVBF group and 16 in the control group. The characteristics of the two groups were not significantly different. The four-week hospital-based HRVBF training combined with eight-week home-based self-practice can effectively enhance the parasympathetic nerve performance for patients with chronic kidney disease, which may against the disease-related parasympathetic nerve inhibition. In the inflammatory response, IL-6 and CRP in the HRVBF group could not achieve significant improvement when compared with the control group. Self-reported fatigue and depression significantly decreased in the HRVBF group, but they still failed to achieve a significant difference between the two groups. HRVBF has no significant effect on improving the sleep quality for CKD patients.

Keywords: heart rate variability biofeedback, autonomic nerve function, inflammatory response, symptom distress, chronic kidney disease

Procedia PDF Downloads 151
41 Alternative Epinephrine Injector to Combat Allergy Induced Anaphylaxis

Authors: Jeremy Bost, Matthew Brett, Jacob Flynn, Weihui Li

Abstract:

One response during anaphylaxis is reduced blood pressure due to blood vessels relaxing and dilating. Epinephrine causes the blood vessels to constrict, which raises blood pressure to counteract the symptoms. When going through an allergic reaction, an Epinephrine injector is used to administer a shot of epinephrine intramuscularly. Epinephrine injectors have become an integral part of day-to-day life for people with allergies. Current Epinephrine injectors (EpiPen) are completely mechanical and have no sensors to monitor the vital signs of patients or give suggestions the optimal time for the shot. The EpiPens are also large and inconvenient to carry daily. The current price of an EpiPen is roughly 600$ for a pack of two. This makes carrying an EpiPen very expensive, especially when they need to be switched out when the epinephrine expires. This new design is in the form of a bracelet, which has the ability to inject epinephrine. The bracelet will be equipped with vital signs monitors that can aid the patient to sense the allergic reaction. The vital signs that would be of interest are blood pressure, heart rate and Electrodermal activity (EDA). The heart rate of the patient will be tracked by a photoplethysmograph (PPG) that is incorporated into the sensors. The heart rate is expected to increase during anaphylaxis. Blood pressure will be monitored through a radar sensor, which monitors the phase changes in electromagnetic waves as they reflect off of the blood vessel. EDA is under autonomic control. Allergen-induced anaphylaxis is caused by a release of chemical mediators from mast cells and basophils, thus changes the autonomic activity of the patient. So by measuring EDA, it will give the wearer an alert on how their autonomic nervous system is reacting. After the vital signs are collected, they will be sent to an application on a smartphone to be analyzed, which can then alert an emergency contact if the epinephrine injector on the bracelet is activated. Overall, this design creates a safer system by aiding the user in keeping track of their epinephrine injector, while making it easier to track their vital signs. Also, our design will be more affordable and more convenient to replace. Rather than replacing the entire product, only the needle and drug will be switched out and not the entire design.

Keywords: allergy, anaphylaxis, epinephrine, injector, vital signs monitor

Procedia PDF Downloads 228
40 Chi Square Confirmation of Autonomic Functions Percentile Norms of Indian Sportspersons Withdrawn from Competitive Games and Sports

Authors: Pawan Kumar, Dhananjoy Shaw, Manoj Kumar Rathi

Abstract:

Purpose of the study were to compare between (a) frequencies among the four quartiles of percentile norms of autonomic variables from power events and (b) frequencies among the four quartiles percentile norms of autonomic variables from aerobic events of Indian sportspersons withdrawn from competitive games and sports in regard to number of samples falling in each quartile. The study was conducted on 430 males of 30 to 35 years of age. Based on the nature of game/sports the retired sportspersons were classified into power events (throwers, judo players, wrestlers, short distance swimmers, cricket fast bowlers and power lifters) and aerobic events (long distance runners, long distance swimmers, water polo players). Date was collected using ECG polygraphs. Data were processed and extracted using frequency domain analysis and time domain analysis. Collected data were computed with frequency, percentage of each quartile and finally the frequencies were compared with the chi square analysis. The finding pertaining to norm reference comparison of frequencies among the four quartiles of Indian sportspersons withdrawn from competitive games and sports from (a) power events suggests that frequency distribution in four quartile namely Q1, Q2, Q3, and Q4 are significantly different at .05 level in regard to variables namely, SDNN, Total Power (Absolute Power), HF (Absolute Power), LF (Normalized Power), HF (Normalized Power), LF/HF ratio, deep breathing test, expiratory respiratory ratio, valsalva manoeuvre, hand grip test, cold pressor test and lying to standing test, whereas, insignificantly different at .05 level in regard to variables namely, SDSD, RMSSD, SDANN, NN50 Count, pNN50 Count, LF (Absolute Power) and 30: 15 Ratio (b) aerobic events suggests that frequency distribution in four quartile are significantly different at .05 level in regard to variables namely, SDNN, LF (Normalized Power), HF (Normalized Power), LF/HF ratio, deep breathing test, expiratory respiratory ratio, hand grip test, cold pressor test, lying to standing test and 30: 15 ratio, whereas, insignificantly different at .05 level in regard to variables namely, SDSD, RMSSD. SDANN, NN50 count, pNN50 count, Total Power (Absolute Power), LF(Absolute Power) HF(Absolute Power), and valsalva manoeuvre. The study concluded that comparison of frequencies among the four quartiles of Indian retired sportspersons from power events and aerobic events are different in four quartiles in regard to selected autonomic functions, hence the developed percentile norms are not homogenously distributed across the percentile scale; hence strengthen the percentage distribution towards normal distribution.

Keywords: power, aerobic, absolute power, normalized power

Procedia PDF Downloads 327
39 Cardio Autonomic Response during Mental Stress in the Wards of Normal and Hypertensive Parents

Authors: Sheila R. Pai, Rekha D. Kini, Amrutha Mary

Abstract:

Objective: To assess and compare the cardiac autonomic activity after mental stress among the wards of normal and hypertensive parents. Methods: The study included 67 subjects, 30 of them had a parental history of hypertension and rest 37 had normotensive parents. Subjects were divided into control group (wards of normotensive parents) and Study group (wards of hypertensive parents). The height, weight were noted, and Body Mass Index (BMI) was also calculated. The mental stress test was carried out. Blood pressure (BP) and electro cardiogram (ECG) was recorded during normal breathing and after mental stress test. Heart rate variability (HRV) analysis was done by time domain method HRV was recorded and analyzed by the time-domain method. Analysis of HRV in the time-domain was done using the software version 1.1 AIIMS, New Delhi. The data obtained was analyzed using student’s t-test followed by Mann-Whitney U-test and P < 0.05 was considered significant. Results: There was no significant difference in systolic blood pressure and diastolic blood pressure (DBP) between study group and control group following mental stress. In the time domain analysis, the mean value of pNN50 and RMSSD of the study group was not significantly different from the control group after the mental stress test. Conclusion: The study thus concluded that there was no significant difference in HRV between study group and control group following mental stress.

Keywords: heart rate variability, time domain analysis, mental stress, hypertensive

Procedia PDF Downloads 248
38 The Role of Behavioral Syndromes in Human-Cattle Interactions: A Physiological Approach

Authors: Fruzsina Luca Kézér, Viktor Jurkovich, Ottó Szenci, János Tőzsér, Levente Kovács

Abstract:

Positive interaction between people and animals could have a favorable effect on the welfare and production by reducing stress levels. However, to the repeated contact with humans (e.g. farm staff, veterinarians or herdsmen), animals may respond with escape behavior or avoidance, which both have negative effects on the ease of handling, welfare and may lead to the expression of aggressive behaviors. Rough or aversive handling can impair health and the function of the cardiac autonomic activity due to fear and stress, which also can be determined by certain parameters of heart rate variability (HRV). Although the essential relationships between fear from humans and basal tone of the autonomic nervous system were described by the authors previously, several questions remained unclear in terms of the associations between different coping strategies (behavioral syndromes) of the animals and physiological responsiveness to humans. The main goal of this study was to find out whether human behavior and emotions to the animals have an impact on cardiac function and behavior of animals with different coping styles in response situations. Therefore, in the present study, special (fear, approaching, restraint, novel arena, novel object) tests were performed on healthy, 2-year old heifers (n = 104) differing in coping styles [reactive (passive) vs. proactive (active) coping]. Animals were categorized as reactive or proactive based on the following tests: 1) aggressive behavior at the feeding bunk, 2) avoidance from an approaching person, 3) immobility, and 4) daily activity (number of posture changes). Heart rate, the high frequency (HF) component of HRV as a measure of vagal activity and the ratio between the low frequency (LF) and HF components (LF/HF ratio) as a parameter of sympathetic nervous system activity were calculated for all individual during lying posture (baseline) and for response situations in novel object, novel arena, and unfamiliar person tests (both for 5 min), respectively. The differences between baseline and response were compared between groups. Higher sympathetic (higher heart rates and LF/HF ratios) and lower parasympathetic activity (lower HF) was found for proactive animals in response situations than for reactive (passive) animals either during the novel object, the novel arena and the unfamiliar person test. It suggests that animals with different behavioral traits differ in their immediate autonomic adaptation to novelty and people. Based on our preliminary results, it seems, that the analysis of HRV can help to understand the physiological manifestation of responsiveness to novelty and human presence in dairy cattle with different behavioral syndromes.

Keywords: behavioral syndromes, human-cattle interaction, novel arena test, physiological responsiveness, proactive coping, reactive coping

Procedia PDF Downloads 328
37 Rheological and Self-Healing Properties of Poly (Vinyl Butyral)

Authors: Sunatda Arayachukiat, Shogo Nobukawa, Masayuki Yamaguchi

Abstract:

A new self-healing material was developed utilizing molecular entanglements for poly(vinyl butyral) (PVB) containing plasticizers. It was found that PVB shows autonomic self-healing behavior even below the glass transition temperature Tg because of marked molecular motion at surface. Moreover, the plasticizer addition enhances the chain mobility, leading to good healing behavior.

Keywords: Poly(vinyl butyral) (PVB), rheological properties, self-healing behaviour, molecular diffusion

Procedia PDF Downloads 403
36 Physiological and Psychological Influence on Office Workers during Demand Response

Authors: Megumi Nishida, Naoya Motegi, Takurou Kikuchi, Tomoko Tokumura

Abstract:

In recent years, power system has been changed and flexible power pricing system such as demand response has been sought in Japan. The demand response system is simple in the household sector and the owner, decision-maker, can gain the benefits of power saving. On the other hand, the execution of the demand response in the office building is more complex than household because various people such as owners, building administrators and occupants are involved in making decisions. While the owners benefit from the demand saving, the occupants are forced to be exposed to demand-saved environment certain benefits. One of the reasons is that building systems are usually centralized control and each occupant cannot choose either participate demand response event or not, and contribution of each occupant to demand response is unclear to provide incentives. However, the recent development of IT and building systems enables the personalized control of office environment where each occupant can control the lighting level or temperature around him or herself. Therefore, it can be possible to have a system which each occupant can make a decision of demand response participation in office building. This study investigates the personal behavior upon demand response requests, under the condition where each occupant can adjust their brightness individually in their workspace. Once workers participate in the demand response, their task lights are automatically turned off. The participation rates in the demand response events are compared between four groups which are divided by different motivation, the presence or absence of incentives and the way of participation. The result shows that there are the significant differences of participation rates in demand response event between four groups. The way of participation has a large effect on the participation rate. ‘Opt-out’ group, where the occupants are automatically enrolled in a demand response event if they don't express non-participation, will have the highest participation rate in the four groups. The incentive has also an effect on the participation rate. This study also reports that the impact of low illumination office environment on the occupants, such as stress or fatigue. The electrocardiogram and the questionnaire are used to investigate the autonomic nervous activity and subjective symptoms about the fatigue of the occupants. There is no big difference between dim workspace during demand response event and bright workspace in autonomic nervous activity and fatigue.

Keywords: demand response, illumination, questionnaire, electrocardiogram

Procedia PDF Downloads 326
35 Sympathetic Skin Response and Reaction Times in Chronic Autoimmune Thyroiditis; An Overlooked Electrodiagnostic Study

Authors: Oya Umit Yemisci, Nur Saracgil Cosar, Tubanur Ozturk Sisman, Selin Ozen

Abstract:

Chronic autoimmune thyroiditis (AIT) may result in a wide spectrum of reversible abnormalities in the neuromuscular function. Usually, proximal muscle-related symptoms and neuropathic findings such as mild axonal peripheral neuropathy have been reported. Sympathetic skin responses are useful in evaluating sudomotor activity of the unmyelinated sympathetic fibers of the autonomic nervous system. Neurocognitive impairment may also be a prominent feature of hypothyroidism, particularly in elderly patients. Electromyographic reaction times as a highly sensitive parameter provides. Objective data concerning cognitive and motor functions. The aim of this study was to evaluate peripheral nerve functions, sympathetic skin response and electroneuromyographic (ENMG) reaction times in euthyroid and subclinically hypothyroid patients with a diagnosis of AIT and compare to those of a control group. Thirty-five euthyroid, 19 patients with subclinical hypothyroidism and 35 age and sex-matched healthy subjects were included in the study. Motor and sensory nerve conduction studies, sympathetic skin responses recorded from hand and foot by stimulating contralateral median nerve and simple reaction times by stimulating tibial nerve and recording from extensor indicis proprius muscle were performed to all patients and control group. Only median nerve sensory conduction velocities of the forearm were slower in patients with AIT compared to the control group (p=0.019). Otherwise, nerve conduction studies and sympathetic skin responses showed no significant difference between the patients and the control group. However, reaction times were shorter in the healthy subjects compared to AIT patients. Prolongation in the reaction times may be considered as a parameter reflecting the alterations in the cognitive functions related to the primary disease process in AIT. Combining sympathetic skin responses with more quantitative tests such as cardiovascular tests and sudomotor axon reflex testing may allow us to determine higher rates of involvement of the autonomic nervous system in AIT.

Keywords: sympathetic skin response, simple reaction time, chronic autoimmune thyroiditis

Procedia PDF Downloads 117
34 The Healing 'Touch' of Music: A Neuro-Acoustics Approach to Understand Its Therapeutic Effect

Authors: Jagmeet S. Kanwal, Julia F. Langley

Abstract:

Music can heal the body, but a mechanistic understanding of this phenomenon is lacking. This study explores the effects of music presentation on neurologic and physiologic responses leading to metabolic changes in the human body. The mind and body co-exist in a corporeal entity and within this framework, sickness ensues when the mind-body balance goes awry. It is further hypothesized that music has the capacity to directly reset this balance. Two lines of inquiry taken together can provide a mechanistic understanding of this phenomenon 1) Empirical evidence for a sound-sensitive pressure sensor system in the body, and 2) The notion of a “healing center” within the brain that is activated by specific patterns of sounds. From an acoustics perspective, music is spatially distributed as pressure waves ranging from a few cm to several meters in wavelength. These waves interact and propagate in three-dimensions in unique ways, depending on the wavelength. Furthermore, music creates dynamically changing wave-fronts. Frequencies between 200 Hz and 1 kHz generate wavelengths that range from 5'6" to 1 foot. These dimensions are in the range of the body size of most people making it plausible that these pressure waves can geometrically interact with the body surface and create distinct patterns of pressure stimulation across the skin surface. For humans, short wavelength, high frequency (> 200 Hz) sounds are best received via cochlear receptors. For low frequency (< 200 Hz), long wavelength sound vibrations, however, the whole body may act as an ideal receiver. A vast array of highly sensitive pressure receptors (Pacinian corpuscles) is present just beneath the skin surface, as well as in the tendons, bones, several organs in the abdomen, and the sexual organs. Per the available empirical evidence, these receptors contribute to music perception by allowing the whole body to function as a sound receiver, and knowledge of how they function is essential to fully understanding the therapeutic effect of music. Neuroscientific studies have established that music stimulates the limbic system that can trigger states of anxiety, arousal, fear, and other emotions. These emotional states of brain activity play a crucial role in filtering top-down feedback from thoughts and bottom-up sensory inputs to the autonomic system, which automatically regulates bodily functions. Music likely exerts its pleasurable and healing effects by enhancing functional and effective connectivity and feedback mechanisms between brain regions that mediate reward, autonomic, and cognitive processing. Stimulation of pressure receptors under the skin by low-frequency music-induced sensations can activate multiple centers in the brain, including the amygdala, the cingulate cortex, and nucleus accumbens. Melodies in music in the low (< 600 Hz) frequency range may augment auditory inputs after convergence of the pressure-sensitive inputs from the vagus nerve onto emotive processing regions within the limbic system. The integration of music-generated auditory and somato-visceral inputs may lead to a synergistic input to the brain that promotes healing. Thus, music can literally heal humans through “touch” as it energizes the brain’s autonomic system for restoring homeostasis.

Keywords: acoustics, brain, music healing, pressure receptors

Procedia PDF Downloads 140
33 Human’s Sensitive Reactions during Different Geomagnetic Activity: An Experimental Study in Natural and Simulated Conditions

Authors: Ketevan Janashia, Tamar Tsibadze, Levan Tvildiani, Nikoloz Invia, Elguja Kubaneishvili, Vasili Kukhianidze, George Ramishvili

Abstract:

This study considers the possible effects of geomagnetic activity (GMA) on humans situated on Earth by performing experiments concerning specific sensitive reactions in humans in both: natural conditions during different GMA and by the simulation of different GMA in the lab. The measurements of autonomic nervous system (ANS) responses to different GMA via measuring the heart rate variability (HRV) indices and stress index (SI) and their comparison with the K-index of GMA have been presented and discussed. The results of experiments indicate an intensification of the sympathetic part of the ANS as a stress reaction of the human organism when it is exposed to high level of GMA as natural as well as in simulated conditions. Aim: We tested the hypothesis whether the GMF when disturbed can have effects on human ANS causing specific sensitive stress-reactions depending on the initial type of ANS. Methods: The study focuses on the effects of different GMA on ANS by comparing of HRV indices and stress index (SI) of n= 78, 18-24 years old healthy male volunteers. Experiments were performed as natural conditions on days of low (K= 1-3) and high (K= 5-7) GMA as well as in the lab by the simulation of different GMA using the device of geomagnetic storm (GMS) compensation and simulation. Results: In comparison with days of low GMA (K=1-3) the initial values of HRV shifted towards the intensification of the sympathetic part (SP) of the ANS during days of GMSs (K=5-7) with statistical significance p-values: HR (heart rate, p= 0.001), SDNN (Standard deviation of all Normal to Normal intervals, p= 0.0001), RMSSD (The square root of the arithmetical mean of the sum of the squares of differences between adjacent NN intervals, p= 0.0001). In comparison with conditions during GMSs compensation mode (K= 0, B= 0-5nT), the ANS balance was observed to shift during exposure to simulated GMSs with intensities in the range of natural GMSs (K= 7, B= 200nT). However, the initial values of the ANS resulted in different dynamics in its variation depending of GMA level. In the case of initial balanced regulation type (HR > 80) significant intensification of SP was observed with p-values: HR (p= 0.0001), SDNN (p= 0.047), RMSSD (p= 0.28), LF/HF (p=0.03), SI (p= 0.02); while in the case of initial parasympathetic regulation type (HR < 80), an insignificant shift to the intensification of the parasympathetic part (PP) was observed. Conclusions: The results indicate an intensification of SP as a stress reaction of the human organism when it is exposed to high level of GMA in both natural and simulated conditions.

Keywords: autonomic nervous system, device of magneto compensation/simulation, geomagnetic storms, heart rate variability

Procedia PDF Downloads 103
32 Monitoring the Responses to Nociceptive Stimuli During General Anesthesia Based on Electroencephalographic Signals in Surgical Patients Undergoing General Anesthesia with Laryngeal Mask Airway (LMA)

Authors: Ofelia Loani Elvir Lazo, Roya Yumul, Sevan Komshian, Ruby Wang, Jun Tang

Abstract:

Background: Monitoring the anti-nociceptive drug effect is useful because a sudden and strong nociceptive stimulus may result in untoward autonomic responses and muscular reflex movements. Monitoring the anti-nociceptive effects of perioperative medications has long been desiredas a way to provide anesthesiologists information regarding a patient’s level of antinociception and preclude any untoward autonomic responses and reflexive muscular movements from painful stimuli intraoperatively.To this end, electroencephalogram (EEG) based tools includingBIS and qCON were designed to provide information about the depth of sedation whileqNOXwas produced to informon the degree of antinociception.The goal of this study was to compare the reliability of qCON/qNOX to BIS asspecific indicators of response to nociceptive stimulation. Methods: Sixty-two patients undergoing general anesthesia with LMA were included in this study. Institutional Review Board(IRB) approval was obtained, and informed consent was acquired prior to patient enrollment. Inclusion criteria included American Society of Anesthesiologists (ASA) class I-III, 18 to 80 years of age, and either gender. Exclusion criteria included the inability to consent. Withdrawal criteria included conversion to endotracheal tube and EEG malfunction. BIS and qCON/qNOX electrodes were simultaneously placed o62n all patientsprior to induction of anesthesia and were monitored throughout the case, along with other perioperative data, including patient response to noxious stimuli. All intraoperative decisions were made by the primary anesthesiologist without influence from qCON/qNOX. Student’s t-distribution, prediction probability (PK), and ANOVA were used to statistically compare the relative ability to detect nociceptive stimuli for each index. Twenty patients were included for the preliminary analysis. Results: A comparison of overall intraoperative BIS, qCON and qNOX indices demonstrated no significant difference between the three measures (N=62, p> 0.05). Meanwhile, index values for qNOX (62±18) were significantly higher than those for BIS (46±14) and qCON (54±19) immediately preceding patient responses to nociceptive stimulation in a preliminary analysis (N=20, * p= 0.0408). Notably, certain hemodynamic measurements demonstrated a significant increase in response to painful stimuli (MAP increased from74±13 mm Hg at baseline to 84± 18 mm Hg during noxious stimuli [p= 0.032] and HR from 76±12 BPM at baseline to 80±13BPM during noxious stimuli[p=0.078] respectively). Conclusion: In this observational study, BIS and qCON/qNOX provided comparable information on patients’ level of sedation throughout the course of an anesthetic. Meanwhile, increases in qNOX values demonstrated a superior correlation to an imminent response to stimulation relative to all other indices.

Keywords: antinociception, bispectral index (BIS), general anesthesia, laryngeal mask airway, qCON/qNOX

Procedia PDF Downloads 71
31 Effect of Noise at Different Frequencies on Heart Rate Variability - Experimental Study Protocol

Authors: A. Bortkiewcz, A. Dudarewicz, P. Małecki, M. Kłaczyński, T. Wszołek, Małgorzata Pawlaczyk-Łuszczyńska

Abstract:

Low-frequency noise (LFN) has been recognized as a special environmental pollutant. It is usually considered a broadband noise with the dominant content of low frequencies from 10 Hz to 250 Hz. A growing body of data shows that LFN differs in nature from other environmental noises, which are at comparable levels but not dominated by low-frequency components. The primary and most frequent adverse effect of LFN exposure is annoyance. Moreover, some recent investigations showed that LFN at relatively low A-weighted sound pressure levels (40−45 dB) occurring in office-like areas could adversely affect the mental performance, especially of high-sensitive subjects. It is well documented that high-frequency noise disturbs various types of human functions; however, there is very little data on the impact of LFN on well-being and health, including the cardiovascular system. Heart rate variability (HRV) is a sensitive marker of autonomic regulation of the circulatory system. Walker and co-workers found that LFN has a significantly more negative impact on cardiovascular response than exposure to high-frequency noise and that changes in HRV parameters resulting from LFN exposure tend to persist over time. The negative reactions of the cardiovascular system in response to LFN generated by wind turbines (20-200 Hz) were confirmed by Chiu. The scientific aim of the study is to assess the relationship between the spectral-temporal characteristics of LFN and the activity of the autonomic nervous system, considering the subjective assessment of annoyance, sensitivity to this type of noise, and cognitive and general health status. The study will be conducted in 20 male students in a special, acoustically prepared, constantly supervised room. Each person will be tested 4 times (4 sessions), under conditions of non-exposure (sham) and exposure to noise of wind turbines recorded at a distance of 250 meters from the turbine with different frequencies and frequency ranges: acoustic band 20 Hz-20 kHz, infrasound band 5-20 Hz, acoustic band + infrasound band. The order of sessions of the experiment will be randomly selected. Each session will last 1 h. There will be a 2-3 days break between sessions to exclude the possibility of the earlier session influencing the results of the next one. Before the first exposure, a questionnaire will be conducted on noise sensitivity, general health status using the GHQ questionnaire, hearing organ status and sociodemographic data. Before each of the 4 exposures, subjects will complete a brief questionnaire on their mood and sleep quality the night before the test. After the test, the subjects will be asked about any discomfort and subjective symptoms during the exposure. Before the test begins, Holter ECG monitoring equipment will be installed. HRV will be analyzed from the ECG recordings, including time and frequency domain parameters. The tests will always be performed in the morning (9-12) to avoid the influence of diurnal rhythm on HRV results. Students will perform psychological tests 15 minutes before the end of the test (Vienna Test System).

Keywords: neurovegetative control, heart rate variability (HRV), cognitive processes, low frequency noise

Procedia PDF Downloads 47
30 Teacher-Student Relationship and Achievement in Chinese: Potential Mediating Effects of Motivation

Authors: Yuan Liu, Hongyun Liu

Abstract:

Teacher-student relationship plays an important role on facilitating students’ learning behavior, school engagement, and academic outcomes. It is believed that good relationship will enhance the human agency—the intrinsic motivation—mainly through the strengthening of autonomic support, feeling of relatedness, and the individual’s competence to increase the academic outcomes. This is in line with self-determination theory (SDT), which generally views that the intrinsic motivation imbedded with human basic needs is one of the most important factors that would lead to better school engagement, academic outcomes, and well-being. Based on SDT, the present study explored the relation of among teacher-student relationship (teacher’s encouragement, respect), students’ motivation (extrinsic and intrinsic), and achievement outcomes. The study was based on a large scale academic assessment and questionnaire survey conducted by the Center for Assessment and Improvement of Basic Education Quality in Mainland China (2013) on Grade 8 students. The results indicated that intrinsic motivation mediated the relation between teacher-student relationship and academic achievement outcomes.

Keywords: teacher-student relationship, intrinsic motivation, academic achievement, mediation

Procedia PDF Downloads 401
29 Exploring the Relationship between Mediolateral Center of Pressure and Galvanic Skin Response during Balance Tasks

Authors: Karlee J. Hall, Mark Laylor, Jessy Varghese, Paula Polastri, Karen Van Ooteghem, William McIlroy

Abstract:

Balance training is a common part of physiotherapy treatment and often involves a set of proprioceptive exercises which the patient carries out in the clinic and as part of their exercise program. Understanding all contributing factors to altered balance is of utmost importance to the clinical success of treatment of balance dysfunctions. A critical role for the autonomic nervous system (ANS) in the control of balance reactions has been proposed previously, with evidence for potential involvement being inferred from the observation of phasic galvanic skin responses (GSR) evoked by external balance perturbations. The current study explored whether the coupling between ANS reactivity and balance reactions would be observed during spontaneously occurring instability while standing, including standard positions typical of physiotherapy balance assessments. It was hypothesized that time-varying changes in GSR (ANS reactivity) would be associated with time-varying changes in the mediolateral center of pressure (ML-COP) (somatomotor reactivity). Nine individuals (5 females, 4 males, aged 19-37 years) were recruited. To induce varying balance demands during standing, the study compared ML-COP and GSR data across different task conditions varying the availability of vision and width of the base of support. Subjects completed 3, 30-second trials for each of the following stance conditions: standard, narrow, and tandem eyes closed, tandem eyes open, tandem eyes open with dome to shield visual input, and restricted peripheral visual field. ANS activity was evaluated by measures of GSR recorded from Ag-AgCl electrodes on the middle phalanges of digits 2 and 4 on the left hand; balance measures include ML-COP excursion frequency and amplitude recorded from two force plates embedded in the floor underneath each foot. Subjects were instructed to stand as still as possible with arms crossed in front of their chest. When comparing mean task differences across subjects, there was an expected increase in postural sway from tasks with a wide stance and no sensory restrictions (least challenging) to those with a narrow stance and no vision (most challenging). The correlation analysis revealed a significant positive relationship between ML-COP variability and GSR variability when comparing across tasks (r=0.94, df=5, p < 0.05). In addition, correlations coincided within each subject and revealed a significant positive correlation in 7 participants (r= 0.47, 0.57, 0.62, 0.62, 0.81, 0.64, 0.69 respectively, df=19, p < 0.05) and no significant relationship in 2 participants (r=0.36, 0.29 respectively, df=19, p > 0.05). The current study revealed a significant relationship between ML-COP and GSR during balance tasks, revealing the ANS reactivity associated with naturally occurring instability when standing still, which is proportional to the degree of instability. Understanding the link between ANS activity and control of COP is an important step forward in the enhancement of assessment of contributing factors to poor balance and treatment of balance dysfunctions. The next steps will explore the temporal association between the time-varying changes in COP and GSR to establish if the ANS reactivity phase leads or lags the evoked motor reactions, as well as exploration of potential biomarkers for use in screening of ANS activity as a contributing factor to altered balance control clinically.

Keywords: autonomic nervous system, balance control, center of pressure, somatic nervous system

Procedia PDF Downloads 143
28 Deep Graph Embeddings for the Analysis of Short Heartbeat Interval Time Series

Authors: Tamas Madl

Abstract:

Sudden cardiac death (SCD) constitutes a large proportion of cardiovascular mortalities, provides little advance warning, and the risk is difficult to recognize based on ubiquitous, low cost medical equipment such as the standard, 12-lead, ten second ECG. Autonomic abnormalities have been shown to be strongly predictive of SCD risk; yet current methods are not trivially applicable to the brevity and low temporal and electrical resolution of standard ECGs. Here, we build horizontal visibility graph representations of very short inter-beat interval time series, and perform unsuper- vised representation learning in order to convert these variable size objects into fixed-length vectors preserving similarity rela- tions. We show that such representations facilitate classification into healthy vs. at-risk patients on two different datasets, the Mul- tiparameter Intelligent Monitoring in Intensive Care II and the PhysioNet Sudden Cardiac Death Holter Database. Our results suggest that graph representation learning of heartbeat interval time series facilitates robust classification even in sequences as short as ten seconds.

Keywords: sudden cardiac death, heart rate variability, ECG analysis, time series classification

Procedia PDF Downloads 207