Search results for: Zinc borate
189 Enhancement of the Corrosion Resistance of Fastening System of Ballasted Railway in Sandy Desert by Using Nano-Coating
Authors: Milad Alizadeh Galdiani, Navid Sabet, Mohamad Ali Mohit, Fatemeh Palizdar
Abstract:
Railway as one of the most important transportation modes, passes through various areas with different conditions inevitably, and in many countries such as China, United States, Australia, and Iran, it passes through sandy desert areas. One of the main problems in these areas is the movement of sand, causing various damages to ballasted railway track such as corrosion in the railway fastening system. The soil composition of some desert areas like Fahraj in Iran consists of sand and salt. Due to the movement of sand and corrosive ions of salt, the fastening system of the railway is corroded, which, in turn, reduces the thickness of the components and their life span. In this research, the Nano-coating for fastening system of the railway is introduced, and its performance has been investigated in both laboratory and field tests. The Nano-coating of the fastening system consists of zinc-rich, epoxy, polyurethane, and additive, which is produced through Nano technology. This layer covers the surface of the fastening system and prohibits the chemical reactions, which result in corrosion. The results of Electrochemical Impedance Spectroscopy (EIS) indicate that corrosion resistance increases 315 times by using nano-coating, salt spray test results demonstrate that nano-coated components remained intact after 1000 hours.Keywords: ballasted railway, Nano-coating, railway fastening system, sandy desert
Procedia PDF Downloads 127188 The Hydro-Geology and Drinking Water Quality of Ikogosi Warm Spring in South West Nigeria
Authors: Ikudayisi Akinola, Adeyemo Folasade, Adeyemo Josiah
Abstract:
This study focuses on the hydro-geology and chemistry of Ikogosi Warm Spring in South West Nigeria. Ikogosi warm spring is a global tourist attraction because it has both warm and cold spring sources. Water samples from the cold spring, warm spring and the meeting point were collected, analyzed and the result shows close similarity in temperature, hydrogen iron concentration (pH), alkalinity, hardness, Calcium, Magnesium, Sodium, Iron, total dissolved solid and heavy metals. The measured parameters in the water samples are within World Health Organisation standards for fresh water. The study of the geology of the warm spring reveals that the study area is underlain by a group of slightly migmatised to non-migmatised paraschists and meta-igneous rocks. The concentration levels of selected heavy metals, (Copper, Cadmium, Zinc, Arsenic and Cromium) were determined in the water (ppm) samples. Chromium had the highest concentration value of 1.52ppm (an average of 49.67%) and Cadmium had the lowest concentration with value of 0.15ppm (an average of 4.89%). Comparison of these results showed that, their mean levels are within the standard values obtained in Nigeria. It can be concluded that both warm and spring water are safe for drinking.Keywords: cold spring, Ikogosi, melting point, warm spring, water samples
Procedia PDF Downloads 547187 Analgesic Efficacy of Opiorphin and Its Analogue
Authors: Preet Singh, Kavitha Kongara, Dave Harding, Neil Ward, Paul Chambers
Abstract:
The objective of this study was to compare the analgesic efficacy of opiorphin and its analogue with a mu-receptor agonist; morphine. Opiorphins (Gln-Arg-Phe-Ser-Arg) belong to the family of endogenous enkephalinase inhibitors, found in saliva of humans. They are inhibitors of two Zinc metal ectopeptidases (Neutral endopeptidase NEP, and amino-peptidase APN) which are responsible for the inactivation of the endogenous opioids; endorphins and enkephalins. Morphine and butorphanol exerts their analgesic effects by mimicking the actions of endorphins and enkephalins. The opiorphin analogue was synthesized based on the structure activity relationship of the amino acid sequence of opiorphin. The pharmacological profile of the analogue was tested by replacing Serine at position 4 with Proline. The hot plate and tail flick test were used to demonstrate the analgesic efficacy. There was a significant increase in the time for the tail flick response after an injection of opiorphin, which was similar to the morphine effect. There was no increase in time in the hot plate test after an injection of opiorphin. The results suggest that opiorphin works at spinal level only rather than both spinal and supraspinal. Further work is required to confirm our results. We did not find analgesic activity of the opiorphin analogue. Thus, Serine at position 4 is also important for its pharmacological action. Further work is required to illustrate the role of serine at position 4 in opiorphin.Keywords: analgesic peptides, endogenous opioids, morphine, opiorphin
Procedia PDF Downloads 325186 Environmental Geochemistry of Natural Geysers in an Urban Zone of Mexico
Authors: Zayre I. Gonzalez-Acevedo, Marco A. Garcia-Zarate
Abstract:
Environmental pollution by heavy metals is due to several processes, whether natural as weathering, or anthropogenic, related to human activities. Geysers may content dissolved heavy metals, related with their geothermal origin, and they are widely used by local people and tourists for treatment of dermal diseases and other therapeutic applications. In this study, 20 geysers with temperatures between 32 to 94 °C, located in the vicinity of Queretaro and Guanajuato in Central Mexico, were studied. These geysers were sampled in dry and rainy seasons in order to investigate seasonal changes of trace elements. The samples were analyzed in SWAMP Lab, University of Alberta, Canada for 34 elements. Most of the analyzed trace elements sowed concentrations below guidelines for natural waters. The elements showed seasonal variability with higher concentrations during rainy season. Arsenic varied from 49.29 to 2.16 µg L⁻¹. Arsenic was highly correlated with Fe, Sr, Th and Tl. Barium varied from 93.52 to 1.79 µg L⁻¹. Barium was highly correlated with Co, Cr, Mo, Ni, U, V, and Y. Copper and Zinc were correlated as well. According to the comparison of sites and the correlations between trace elements, their source was identified as natural regional, geothermal or anthropogenic origin. Because of application of geyser's water to balneology and health treatments, and also, because they are located in an urban zone in development, advise on their direct uses, according to their environmental quality is appointed in this research.Keywords: balneology, direct uses, environmental quality and trace elements
Procedia PDF Downloads 161185 Expression of Metallothionein Gen and Protein on Hepatopancreas, Gill and Muscle of Perna viridis Caused by Biotoxicity Hg, Pb and Cd
Authors: Yulia Irnidayanti , J. J. Josua, A. Sugianto
Abstract:
Jakarta Bay with 13 rivers that flow into, the environment has deteriorated and is the most polluted bays in Asia. The entry of waste into the waters of the Bay of Jakarta has caused pollution. Heavy metal contamination has led to pollution levels and may cause toxicity to organisms that live in the sea, down to the cellular level and may affect the ecological balance. Various ways have been conducted to measure the impact of environmental degradation, such as by measuring the levels of contaminants in the environment, including measuring the accumulation of toxic compounds in the tissues of organisms. Biological responses or biomarkers known as a sensitive indicator but need relevant predictions. In heavy metal pollution monitoring, analysis of aquatic biota is very important from the analysis of the water itself. The content of metals in aquatic biota will usually always be increased from time to time due to the nature of metal bioaccumulation, so the aquatic biota is best used as an indicator of metal pollution in aquatic environments. The results of the content analysis results of sea water in coastal estuaries Angke, Kaliadem and Panimbang detected heavy metals cadmium, mercury, lead, but did not find zinc metal. Based on the results of protein electrophoresis methallotionein found heavy metals in the tissues hepatopancreas, gills and muscles, and also the mRNA expression of has detected.Keywords: gills, heavy metal, hepatopancreas, metallothionein, muscle
Procedia PDF Downloads 389184 Assessment of the Physico-Chemical Parameters and Heavy Metal Concentration in Water and Callinectes amnicola (Swimming Crab) in a Crude Oil Exposed Community (Bodo Creek), Rivers State, Nigeria
Authors: Ehiedu Philomina Kika, Jessica Chinonso Ehilegbu
Abstract:
The exploration and production of fossil fuel particularly crude oil has led to some serious environmental damage in some oil producing communities like the Bodo Community who rely heavily on their aquatic environment for food and water. This study was therefore carried out to investigate the level of some heavy metals in water and Callinectes amnicola (Swimming Crab) in the month of August, September and October from Bodo creek, Rivers State, Nigeria. The physico-chemical parameters of the water were also analyzed in-situ. The levels of heavy metals, Lead (Pb), Cadmium (Cd), Chromium (Cr), Zinc (Zn), Copper (Cu) were analyzed in water and in Callinectes amnicola (Swimming Crab), using Atomic Absorption Spectrophotometer (AAS) after acid digestion. For the concentration of heavy metals in water, Pb ranged from 0.103 - 0.791 mg/l, Zn 0.0025 - 0.342 mg/l, Cr < 0.001 - 0.304 mg/l, Cd 0.011 - 0.116 mg/l and Cu <0.001 - 0.079 mg/l. For the concentration of heavy metals in Callinectes amnicola (Swimming Crab), the level of Pb ranged from 0.359 - 0.849 mg/l, Zn 0.134 - 0.342 mg/l, Cd 0.053 - 0.103 mg/l, Cr < 0.001 - <0.001 mg/l, Cu < 0.001 - 0.131 mg/l. The concentrations of Pb, Cd and Cr for all water and crab samples collected from the various stations were higher than permissible level suggesting serious anthropogenic influence. Thus, precaution needs to be taken to prevent further contamination and adequate purification measures need to be put in place. Therefore, there should be periodic environmental pollution monitoring, for assessment and awareness especially with regards heavy metal.Keywords: Bodo creek, crude oil, heavy metal, swimming crab
Procedia PDF Downloads 162183 Double Beta Decay Experiments in Novi Sad
Authors: Nataša Todorović, Jovana Nikolov
Abstract:
Despite the great interest in β⁻β⁻ decay, β⁺β⁺ decays are rarely investigated due to the low probability of detecting these processes with available low-level equipment. If β⁺β⁺, β⁺EC, or ECEC decay occurs in a thin sample of a material, the positrons will be stopped and annihilated inside the material, leading to the emission of two or four coincidence gamma photons energy of 511 keV. The paper presents the results of measurements of double beta decay of ⁶⁴Zn, ⁵⁰Cr, and ⁵⁴Fe isotopes. In the first experiment, 511-keV gamma rays originating from the annihilation of positrons in natural zinc were measured by a coincidence technique to obtain a non-zero value for the (0ν+2ν) half-life. In the second experiment, the result of measuring double beta decay of ⁵⁰Cr is presented, which suggests a result other than zero at 95% CL and gives the lowest limit for the half-life of this process. In the third experiment, neutrino-less ECEC decay of ⁵⁴Fe was examined. Under the decay theory, gamma rays are emitted whose energy does not coincide with the energies of gamma rays emitted by nuclei from known discrete excited states. Iron shield of an internal volume of 1 m³ and thickness of 25 cm served as a source for measuring the (0ν+2ν) process in ⁵⁴Fe, whose yield in natural iron is 5.4%. We obtain the lower limit for the half-life for ⁵⁴Fe: T(0ν, K, K)>4.4x10²⁰ yr, T(0ν, K, L)>4.1x10²⁰ yr, and T(0ν, L, L)>5.0x10²⁰ yr. For ⁵⁰Cr limit for the half-life is T(0ν+2ν)>1.3(6)x10¹⁸ yr, and for ⁶⁴Zn T(0ν+2ν, ECβ+)=1.1(0.9)x10⁹ years.Keywords: neutrinoless double beta decay, half-life, ⁶⁴Zn, ⁵⁰Cr, and, ⁵⁴Fe
Procedia PDF Downloads 109182 Assessment of Heavy Metal Concentrations in Tunas Caught from Lakshweep Islands, India
Authors: Mahesh Kumar Farejiya, Anil Kumar Dikshit
Abstract:
The toxic metal contamination and their biomagnification in marine fishes is a serious public health concern specially, in the coastal areas and the small islands. In the present study, concentration of toxic heavy metals like zinc (Zn), cadmium (Cd), lead (Pb), nickel (Ni), cobalt (Co), chromium (Cr) and mercury (Hg) were determined in the tissues of tunas (T. albacores) caught from the area near to Lakshdweep Islands. The heavy metals are one of the indicators for the marine water pollution. Geochemical weathering, industrialization, agriculture run off, fishing, shipping and oil spills are the major pollutants. The presence of heavy toxic metals in the near coastal water fishes at both western coast and eastern coast of India has been well established. The present study was conducted assuming that the distant island will not have the metals presence in a way it is at the near main land coast. However, our study shows that there is a significant amount of the toxic metals present in the tissues of tuna samples. The gill, lever and flash samples were collected in waters around Lakshdweep Islands. They were analyzed using ICP–AES for the toxic metals after microwave digestion. The concentrations of the toxic metals were found in all fish samples and the general trend of presence was in decreasing order as Zn > Al > Cd > Pb > Cr > Ni > Hg. The amount of metals was found to higher in fish having more weight.Keywords: toxic metals, marine tuna fish, bioaccumulation, biomagnifications
Procedia PDF Downloads 357181 Determination of Heavy Metals in Canned Dry-Milk and Fish from Supermarkets in Addis Ababa
Authors: Kefyalew Muleta, Tetemke Mehari
Abstract:
Background: Human being require metallic elements such as copper and zinc up to certain limits that could cause problems if found in excess. Other metallic elements like cadmium and lead can be harmful to health if foodstuffs containing them are consumed regularly. Canned dry-milk and fish contain these metals in the journey from farm to fork. Objective: This study was designed to determine the concentration of Cd, Cu, Pb, and Zn in four brands of canned dry-milk and fish from supermarkets in Addis Ababa. Methods: Laboratory based cross-sectional study design was used to determine the concentration of the heavy metals in four different brands of canned dry-milk and fish imported from different country from February to March 2013. The foods brands were sampled by simple random sampling method from eight supermarkets in Addis Ababa and coded. Wet oxidation using HNO3 and H2O2 was used to extract the heavy metals from the foods samples and analyzed by Flame Atomic Absorption Spectroscopy. Conclusions: From this study, it can be concluded that the level of Cadmium and Copper residues in canned dry-milk significantly vary among brands; and the levels of copper residue significantly vary among brands of canned fish at 95 % level. The AM milk brand from Ethiopia was safe in cadmium level. The cadmium and lead level in the NF fish brands from Indonesia packed in vegetables oil, and the lead level in DF brand packed in brine are safe.Keywords: AAS, canned dry milk, canned fish, Cd, Cu, Pb, Zn
Procedia PDF Downloads 421180 Assessment of Groundwater Quality around a Cement Factory in Ewekoro, Ogun State, Southwest Nigeria
Authors: A. O. David, A. A. Akaho, M. A. Abah, J. O. Ogunjimi
Abstract:
This study focuses on the growing concerns about the quality of groundwater found around cement factories, which have caused several health issues for residents located within two (2) kilometer radius. The qualities of groundwater were determined by an investigative study that involved the determination of some heavy metals and physicochemical properties in drinking water samples. Eight (8) samples of groundwater were collected from the eight sampling sites. The samples were analysed for the following parameters; iron, copper, manganese, zinc, lead, color, dissolved solids, electrical conductivity, pH, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), temperature, turbidity and total hardness using standard methods. The test results showed the variation of the investigated parameters in the samples as follows: temperature 26-31oC, pH 5.9-7.2, electrical conductivity (EC) 0.37 – 0.78 µS/cm, total hardness 181.8 – 333.0 mg/l, turbidity 0.00-0.05 FTU, colour 5-10 TCU, dissolved oxygen 4.31-5.01 mg/l, BOD 0.2-1.0 mg/l, COD 2.0 -4.0 mg/l, Cu 0.04 – 0.09 mg/l, Fe 0.006-0.122 mg/l, Zn 0.016-0.306 mg/l, Mn 0.01-0.05 mg/l and Pb < 0.001 mg/l. The World Health Organization's standard for drinking water quality guidelines was exceeded in several of the analyzed parameters' amounts in the drinking water samples from the study area. The dissolved oxygen was found to exceed 5.0 mg/l, which is the WHO permissible limit; also, Limestone was found to exceed the WHO maximum limit of 170 mg/l. All the above results confirmed the high pollution of the groundwater sources, and hence, they are not suitable for consumption without any prior treatment.Keywords: groundwater, quality, heavy metals, parameters
Procedia PDF Downloads 66179 [Keynote Talk]: Determination of Metal Content in the Surface Sediments of the Istanbul Bosphorus Strait
Authors: Durata Haciu, Elif Sena Tekin, Gokce Ozturk, Patricia Ramey Balcı
Abstract:
Coastal zones are under increasing threat due to anthropogenic activities that introduce considerable pollutants such as heavy metals into marine ecosystems. As part of a larger experimental study examining species responses to contaminated marine sediments, surface sediments (top 5cm) were analysed for major trace elements at three locations in Istanbul Straight. Samples were randomly collected by divers (May 2018) using hand-corers from Istinye (n=4), Garipce (n=10) and Poyrazköy (n=6), at water depths of 4-8m. Twelve metals were examined: As, arsenic; Pb, lead; Cd, cadmium; Cr, chromium; Cu, Copper; Fe, Iron; Ni, Nickel; Zn, Zinc; V, vanadium; Mn, Manganese; Ba, Barium; and Ag, silver by wavelength-dispersive X-ray fluorescence spectrometry (WDXRF) and Inductively Coupled Plasma/Mass Spectroscopy (ICP/MS). Preliminary results indicate that the average concentrations of metals (mg kg⁻¹) varied considerably among locations. In general, concentrations were relatively lower at Garipce compared to either Istinye or Poyrazköy. For most metals mean concentrations were highest at Poyrazköy and Ag and Cd were below detection limits (exception= Ag in a few samples). While Cd and As were undetected in all stations, the concentrations of Fe and Ni fall in the criteria of moderately polluted range and the rest of the metals in the range of low polluted range as compared to Effects Range Low (ERL) and Effects Range median (ERM) values determined by US Environmental Protection Agency (EPA).Keywords: effect-range classification, ICP/MS, marine sediments, XRF
Procedia PDF Downloads 132178 Microstructural and Optical Characterization of Heterostructures of ZnS/CdS and CdS/ZnS Synthesized by Chemical Bath Deposition Method
Authors: Temesgen Geremew
Abstract:
ZnS/glass and CdS/glass single layers and ZnS/CdS and CdS/ZnS heterojunction thin films were deposited by the chemical bath deposition method using zinc acetate and cadmium acetate as the metal ion sources and thioacetamide as a nonmetallic ion source in acidic medium. Na2EDTA was used as a complexing agent to control the free cation concentration. +e single layer and heterojunction thin films were characterized with X-ray diffraction (XRD), a scanning electron microscope (SEM), energy dispersive X-ray (EDX), and a UV-VIS spectrometer. +e XRD patterns of the CdS/glass thin film deposited on the soda lime glass substrate crystalized in the cubic structure with a single peak along the (111) plane. +e ZnS/CdS heterojunction and ZnS/glass single layer thin films were crystalized in the hexagonal ZnS structure. +e CdS/ZnS heterojunction thin film is nearly amorphous.The optical analysis results confirmed single band gap values of 2.75 eV and 2.5 eV for ZnS/CdS and CdS/ZnS heterojunction thin films, respectively. +e CdS/glass and CdS/ZnS thin films have more imaginary dielectric components than the real part. The optical conductivity of the single layer and heterojunction films is in the order of 1015 1/s. +e optical study also confirmed refractive index values between 2 and 2.7 for ZnS/glass, ZnS/CdS, and CdS/ZnS thin films for incident photon energies between 1.2 eV and 3.8 eV. +e surface morphology studies revealed compacted spherical grains covering the substrate surfaces with few cracks on ZnS/glass, ZnS/CdS, and CdS/glass and voids on CdS/ZnS thin films. +e EDX result confirmed nearly 1 :1 metallic to nonmetallic ion ratio in the single-layered thin films and the dominance of Zn ion over Cd ion in both ZnS/CdS and CdS/ZnS heterojunction thin films.Keywords: SERS, sensor, Hg2+, water detection, polythiophene
Procedia PDF Downloads 67177 Toxicity Analysis of Metal Coating Industry Wastewaters by Phytotoxicity Method
Authors: Sukru Dursun, Zeynep Cansu Ayturan, Mostafa Maroof
Abstract:
Metal coating which is important method used for protecting metals against oxidation and corrosion, decreasing friction, protecting metals from chemicals, easing cleaning of the metals. There are several methods used for metal coating such as hot-dip galvanizing, thermal spraying, electroplating and sherardizing. Method which will be used for metal coating depends on the type of metal. The materials mostly used for coating are zinc, nickel, brass, chrome, gold, cadmium, copper, brass, and silver. Within these materials, chrome ion has significant negative impacts on human, other living organisms and environment. Moreover, especially on human chrome may cause lung cancer, stomach ulcer, kidney and liver function disorders and death. Therefore, wastewaters of metal coating industry including chrome should be treated very carefully. In this study, wastewater containing chrome produced by metal coating industry was analysed with phytotoxicity method that is based on measuring the reaction of some plant species against different concentrations of chrome solution. Main plants used for phytotoxicity tests are Lepidium sativum and Lemna minor. Owing to phytotoxicity test, assessing the negative effects of chrome which may harm plants and offering more accurate wastewater treatment techniques against chromium wastewater is possible. Furthermore, the results taken from phytotoxicity tests were analysed with respect to their variance and their importance against different concentrations of chrome solution were determined.Keywords: metal coating wastewater, chrome, phytotoxicity, Lepidium sativum, Lemna minor
Procedia PDF Downloads 325176 Anatomical Adaptations and Mineral Elements Allocation Associated with the Zn Phytostabilization Capability of Acanthus ilicifolius L.
Authors: Shackira Am, Jos T. Puthur
Abstract:
The phytostabilization potential of a halophyte Acanthus ilicifolius L. has been evaluated with special attention to the nutritional as well as anatomical adaptations developed by the plant. Distribution of essential elements influenced by the excess Zn²⁺ ions in the root tissue was studied by FEG-SEM EDX microanalysis. Significant variations were observed in the uptake and allocation of mineral elements like Mg, P, K, S, Na, Si and Al in the root of A. ilicifolius. The increase in S is in correlation with the increased synthesis of glutathione which might be involved in the biosynthesis of phytochelatins. This in turn might be aiding the plant to tolerate the adverse environmental conditions by stabilizing the excess Zn in the root tissue itself. Moreover it is revealed that most of the Zn were accumulated towards the central region near the vascular tissue. Treatment with ZnSO₄ in A. ilicifolius caused significant increase in the number of glandular trichomes on the adaxial leaf surface as compared to the leaves of control plants. In addition to this, A. ilicifolius when treated with ZnSO₄, exhibited a deeply stained layer of cells immediate to the endodermis, forming more or less a ring like structure around the xylem vessels. Phloem cells in these plants were crushed/reduced in numbers. There were no such deeply stained cells forming a ring around the xylem vessels in the control plants. These adaptive responses make the plant a suitable candidate for the phytostabilization of Zn. In addition the nutritional adjustment of the plant equips them for a better survival under increased concentration of Zn²⁺.Keywords: Acanthus ilicifolius, mineral elements, phytostabilization, zinc
Procedia PDF Downloads 171175 Influence of Ground Granulated Blast Furnace Slag on Geotechnical Characteristics of Jarosite Waste
Authors: Chayan Gupta, Arun Prasad
Abstract:
The quick evolution of industrialization causes the scarcity of precious land. Thus, it is vital need to influence the R&D societies to achieve sustainable, economic and social benefits from huge utilization of waste for universal aids. The current study promotes the influence of steel industries waste i.e. ground granulated blast furnace slag (GGBS) in geotechnical properties of jarosite waste (solid waste residues produced from hydrometallurgy operations involved in extraction of Zinc). Numerous strengths tests (unconfined compression (qu) and splitting tensile strength (qt)) are conducted on jarosite-GGBS blends (GGBS, 10-30%) with different curing periods (7, 28 & 90 days). The results indicate that both qu and qt increase with the increase in GGBS content along with curing periods. The increased strength with the addition of GGBS is also observed from microstructural study, which illustrates the occurrence of larger agglomeration of jarosite-GGBS blend particles. The Freezing-Thawing (F-T) durability analysis is also conducted for all the jarosite-GGBS blends and found that the reduction in unconfined compressive strength after five successive F-T cycles enhanced from 62% (natural jarosite) to 48, 42 and 34% at 7, 14 and 28 days curing periods respectively for stabilized jarosite-GGBS samples containing 30% GGBS content. It can be concluded from this study that blending of cementing additives (GGBS) with jarosite waste resulted in a significant improvement in geotechnical characteristics.Keywords: jarosite, GGBS, strength characteristics, microstructural study, durability analysis
Procedia PDF Downloads 171174 The Promising Way to Minimize the Negative Effects of Iron Fortification
Authors: M. Juffrie, Siti Helmyati, Toto Sudargo, B. J. Istiti Kandarina
Abstract:
Background: Iron fortification is one potential way to overcome anemia but it can cause gut microbiota imbalance. Probiotics addition can increase the growth of good gut bacteria while prebiotics can support the probiotics growth. Tempeh is rich in nutrients required for hemoglobin synthesis, such as protein, vitamin B12, vitamin C, zinc, iron and copper. Objective: To know the efficacy of fermented tempeh extract fortified with iron and synbiotic in maintain gut microbiota balance. Methods: Fermented synbiotic tempeh extract was made using Lactobacillus plantarum Dad13 and Fructo-oligosaccharides. A total of 32 anemic Wistar rats underwent the iron repletion phase then divided into 4 groups, given: 1) Fermented synbiotic tempeh extract with 50 ppm Fe/NaFeEDTA (Na), 2) Fermented synbiotic tempeh extract with 50 ppm Fe/FeSO4 (Fe), 3) Fermented synbiotic tempeh extract (St), and 4) not receive any interventions (Co). Rats were feed AIN-93 free Fe during intervention. Gut microbiota was measured with culture technique using selective media agar while hemoglobin concentration (Hb) was measured with photometric method before and after intervention. Results: There were significant increase in Hb after intervention in Na, Fe, and St, 6.85 to 11.80; 6.41 to 11.48 and 6.47 to 11.03 mg/dL, respectively (p <0.05). Co did not show increase in Hb (6.40 vs. 6.28 mg/dL). Lactobacilli increased in all groups while both of Bifidobacteria increased and E. coli decreased only in Na and St groups. Conclusion: Iron fortification of fermented synbiotic tempeh extract can increase hemoglobin concentrations in anemic animal, increase Lactobacilli and decrease E. coli. It can be an alternative solution to conduct iron fortification without deteriorate the gut microbiota.Keywords: tempeh, synbiotic, iron, haemoglobin, gut microbiota
Procedia PDF Downloads 459173 Microstructural and Optical Characterization of High-quality ZnO Nano-rods Deposited by Simple Electrodeposition Process
Authors: Somnath Mahato, Minarul Islam Sarkar, Luis Guillermo Gerling, Joaquim Puigdollers, Asit Kumar Kar
Abstract:
Nanostructured Zinc Oxide (ZnO) thin films have been successfully deposited on indium tin oxide (ITO) coated glass substrates by a simple two electrode electrodeposition process at constant potential. The preparative parameters such as deposition time, deposition potential, concentration of solution, bath temperature and pH value of electrolyte have been optimized for deposition of uniform ZnO thin films. X-ray diffraction studies reveal that the prepared ZnO thin films have a high preferential oriented c-axis orientation with compact hexagonal (wurtzite) structure. Surface morphological studies show that the ZnO films are smooth, continuous, uniform without cracks or holes and compact with nanorod-like structure on the top of the surface. Optical properties reveal that films exhibit higher absorbance in the violet region of the optical spectrum; it gradually decreased in the visible range with increases in wavelength and became least at the beginning of NIR region. The photoluminescence spectra shows that the observed peaks are attributed to the various structural defects in the nanostructured ZnO crystal. The microstructural and optical properties suggest that the electrodeposited ZnO thin films are suitable for application in photosensitive devices such as photovoltaic solar cells photoelectrochemical cells and light emitting diodes etc.Keywords: electrodeposition, microstructure, optical properties, ZnO thin films
Procedia PDF Downloads 321172 Removal of Heavy Metals Pb, Zn and Cu from Sludge Waste of Paper Industries Using Biosurfactant
Authors: Nurul Hidayati
Abstract:
Increasing public awareness of environmental pollution influences the search and development of technologies that help in clean up of organic and inorganic contaminants such as metals. Sludge waste of paper industries as toxic and hazardous material from specific source contains Pb, Zn, and Cu metal from waste soluble ink. An alternative and eco-friendly method of remediation technology is the use of biosurfactants and biosurfactant-producing microorganisms. Soil washing is among the methods available to remove heavy metal from sediments. The purpose of this research is to study effectiveness of biosurfactant with concentration = CMC for the removal of heavy metals, lead, zinc and copper in batch washing test under four different biosurfactant production by microbial origin. Pseudomonas putida T1(8), Bacillus subtilis 3K, Acinetobacter sp, and Actinobacillus sp was grown on mineral salt medium that had been already added with 2% concentration of molasses that it is a low cost application. The samples were kept in a shaker 120 rpm at room temperature for 3 days. Supernatants and sediments of sludge were separated by using a centrifuge and samples from supernatants were measured by atomic absorption spectrophotometer. The highest removal of Pb was up to 14,04% by Acinetobacter sp. Biosurfactant of Pseudomonas putida T1(8) have the highest removal for Zn and Cu up to 6,5% and 2,01% respectively. Biosurfactants have a role for removal process of the metals, including wetting, contact of biosurfactant to the surface of the sediments and detachment of the metals from the sediment. Biosurfactant has proven its ability as a washing agent in heavy metals removal from sediments, but more research is needed to optimize the process of removal heavy metals.Keywords: biosurfactant, removal of heavy metals, sludge waste, paper industries
Procedia PDF Downloads 333171 Feasibility Studies on the Removal of Fluoride from Aqueous Solution by Adsorption Using Agro-Based Waste Materials
Authors: G. Anusha, J. Raja Murugadoss
Abstract:
In recent years, the problem of water contaminant is drastically increasing due to the disposal of industrial wastewater containing iron, fluoride, mercury, lead, cadmium, phosphorus, silver etc. into water bodies. The non-biodegradable heavy metals could accumulate in the human system through food chain and cause various dreadful diseases and permanent disabilities and in worst cases it leads to casual losses. Further, the presence of the excess quantity of such heavy metals viz. Lead, Cadmium, Chromium, Nickel, Zinc, Copper, Iron etc. seriously affect the natural quality of potable water and necessitates the treatment process for removal. Though there are dozens of standard procedures available for the removal of heavy metals, their cost keeps the industrialists away from adopting such technologies. In the present work, an attempt has been made to remove such contaminants particularly fluoride and to study the efficiency of the removal of fluoride by adsorption using a new agro-based materials namely Limonia acidissima and Emblica officinalis which is commonly referred as wood apple and gooseberry respectively. Accordingly a set of experiments has been conducted using batch and column processes, with the help of activated carbon prepared from the shell of wood apple and seeds of gooseberries. Experiments reveal that the adsorption capacity of the shell of wood apple is significant to yield promising solutions.Keywords: adsorption, fluoride, agro-based waste materials, Limonia acidissima, Emblica officinalis
Procedia PDF Downloads 428170 Effect of Compost Application on Uptake and Allocation of Heavy Metals and Plant Nutrients and Quality of Oriental Tobacco Krumovgrad 90
Authors: Violina R. Angelova, Venelina T. Popova, Radka V. Ivanova, Givko T. Ivanov, Krasimir I. Ivanov
Abstract:
A comparative research on the impact of compost on uptake and allocation of nutrients and heavy metals and quality of Oriental tobacco Krumovgrad 90 has been carried out. The experiment was performed on an agricultural field contaminated by the lead zinc smelter near the town of Kardzali, Bulgaria, after closing the lead production. The compost treatments had significant effects on the uptake and allocation of plant nutrients and heavy metals. The incorporation of compost leads to decrease in the amount of heavy metals present in the tobacco leaves, with Cd, Pb and Zn having values of 36%, 12% and 6%, respectively. Application of the compost leads to increased content of potassium, calcium and magnesium in the leaves of tobacco, and therefore, may favorably affect the burning properties of tobacco. The incorporation of compost in the soil has a negative impact on the quality and typicality of the oriental tobacco variety of Krumovgrad 90. The incorporation of compost leads to an increase in the size of the tobacco plant leaves, the leaves become darker in colour, less fleshy and undergo a change in form, becoming (much) broader in the second, third and fourth stalk position. This is accompanied by a decrease in the quality of the tobacco. The incorporation of compost also results in an increase in the mineral substances (pure ash), total nicotine and nitrogen, and a reduction in the amount of reducing sugars, which causes the quality of the tobacco leaves to deteriorate (particularly in the third and fourth harvests).Keywords: chemical composition, compost, heavy metals, oriental tobacco, quality
Procedia PDF Downloads 275169 Determination of Safe Ore Extraction Methodology beneath Permanent Extraction in a Lead Zinc Mine with the Help of FLAC3D Numerical Model
Authors: Ayan Giri, Lukaranjan Phukan, Shantanu Karmakar
Abstract:
Structure and tectonics play a vital role in ore genesis and deposition. The existence of a swelling structure below the current level of a mine leads to the discovery of ores below some permeant developments of the mine. The discovery and the extraction of the ore body are very critical to sustain the business requirement of the mine. The challenge was to extract the ore without hampering the global stability of the mine. In order to do so, different mining options were considered and analysed by numerical modelling in FLAC3d software. The constitutive model prepared for this simulation is the improved unified constitutive model, which can better and more accurately predict the stress-strain relationships in a continuum model. The IUCM employs the Hoek-Brown criterion to determine the instantaneous Mohr-Coulomb parameters cohesion (c) and friction (ɸ) at each level of confining stress. The extra swelled part can be dimensioned as north-south strike width 50m, east-west strike width 50m. On the north side, already a stope (P1) is excavated of the dimension of 25m NS width. The different options considered were (a) Open stoping of extraction of southern part (P0) of 50m to the full extent, (b) Extraction of the southern part of 25m, then filling of both the primaries and extraction of secondary (S0) 25m in between. (c) Extraction of the southern part (P0) completely, preceded by backfill and modify the design of the secondary (S0) for the overall stability of the permanent excavation above the stoping.Keywords: extraction, IUCM, FLAC 3D, stoping, tectonics
Procedia PDF Downloads 214168 Effect of Phosphorus and Potassium Nutrition on Growth, Yield and Minerals Accumulation of Two Soybean Cultivars Differing in Phytate Contents
Authors: Taliman Nisar Ahmad, Hirofume Saneoka
Abstract:
A pot experiment was conducted to investigate the effect of phosphorus (P) and potassium (K) nutrition on grain yield, phytic acid and grain quality of high-phytate (Akimaro) and low-phytate line. Phosphorus and potassium were applied as; P₁ (20 kg ha⁻¹) and P₂ (100 kg ha⁻¹), same as K₁ (20 kg ha⁻¹) and K₂ (100 kg ha⁻¹), respectively. Low-phytate soybean had the highest grain yield, and 75% increase was observed compared to the high-phytate under same treatments. Highly significant differences of seed phytate P were observed in both cultivars, and the phytate P in high-phytate was found 39% higher than low-phytate, whereas no significant differences observed in response to P and K treatment. Percentage of phytate P from total P in seeds was 28 to 35% in low-phytate and 72 to 81% in high-phytate in different treatments. The lipid content in low-phytate was found lowered compared to that of high-phytate. Crude protein in grains was also found significantly higher in PK combined. No significant difference was observed in seed calcium (Ca), magnesium (Mg), and Zinc (Zn) in different treatments, but high-phytate showed 87% increase in seed Ca and 76% of Mg compared to low-phytate; however, low-phytate showed 82% increase in Zn content over high-phytate. The result illustrates that low-phytate soybean achieved higher grain yield and grain Pi in response to increased P and K nutrition. To achieve higher yield and quality seeds from the low-phytate soybean, it is recommended that proper phosphorus and potassium nutrition to be applied suggested in this study.Keywords: phytic acid, low-phytate soybean, high-phytate soybean, P and K nutrition, protein content, soybean
Procedia PDF Downloads 135167 Synthesis and Characterization of Carboxymethyl Cellulose-Chitosan Based Composite Hydrogels for Biomedical and Non-Biomedical Applications
Abstract:
Hydrogels have attracted much academic and industrial attention due to their unique properties and potential biomedical and non-biomedical applications. Limitations on extending their applications have resulted from the synthesis of hydrogels using toxic materials and complex irreproducible processing techniques. In order to promote environmental sustainability, hydrogel efficiency, and wider application, this study focused on the synthesis of composite hydrogels matrices from an edible non-toxic crosslinker-citric acid (CA) using a simple low energy processing method based on carboxymethyl cellulose (CMC) and chitosan (CSN) natural polymers. Composite hydrogels were developed by chemical crosslinking. The results demonstrated that CMC:2CSN:CA exhibited good performance properties and super-absorbency 21× its original weight. This makes it promising for biomedical applications such as chronic wound healing and regeneration, next generation skin substitute, in situ bone regeneration and cell delivery. On the other hand, CMC:CSN:CA exhibited durable well-structured internal network with minimum swelling degrees, water absorbency, excellent gel fraction, and infra-red reflectance. These properties make it a suitable composite hydrogel matrix for warming effect and controlled and efficient release of loaded materials. CMC:2CSN:CA and CMC:CSN:CA composite hydrogels developed also exhibited excellent chemical, morphological, and thermal properties.Keywords: citric acid, fumaric acid, tartaric acid, zinc nitrate hexahydrate
Procedia PDF Downloads 153166 Agarose Based Multifunctional Nanofibrous Bandages for Wound Healing Applications
Authors: Sachin Latiyan, T. S. Sampath Kumar, Mukesh Doble
Abstract:
Natural polymer based nanofibrous wound dressings have gained increased attention because of their high surface area, bioactivity, biodegradability and resemblance to extracellular matrix. Agarose (a natural polymer) have been used largely for angiogenesis, cartilage formation and wound healing applications. However, electrospinning of agarose is tedious thereby rendering limited studies on fabrication and evaluation of agarose based nanofibrous wound dressings. Thus, present study focuses on the fabrication of agarose (10% w/v)/ polyvinyl alcohol (12% w/v) based multifunctional nanofibrous scaffolds. Zinc citrate (1, 3 and 5% w/w of the polymer) was added as a potential antibacterial agent to combat wound infections. The fabricated scaffolds exhibit ~500% swelling (in phosphate buffer saline) with enhanced mechanical strength which is suitable for most of the wound healing applications. In vitro studies were found to reveal an increased migration and proliferation of L929 mouse fibroblasts with agarose blends w.r.t to the control. The fabricated dressings were found to be effective against both Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacterial strains. Hence, a multifunctional (as provides effective swelling and mechanical support along with antibacterial property), natural product based, eco-friendly scaffold was successfully fabricated to serve as a potential wound dressing material.Keywords: antibacterial dressings, benign solvent, nanofibrous agarose, biocompatibility, enhanced swelling and mechanical strength, biopolymeric dressings
Procedia PDF Downloads 94165 Soil Nutrient Management Implications of Growing Food Crops within the Coffee Gardens
Authors: Pennuel P. Togonave, Bartholomew S. Apis, Emma Kiup, Gure Tumae, Johannes Pakatul, Michael Webb
Abstract:
Interplanting food crops in coffee gardens has increased in recent years. The purpose of this study was to quantify the nutrient management implications of growing food crops within the coffee garden and to investigate the sustainability of this practice through field surveys in two accessible sites (Asaro and Bena) and two remote sites (Marawaka and Baira), in Eastern Highlands Province of Papua New Guinea. Coffee gardens were selected at each site and surveys were conducted to assess the status of intercropping in each of the smallholder coffee gardens. Food crops in the coffee gardens were sampled for nutrient analysis Survey results indicate intercropping as a common practice in coffee gardens and entailed mixed cropping of food crops in an irregular pattern and spacing. More than 40% of the farmers used 40-60% of their total coffee garden area for intercropping. In remote sites, more than 50% of the coffee garden areas closest to the house were intercropped with food crops compared to 40% of inaccessible sites. In both remote and accessible sites, the most common intercropped food crops were 90% banana (Musa spp) varieties and 50% sugarcane (Saccharum spp). Nutrient analysis of the by-products and residuals of some common intercrops shows the potential to replenish the coffee plant's deficient nutrients like Potassium, Magnesium, Phosphorus, Boron and Zinc. Intercropping of coffee gardens is increasing due to land pressure, marketing opportunities, food security and labor supplyKeywords: by-products, coffee, crops, intercropping, nutrients, soil
Procedia PDF Downloads 81164 Investigations of Metals and Metal-Antibrowning Agent Effects on Polyphenol Oxidase Activity from Red Poppy Leaf
Authors: Gulnur Arabaci
Abstract:
Heavy metals are one of the major groups of contaminants in the environment and many of them are toxic even at very low concentration in plants and animals. However, some metals play important roles in the biological function of many enzymes in living organisms. Metals such as zinc, iron, and cooper are important for survival and activity of enzymes in plants, however heavy metals can inhibit enzyme which is responsible for defense system of plants. Polyphenol oxidase (PPO) is a copper-containing metalloenzyme which is responsible for enzymatic browning reaction of plants. Enzymatic browning is a major problem for the handling of vegetables and fruits in food industry. It can be increased and effected with many different futures such as metals in the nature and ground. In the present work, PPO was isolated and characterized from green leaves of red poppy plant (Papaver rhoeas). Then, the effect of some known antibrowning agents which can form complexes with metals and metals were investigated on the red poppy PPO activity. The results showed that glutathione was the most potent inhibitory effect on PPO activity. Cu(II) and Fe(II) metals increased the enzyme activities however, Sn(II) had the maximum inhibitory effect and Zn(II) and Pb(II) had no significant effect on the enzyme activity. In order to reduce the effect of heavy metals, the effects of metal-antibrowning agent complexes on the PPO activity were determined. EDTA and metal complexes had no significant effect on the enzyme. L-ascorbic acid and metal complexes decreased but L-ascorbic acid-Cu(II)-complex had no effect. Glutathione–metal complexes had the best inhibitory effect on Red poppy leaf PPO activity.Keywords: inhibition, metal, red poppy, poly phenol oxidase (PPO)
Procedia PDF Downloads 329163 Selective Oxidation of 6Mn-2Si Advanced High Strength Steels during Intercritical Annealing Treatment
Authors: Maedeh Pourmajidian, Joseph R. McDermid
Abstract:
Advanced High Strength Steels are revolutionizing both the steel and automotive industries due to their high specific strength and ability to absorb energy during crash events. This allows manufacturers to design vehicles with significantly increased fuel efficiency without compromising passenger safety. To maintain the structural integrity of the fabricated parts, they must be protected from corrosion damage through continuous hot-dip galvanizing process, which is challenging due to selective oxidation of Mn and Si on the surface of this AHSSs. The effects of process atmosphere oxygen partial pressure and small additions of Sn on the selective oxidation of a medium-Mn C-6Mn-2Si advanced high strength steel was investigated. Intercritical annealing heat treatments were carried out at 690˚C in an N2-5%H2 process atmosphere under dew points ranging from –50˚C to +5˚C. Surface oxide chemistries, morphologies, and thicknesses were determined at a variety of length scales by several techniques, including SEM, TEM+EELS, and XPS. TEM observations of the sample cross-sections revealed the transition to internal oxidation at the +5˚C dew point. EELS results suggested that the internal oxides network was composed of a multi-layer oxide structure with varying chemistry from oxide core towards the outer part. The combined effect of employing a known surface active element as a function of process atmosphere on the surface structure development and the possible impact on reactive wetting of the steel substrates by the continuous galvanizing zinc bath will be discussed.Keywords: 3G AHSS, hot-dip galvanizing, oxygen partial pressure, selective oxidation
Procedia PDF Downloads 399162 Sources of Water Supply and Water Quality for Local Consumption: The Case Study of Eco-Tourism Village, Suan Luang Sub- District Municipality, Ampawa District, Samut Songkram Province, Thailand
Authors: Paiboon Jeamponk, Tasanee Ponglaa, Patchapon Srisanguan
Abstract:
The aim of this research paper was based on an examination of sources of water supply and water quality for local consumption, conducted at eco-tourism villages of Suan Luang Sub- District Municipality of Amphawa District, Samut Songkram Province. The study incorporated both questionnaire and field work of water testing as the research tool and method. The sample size of 288 households was based on the population of the district, whereas the selected sample water sources were from 60 households: 30 samples were ground water and another 30 were surface water. Degree of heavy metal contamination in the water including copper, iron, manganese, zinc, cadmium and lead was investigated utilizing the Atomic Absorption- Direct Aspiration method. The findings unveiled that 96.0 percent of household water consumption was based on water supply, while the rest on canal, river and rain water. The household behaviour of consumption revealed that 47.2 percent of people routinely consumed water without boiling or filtering prior to consumption. The investigation of water supply quality found that the degree of heavy metal contamination including metal, lead, iron, copper, manganese and cadmium met the standards of the Department of Health.Keywords: sources of water supply, water quality, water supply, Thailand
Procedia PDF Downloads 295161 Calcined Tertiaries Hydrotalcites as Supports of Cobalt-Molybdenum Based Catalysts for the Hydrodesulfurization Reaction of Dibenzothiophene
Authors: Edwin Oviedo, Carlos Linares, Philippe Ayrault, Sylvette Brunet
Abstract:
Nowadays, light conventional crude oils are going down. Therefore, the exploitation of heavy crude oils has been increasing. Hence, a major quantity of refractory sulfur compounds such as dibenzothiophene (DBT) should be removed. Many efforts have been carried out to modify hydrotreatment typical supports in order to increase hydrodesulfurization (HDS) reactions. The present work shows the synthesis of tertiaries MgFeAl(0.16), MgFeAl(0.32), CoFeAl, ZnFeAl hydrotalcites, as supports of CoMo based catalysts, where 0.16 and 0.32 are the Fe3+/Al3+ molar ratio. Solids were characterized by different techniques (XRD, CO2-TPD, H2-TPR, FT-IR, BET, Chemical Analysis and HRTEM) and tested in the DBT HDS reaction. The reactions conditions were: Temp=325°C, P=40 Bar, H2/feed=475. Results show that the catalysts CoMo/MgFeAl(0.16) and CoMo/MgFeAl(0.32), which were the most basics, reduced the sulfur content from 500ppm to less than 1 ppm, increasing the cyclohexylbenzene content, i.e. presented a higher selective toward the HYD pathway than reference catalyst CoMo/γ- Al2O3. This is suitable for improving the fuel quality due to the increase of the cetane number. These catalysts were also more active to the HDS reaction increasing the direct desulfurization (DDS) way and presented a good stability. It is advantageous when the gas oil centane number should be improved. Cobalt, iron or zinc species inside support could avoid the Co and Mo dispersion or form spinel species which could be less active to hydrodesulfuration reactions, while hydrotalcites containing Mg increases the HDS activity probably due to improved Co/Mo ratio.Keywords: catalyst, cetane number, dibenzothiophene, diesel, hydrodesulfurization, hydrotreatment, MoS2
Procedia PDF Downloads 160160 Medical Nutritional Therapy in Human Immunodeficiency Virus Infection with Tuberculosis and Severe Malnutrition: A Case Report
Authors: Lista Andriyati, Nurpudji A Taslim
Abstract:
The human immunodeficiency virus (HIV) patients have potential nutritional and metabolic problems. HIV is a virus that attacks cells T helper and impairs the function of immune cells. Infected individuals gradually become immunodeficient, results in increased susceptibility to a wide range of infections such as tuberculosis (TB). Malnutrition has destructive effects on the immune system and host defense mechanisms. Effective and proper nutritional therapies are important to improve medical outcomes and quality of life, which is associated with functional improvement. A case of 38-years old man admitted to hospital with loss of consciousness and was diagnosed HIV infection and relapse lung TB with severe malnutrition, fever, oral candidiasis, anemia (6.3 g/dL), severe hypoalbuminemia (1.9 g/dL), severe hypokalemia (2.2 mmol/L), immune depletion (1085 /µL) and elevated liver enzyme (ALT 1198/AST 375 U/L). Nutritional intervention by giving 2300 kcal of energy, protein 2 g/IBW/day, carbohydrate 350 g, fat 104 g through enteral and parenteral nutrition. Supplementations administered are zinc, vitamin A, vitamin B1, vitamin B6, vitamin B12, vitamin C, vitamin D, and snakehead fish extract high content of protein albumin (Pujimin®). After 46 days, there are clinical and metabolic improvement in Hb (6.3 to 11.2 g/dL), potassium (2.2 to 3.4 mmol/L), albumin (1.9 to 2.3 g/dL), ALT 1198 to 47/AST 375 to 68 U/L) and improved awareness. In conclusion, nutritional therapy in HIV infection with adequate macronutrients and micronutrients fulfillment and immunonutrition is very important to avoid cachexia and to improve nutritional status and immune disfunction.Keywords: HIV, hypoalbuminemia, malnutrition, tuberculosis
Procedia PDF Downloads 130