Search results for: and model-based techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6751

Search results for: and model-based techniques

1471 Geospatial Assessments on Impacts of Land Use Changes and Climate Change in Nigeria Forest Ecosystems

Authors: Samuel O. Akande

Abstract:

The human-induced climate change is likely to have severe consequences on forest ecosystems in Nigeria. Recent discussions and emphasis on issues concerning the environment justify the need for this research which examined deforestation monitoring in Oban Forest, Nigeria using Remote Sensing techniques. The Landsat images from TM (1986), ETM+ (2001) and OLI (2015) sensors were obtained from Landsat online archive and processed using Erdas Imagine 2014 and ArcGIS 10.3 to obtain the land use/land cover and Normalized Differential Vegetative Index (NDVI) values. Ground control points of deforested areas were collected for validation. It was observed that the forest cover decreased in area by about 689.14 km² between 1986 and 2015. The NDVI was used to determine the vegetation health of the forest and its implications on agricultural sustainability. The result showed that the total percentage of the healthy forest cover has reduced to about 45.9% from 1986 to 2015. The results obtained from analysed questionnaires shown that there was a positive correlation between the causes and effects of deforestation in the study area. The coefficient of determination value was calculated as R² ≥ 0.7, to ascertain the level of anthropogenic activities, such as fuelwood harvesting, intensive farming, and logging, urbanization, and engineering construction activities, responsible for deforestation in the study area. Similarly, temperature and rainfall data were obtained from Nigerian Meteorological Agency (NIMET) for the period of 1986 to 2015 in the study area. It was observed that there was a significant increase in temperature while rainfall decreased over the study area. Responses from the administered questionnaires also showed that futile destruction of forest ecosystem in Oban forest could be reduced to its barest minimum if fuelwood harvesting is disallowed. Thus, the projected impacts of climate change on Nigeria’s forest ecosystems and environmental stability is better imagined than experienced.

Keywords: deforestation, ecosystems, normalized differential vegetative index, sustainability

Procedia PDF Downloads 193
1470 Nanostructured Oxide Layer by Anodization on Austenitic Stainless Steels: Structural and Corrosion Insights

Authors: Surya Prakash Gajagouni, Akram Alfantazi, Imad Barsoum

Abstract:

Austenitic stainless steels are widely recognized for their exceptional corrosion resistance and mechanical properties, rendering them indispensable materials across various industries from construction to biomedical applications. However, in chloride and high temperature atmosphere it to further enhance their surface properties, anodization has emerged as a promising surface treatment technique. Anodization modifies the surface of stainless steels by creating a protective oxide layer, improving corrosion resistance and imparting additional functional characteristics. This paper explores the structural and corrosion characteristics of anodized austenitic stainless steels (AISI 304) using a two-step anodic technique. We utilized a perchloric acid-based electrolyte followed by an ammonium fluoride-based electrolyte. This sequential approach aimed to cultivate deeper and intricately self-ordered nanopore oxide arrays on a substrate made of 304 stainless steel. Electron Microscopic (SEM and TEM) images revealed nanoporous layered structures with increased length and crack development correlating with higher voltage and anodization time. Surface composition and chemical oxidation state of surface-treated SS were determined using X-ray photoelectron spectroscopy (XPS) techniques, revealing a surface layer rich in Ni and suppressed Cr, resulting in a thin film composed of Ni and Fe oxide compared to untreated SS. Electrochemical studies demonstrated enhanced corrosion resistance in a strong alkaline medium compared to untreated SS. Understanding the intricate relationship between the structural features of anodized stainless steels and their corrosion resistance is crucial for optimizing the performance of these materials in diverse applications. This study aims to contribute to the advancement of surface engineering strategies for enhancing the durability and functionality of austenitic stainless steels in aggressive environments.

Keywords: austenitic stainless steel, anodization, nanoporous oxides, marine corrosion

Procedia PDF Downloads 34
1469 Assessment of Rangeland Condition in a Dryland System Using UAV-Based Multispectral Imagery

Authors: Vistorina Amputu, Katja Tielboerger, Nichola Knox

Abstract:

Primary productivity in dry savannahs is constraint by moisture availability and under increasing anthropogenic pressure. Thus, considering climate change and the unprecedented pace and scale of rangeland deterioration, methods for assessing the status of such rangelands should be easy to apply, yield reliable and repeatable results that can be applied over large spatial scales. Global and local scale monitoring of rangelands through satellite data and labor-intensive field measurements respectively, are limited in accurately assessing the spatiotemporal heterogeneity of vegetation dynamics to provide crucial information that detects degradation in its early stages. Fortunately, newly emerging techniques such as unmanned aerial vehicles (UAVs), associated miniaturized sensors and improving digital photogrammetric software provide an opportunity to transcend these limitations. Yet, they have not been extensively calibrated in natural systems to encompass their complexities if they are to be integrated for long-term monitoring. Limited research using drone technology has been conducted in arid savannas, for example to assess the health status of this dynamic two-layer vegetation ecosystem. In our study, we fill this gap by testing the relationship between UAV-estimated cover of rangeland functional attributes and field data collected in discrete sample plots in a Namibian dryland savannah along a degradation gradient. The first results are based on a supervised classification performed on the ultra-high resolution multispectral imagery to distinguish between rangeland functional attributes (bare, non-woody, and woody), with a relatively good match to the field observations. Integrating UAV-based observations to improve rangeland monitoring could greatly assist in climate-adapted rangeland management.

Keywords: arid savannah, degradation gradient, field observations, narrow-band sensor, supervised classification

Procedia PDF Downloads 134
1468 Sliding Mode Power System Stabilizer for Synchronous Generator Stability Improvement

Authors: J. Ritonja, R. Brezovnik, M. Petrun, B. Polajžer

Abstract:

Many modern synchronous generators in power systems are extremely weakly damped. The reasons are cost optimization of the machine building and introduction of the additional control equipment into power systems. Oscillations of the synchronous generators and related stability problems of the power systems are harmful and can lead to failures in operation and to damages. The only useful solution to increase damping of the unwanted oscillations represents the implementation of the power system stabilizers. Power system stabilizers generate the additional control signal which changes synchronous generator field excitation voltage. Modern power system stabilizers are integrated into static excitation systems of the synchronous generators. Available commercial power system stabilizers are based on linear control theory. Due to the nonlinear dynamics of the synchronous generator, current stabilizers do not assure optimal damping of the synchronous generator’s oscillations in the entire operating range. For that reason the use of the robust power system stabilizers which are convenient for the entire operating range is reasonable. There are numerous robust techniques applicable for the power system stabilizers. In this paper the use of sliding mode control for synchronous generator stability improvement is studied. On the basis of the sliding mode theory, the robust power system stabilizer was developed. The main advantages of the sliding mode controller are simple realization of the control algorithm, robustness to parameter variations and elimination of disturbances. The advantage of the proposed sliding mode controller against conventional linear controller was tested for damping of the synchronous generator oscillations in the entire operating range. Obtained results show the improved damping in the entire operating range of the synchronous generator and the increase of the power system stability. The proposed study contributes to the progress in the development of the advanced stabilizer, which will replace conventional linear stabilizers and improve damping of the synchronous generators.

Keywords: control theory, power system stabilizer, robust control, sliding mode control, stability, synchronous generator

Procedia PDF Downloads 224
1467 Producing Carbon Nanoparticles from Agricultural and Municipal Wastes

Authors: Kanik Sharma

Abstract:

In the year of 2011, the global production of carbon nano-materials (CNMs) was around 3,500 tons, and it is projected to expand at a compound annual growth rate of 30.6%. Expanding markets for applications of CNMs, such as carbon nano-tubes (CNTs) and carbon nano-fibers (CNFs), place ever-increasing demands on lowering their production costs. Current technologies for CNM generation require intensive premium feedstock consumption and employ costly catalysts; they also require input of external energy. Industrial-scale CNM production is conventionally achieved through chemical vapor deposition (CVD) methods which consume a variety of expensive premium chemical feedstocks such as ethylene, carbon monoxide (CO) and hydrogen (H2); or by flame synthesis techniques, which also consume premium feedstock fuels. Additionally, CVD methods are energy-intensive. Renewable and replenishable feedstocks, such as those found in municipal, industrial, agricultural recycling streams have a more judicious reason for usage, in the light of current emerging needs for sustainability. Agricultural sugarcane bagasse and corn residues, scrap tire chips as well as post-consumer polyethylene (PE) and polyethylene terephthalate (PET) bottle shreddings when either thermally treated by sole pyrolysis or by sequential pyrolysis and partial oxidation result in the formation of gaseous carbon-bearing effluents which when channeled into a heated reactor, produce CNMs, including carbon nano-tubes, catalytically synthesized therein on stainless steel meshes. The structure of the nano-material synthesized depends on the type of feedstock available for pyrolysis, and can be determined by analysing the feedstock. These feedstocks could supersede the use of costly and often toxic or highly-flammable chemicals such as hydrocarbon gases, carbon monoxide and hydrogen, which are commonly used as feedstocks in current nano-manufacturing process for CNMs.

Keywords: nanomaterials, waste plastics, sugarcane bagasse, pyrolysis

Procedia PDF Downloads 228
1466 Personalization of Context Information Retrieval Model via User Search Behaviours for Ranking Document Relevance

Authors: Kehinde Agbele, Longe Olumide, Daniel Ekong, Dele Seluwa, Akintoye Onamade

Abstract:

One major problem of most existing information retrieval systems (IRS) is that they provide even access and retrieval results to individual users specially based on the query terms user issued to the system. When using IRS, users often present search queries made of ad-hoc keywords. It is then up to IRS to obtain a precise representation of user’s information need, and the context of the information. In effect, the volume and range of the Internet documents is growing exponentially and consequently causes difficulties for a user to obtain information that precisely matches the user interest. Diverse combination techniques are used to achieve the specific goal. This is due, firstly, to the fact that users often do not present queries to IRS that optimally represent the information they want, and secondly, the measure of a document's relevance is highly subjective between diverse users. In this paper, we address the problem by investigating the optimization of IRS to individual information needs in order of relevance. The paper addressed the development of algorithms that optimize the ranking of documents retrieved from IRS. This paper addresses this problem with a two-fold approach in order to retrieve domain-specific documents. Firstly, the design of context of information. The context of a query determines retrieved information relevance using personalization and context-awareness. Thus, executing the same query in diverse contexts often leads to diverse result rankings based on the user preferences. Secondly, the relevant context aspects should be incorporated in a way that supports the knowledge domain representing users’ interests. In this paper, the use of evolutionary algorithms is incorporated to improve the effectiveness of IRS. A context-based information retrieval system that learns individual needs from user-provided relevance feedback is developed whose retrieval effectiveness is evaluated using precision and recall metrics. The results demonstrate how to use attributes from user interaction behavior to improve the IR effectiveness.

Keywords: context, document relevance, information retrieval, personalization, user search behaviors

Procedia PDF Downloads 463
1465 Use of Radiation Chemistry Instrumental Neutron Activation Analysis (INAA) and Atomic Absorption Spectroscopy (AAS) for the Elemental Analysis Medicinal Plants from India Used in the Treatment of Heart Diseases

Authors: B. M. Pardeshi

Abstract:

Introduction: Minerals and trace elements are chemical elements required by our bodies for numerous biological and physiological processes that are necessary for the maintenance of health. Medicinal plants are highly beneficial for the maintenance of good health and prevention of diseases. They are known as potential sources of minerals and vitamins. 30 to 40% of today’s conventional drugs used in the medicinal and curative properties of various plants are employed in herbal supplement botanicals, nutraceuticals and drug. Aim: The authors explored the mineral element content of some herbs, because mineral elements may have significant role in the development and treatment of gastrointestinal diseases, and a close connection between the presence or absence of mineral elements and inflammatory mediators was noted. Methods: Present study deals with the elemental analysis of medicinal plants by Instrumental Neutron activation Analysis and Atomic Absorption Spectroscopy. Medicinal herbals prescribed for skin diseases were purchased from markets and were analyzed by Instrumental Neutron Activation Analysis (INAA) using 252Cf Californium spontaneous fission neutron source (flux * 109 n s-1) and the induced activities were counted by γ-ray spectrometry and Atomic Absorption Spectroscopy (AAS) techniques (Perkin Elmer 3100 Model) available at Department of Chemistry University of Pune, INDIA, was used for the measurement of major, minor and trace elements. Results: 15 elements viz. Al, K, Cl, Na, Mn by INAA and Cu, Co, Pb, Ni, Cr, Ca, Fe, Zn, Hg and Cd by AAS were analyzed from different medicinal plants from India. A critical examination of the data shows that the elements Ca , K, Cl, Al, and Fe are found to be present at major levels in most of the samples while the other elements Na, Mn, Cu, Co, Pb, Ni, Cr, Ca, Zn, Hg and Cd are present in minor or trace levels. Conclusion: The beneficial therapeutic effect of the studied herbs may be related to their mineral element content. The elemental concentration in different medicinal plants is discussed.

Keywords: instrumental neutron activation analysis, atomic absorption spectroscopy, medicinal plants, trace elemental analysis, mineral contents

Procedia PDF Downloads 331
1464 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning

Authors: Michael A. Sprayberry, Vincent C. Paquit

Abstract:

Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.

Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization

Procedia PDF Downloads 90
1463 Design and Synthesis of Fully Benzoxazine-Based Porous Organic Polymer Through Sonogashira Coupling Reaction for CO₂ Capture and Energy Storage Application

Authors: Mohsin Ejaz, Shiao-Wei Kuo

Abstract:

The growing production and exploitation of fossil fuels have placed human society in serious environmental issues. As a result, it's critical to design efficient and eco-friendly energy production and storage techniques. Porous organic polymers (POPs) are multi-dimensional porous network materials developed through the formation of covalent bonds between different organic building blocks that possess distinct geometries and topologies. POPs have tunable porosities and high surface area making them a good candidate for an effective electrode material in energy storage applications. Herein, we prepared a fully benzoxazine-based porous organic polymers (TPA–DHTP–BZ POP) through sonogashira coupling of dihydroxyterephthalaldehyde (DHPT) and triphenylamine (TPA) containing benzoxazine (BZ) monomers. Firstly, both BZ monomers (TPA-BZ-Br and DHTP-BZ-Ea) were synthesized by three steps, including Schiff base, reduction, and mannich condensation reaction. Finally, the TPA–DHTP–BZ POP was prepared through the sonogashira coupling reaction of brominated monomer (TPA-BZ-Br) and ethynyl monomer (DHTP-BZ-Ea). Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (NMR) spectroscopy confirmed the successful synthesis of monomers as well as POP. The porosity of TPA–DHTP–BZ POP was investigated by the N₂ absorption technique and showed a Brunauer–Emmett–Teller (BET) surface area of 196 m² g−¹, pore size 2.13 nm and pore volume of 0.54 cm³ g−¹, respectively. The TPA–DHTP–BZ POP experienced thermal ring-opening polymerization, resulting in poly (TPA–DHTP–BZ) POP having strong inter and intramolecular hydrogen bonds formed by phenolic groups and Mannich bridges, thereby enhancing CO₂ capture and supercapacitive performance. The poly(TPA–DHTP–BZ) POP demonstrated a remarkable CO₂ capture of 3.28 mmol g−¹ and a specific capacitance of 67 F g−¹ at 0.5 A g−¹. Thus, poly(TPA–DHTP–BZ) POP could potentially be used for energy storage and CO₂ capture applications.

Keywords: porous organic polymer, benzoxazine, sonogashira coupling, CO₂, supercapacitor

Procedia PDF Downloads 73
1462 On the Thermodynamics of Biological Cell Adhesion

Authors: Ben Nadler

Abstract:

Cell adhesion plays a vital role in many cell activities. The motivation to model cell adhesion is to study important biological processes, such as cell spreading, cell aggregation, tissue formation, and cell adhesion, which are very challenging to study by experimental methods alone. This study provides important insight into cell adhesion, which can lead to improve regenerative medicine and tissue formation techniques. In this presentation the biological cells adhesion is mediated by receptors–ligands binding and the diffusivity of the receptor on the cell membrane surface. The ability of receptors to diffuse on the cell membrane surface yields a very unique and complicated adhesion mechanism, which is exclusive to cells. The phospholipid bilayer, which is the main component in the cell membrane, shows fluid-like behavior associated with the molecules’ diffusivity. The biological cell is modeled as a fluid-like membrane with negligible bending stiffness enclosing the cytoplasm fluid. The in-plane mechanical behavior of the cell membrane is assumed to depend only on the area change, which is motivated by the fluidity of the phospholipid bilayer. In addition, the presence of receptors influences on the local mechanical properties of the cell membrane is accounted for by including stress-free area change, which depends on the receptor density. Based on the physical properties of the receptors and ligands the attraction between the receptors and ligands is modeled as a charged-nonpolar which is a noncovalent interaction. Such interaction is a short-range type, which decays fast with distance. The mobility of the receptor on the cell membrane is modeled using the diffusion equation and Fick’s law is used to model the receptor–receptor interactions. The resultant interaction force, which includes receptor–ligand and receptor–receptor interaction, is decomposed into tangential part, which governs the receptor diffusion, and normal part, which governs the cell deformation and adhesion. The formulation of the governing equations and numerical simulations will be presented. Analysis of the adhesion characteristic and properties are discussed. The roles of various thermomechanical properties of the cell, receptors and ligands on the cell adhesion are investigated.

Keywords: cell adhesion, cell membrane, receptor-ligand interaction, receptor diffusion

Procedia PDF Downloads 342
1461 Performance and Nutritional Evaluation of Moringa Leaves Dried in a Solar-Assisted Heat Pump Dryer Integrated with Thermal Energy Storage

Authors: Aldé Belgard Tchicaya Loemba, Baraka Kichonge, Thomas Kivevele, Juma Rajabu Selemani

Abstract:

Plants used for medicinal purposes are extremely perishable, owing to moisture-enhanced enzymatic and microorganism activity, climate change, and improper handling and storage. Experiments have shown that drying the medicinal plant without affecting the active nutrients and controlling the moisture content as much as possible can extend its shelf life. Different traditional and modern drying techniques for preserving medicinal plants have been developed, with some still being improved in Sub-Saharan Africa. However, many of these methods fail to address the most common issues encountered when drying medicinal plants, such as nutrient loss, long drying times, and a limited capacity to dry during the evening or cloudy hours. Heat pump drying is an alternate drying method that results in no nutritional loss. Furthermore, combining a heat pump dryer with a solar energy storage system appears to be a viable option for all-weather drying without affecting the nutritional values of dried products. In this study, a solar-assisted heat pump dryer integrated with thermal energy storage is developed for drying moringa leaves. The study also discusses the performance analysis of the developed dryer as well as the proximate analysis of the dried moringa leaves. All experiments were conducted from 11 a.m. to 4 p.m. to assess the dryer's performance in “daytime mode”. Experiment results show that the drying time was significantly reduced, and the dryer demonstrated high performance in preserving all of the nutrients. In 5 hours of the drying process, the moisture content was reduced from 75.7 to 3.3%. The average COP value was 3.36, confirming the dryer's low energy consumption. The findings also revealed that after drying, the content of protein, carbohydrates, fats, fiber, and ash greatly increased.

Keywords: heat pump dryer, efficiency, moringa leaves, proximate analysis

Procedia PDF Downloads 82
1460 Impacts of Cerium Oxide Nanoparticles on Functional Bacterial Community in Activated Sludge

Authors: I. Kamika, S. Azizi, M. Tekere

Abstract:

Nanotechnology promises significant improvements of advanced materials and manufacturing techniques with a vast range of applications, which are critical for the future competitiveness of national industries. The manipulations and productions of materials, whilst, controlling the optical properties and surface area to a nanosize scale enabled a birth of a new field known as nanotechnology. However, their rapidly developing industry raises concerns about the environmental impacts of nanoparticles, as their effects on functional bacterial community in wastewater treatment remain unclear. The present research assessed the impact of cerium Oxide nanoparticles (nCeO) on the bacterial microbiome of an activated sludge system, which influenced its performance of this system on nutrient removal. Out of 15875 reads sequenced, a total of 13133 reads were non-chimeric. The wastewater samples were more dominant to the unclassified bacteria (51.07% of bacteria community) followed with the classified bacteria (48.93). Proteobacteria was the most dominant phylum in both classified and unclassified bacteria, whereas 18% of bacteria could even not be assigned a phylum and remained unclassified suggesting hitherto vast untapped microbial diversity. The bacterial operational taxonomic units (OTUs) ranged from 1014 to 2629 over the experimental period. The denitrification related species including Diaphorobacter species, Thauera species and those in the Sphaerotilus and Leptothrix group were found to be inhibited in a high concentration of CeO-NP. The diversity indices suggested that the bacterial community inhabiting the wastewater samples were less diverse as the concentration of CeO increases. The canonical correspondence analysis (CCA) results highlighted that the bacterial community variance had the strongest relationship with water temperature, conductivity, pH, and dissolved oxygen (DO) content as well as nCeO. The results provided the relationships between the microbial community and environmental variables in the wastewater samples.

Keywords: bacterial community, next generation, cerium oxide, wastewater, activated sludge, nanoparticles, nanotechnology

Procedia PDF Downloads 217
1459 AI for Efficient Geothermal Exploration and Utilization

Authors: Velimir Monty Vesselinov, Trais Kliplhuis, Hope Jasperson

Abstract:

Artificial intelligence (AI) is a powerful tool in the geothermal energy sector, aiding in both exploration and utilization. Identifying promising geothermal sites can be challenging due to limited surface indicators and the need for expensive drilling to confirm subsurface resources. Geothermal reservoirs can be located deep underground and exhibit complex geological structures, making traditional exploration methods time-consuming and imprecise. AI algorithms can analyze vast datasets of geological, geophysical, and remote sensing data, including satellite imagery, seismic surveys, geochemistry, geology, etc. Machine learning algorithms can identify subtle patterns and relationships within this data, potentially revealing hidden geothermal potential in areas previously overlooked. To address these challenges, a SIML (Science-Informed Machine Learning) technology has been developed. SIML methods are different from traditional ML techniques. In both cases, the ML models are trained to predict the spatial distribution of an output (e.g., pressure, temperature, heat flux) based on a series of inputs (e.g., permeability, porosity, etc.). The traditional ML (a) relies on deep and wide neural networks (NNs) based on simple algebraic mappings to represent complex processes. In contrast, the SIML neurons incorporate complex mappings (including constitutive relationships and physics/chemistry models). This results in ML models that have a physical meaning and satisfy physics laws and constraints. The prototype of the developed software, called GeoTGO, is accessible through the cloud. Our software prototype demonstrates how different data sources can be made available for processing, executed demonstrative SIML analyses, and presents the results in a table and graphic form.

Keywords: science-informed machine learning, artificial inteligence, exploration, utilization, hidden geothermal

Procedia PDF Downloads 53
1458 Rooftop Rainwater Harvesting for Sustainable Organic Farming: Insights from Smart cities in India

Authors: Rajkumar Ghosh

Abstract:

India faces a critical task of water shortage, specifically during dry seasons, which adversely impacts agricultural productivity and food protection. Natural farming, specializing in sustainable practices, demands green water management in smart cities in India. This paper examines how rooftop rainwater harvesting (RRWH) can alleviate water scarcity and support sustainable organic farming practices in India. RRWH emerges as a promising way to increase water availability for the duration of dry intervals and decrease reliance on traditional water sources in smart cities. The look at explores the capacity of RRWH to enhance water use performance, help crop growth, enhance soil health, and promote ecological stability inside the farming ecosystem. The medical paper delves into the advantages, challenges, and implementation techniques of RRWH in organic farming. It addresses demanding situations, including seasonal variability of rainfall, limited rooftop vicinity, and monetary concerns. Moreover, it analyses broader environmental and socio-economic implications of RRWH for sustainable agriculture, emphasizing water conservation, biodiversity protection, and the social properly-being of farming communities. The belief underscores the importance of RRWH as a sustainable solution for reaching the aim of sustainable agriculture in natural farming in India. It emphasizes the want for further studies, policy advocacy, and capacity-building initiatives to promote RRWH adoption and assist the transformation in the direction of sustainable organic farming systems. The paper proposes adaptive strategies to triumph over demanding situations and optimize the advantages of RRWH in organic farming. By way of doing so, India can make vast development in addressing water scarcity issues and making sure a greater resilient and sustainable agricultural future in smart cities.

Keywords: rooftop rainwater harvesting, organic farming, green water management, food protection, ecological stabilty

Procedia PDF Downloads 102
1457 Exploring Emerging Viruses From a Protected Reserve

Authors: Nemat Sokhandan Bashir

Abstract:

Threats from viruses to agricultural crops could be even larger than the losses caused by the other pathogens because, in many cases, the viral infection is latent but crucial from an epidemic point of view. Wild vegetation can be a source of many viruses that eventually find their destiny in crop plants. Although often asymptomatic in wild plants due to adaptation, they can potentially cause serious losses in crops. Therefore, exploring viruses in wild vegetation is very important. Recently, omics have been quite useful for exploring plant viruses from various plant sources, especially wild vegetation. For instance, we have discovered viruses such as Ambrossia asymptomatic virus I (AAV-1) through the application of metagenomics from Oklahoma Prairie Reserve. Accordingly, extracts from randomly-sampled plants are subjected to high speed and ultracentrifugation to separated virus-like particles (VLP), then nucleic acids in the form of DNA or RNA are extracted from such VLPs by treatment with phenol—chloroform and subsequent precipitation by ethanol. The nucleic acid preparations are separately treated with RNAse or DNAse in order to determine the genome component of VLPs. In the case of RNAs, the complementary cDNAs are synthesized before submitting to DNA sequencing. However, for VLPs with DNA contents, the procedure would be relatively straightforward without making cDNA. Because the length of the nucleic acid content of VPLs can be different, various strategies are employed to achieve sequencing. Techniques similar to so-called "chromosome walking" may be used to achieve sequences of long segments. When the nucleotide sequence data were obtained, they were subjected to BLAST analysis to determine the most related previously reported virus sequences. In one case, we determined that the novel virus was AAV-l because the sequence comparison and analysis revealed that the reads were the closest to the Indian citrus ringspot virus (ICRSV). AAV—l had an RNA genome with 7408 nucleotides in length and contained six open reading frames (ORFs). Based on phylogenies inferred from the replicase and coat protein ORFs of the virus, it was placed in the genus Mandarivirus.

Keywords: wild, plant, novel, metagenomics

Procedia PDF Downloads 80
1456 The Implication of Islamic Finance and Banking for the Sustainable Development in Bangladesh

Authors: Khan Md. Abdus Subhan, Rabeya Bushra

Abstract:

Bangladesh has already seen significant growth in Islamic banking and finance, contributing to the rapid expansion of this sector in the global banking and finance industry. The objective of this study is to analyse the Islamic finance and banking industry's ability to contribute to sustainable development in Bangladesh. It aims to assess the current state, potential, and limitations of Islamic banking and finance in the country. Bangladesh has significant growth potential for Islamic banking and finance. However, addressing several challenges is imperative. These challenges include the absence of a well-developed infrastructure for Islamic banking and finance, a lack of a solid legal framework, limited attention from the central bank, the absence of an Islamic capital market, and a shortage of experts in Sharia law as well as public awareness. Bangladesh, a nation characterized by a primarily Muslim populace, has acknowledged the importance of Islamic finance and banking in promoting sustainable development. Islamic banking principles advocate for ethical practices, risk sharing, and the avoidance of interest-based transactions. This article examines the impact of Islamic finance and banking on promoting sustainable development in Bangladesh and emphasizes its capacity to tackle socio-economic difficulties. The Islamic banking sector, as a trailblazer in funding sustainable development, has the potential to play a significant role in facilitating the shift toward a circular economy. According to Shari'ah rules and the Sustainable Development Goals (SDGs), Islamic finance principles will help change the linear economy into a circular one. They will also provide a strong framework and a lot of funding sources. This study aims to offer crucial recommendations and techniques for the successful implementation of Islamic finance institutions in Bangladesh. The study will use quantitative research methodology, collecting data from secondary sources. This research offers a thorough understanding of the reasoning for the payment of Zakat and its socio-economic importance. Furthermore, the study provides significant insights that could assist Bangladeshi policymakers and governments in implementing Islamic financing systems.

Keywords: sustainable development, Islamic fintech, Islamic banking, Bangladesh

Procedia PDF Downloads 39
1455 Culturable Microbial Diversity and Adaptation Strategy in the Jutulsessen and Ahlmannryggen of Western Dronning Maud Land, Antarctica

Authors: Shiv Mohan Singh, Gwyneth Matcher

Abstract:

To understand the culturable microbial composition and diversity patterns, soil samples were collected from inland nunataks of Jutulsessen and Ahlmannryggen ranges in Dronning Maud Land, Antarctica. 16S rRNA, ITS and the D1/D2 domain sequencing techniques were used for characterization of microbial communities of these geographical areas. The total 37 species of bacteria such as Arthrobacter agilis, Acinetobacter baumannii, Arthrobacter flavus, Arthrobacter ginsengisoli, Arthrobacter oxydans, Arthrobacter oryzae, Arthrobacter polychromogenes, Arthrobacter sulfonivorans, Bacillus altitudinis, Bacillus cereus, Bacillus paramycoides, Brevundimonas vesicularis, Brachybacterium rhamnosum, Curtobacterium luteum, Dermacoccus nishinomiyaensis, Dietzia aerolata, Janibacter indicus, Knoellia subterranean, Kocuria palustris, Kytococcus aerolatus, Lysinibacillus sphaericus, Microbacterium phyllosphaerae, Micrococcus yunnanensis, Methylobacterium rhodesianum, Moraxella osloensis, Paracoccus acridae, Pontibacter amylolyticus, Pseudomonas hunanensis, Pseudarthrobacter siccitolerans, Pseudarthrobacter phenanthrenivorans, Rhodococcus aerolatus, Rhodococcus sovatensis, Sphingomonas daechungensis, Sphingomonas sanguinis, Stenotrophomonas pavanii, Staphylococcus gallinarum, Staphylococcus arlettae and 9 species of fungi such as Candida davisiana, Cosmospora arxii, Geomyces destructans, Lecanicillium muscarium, Memnoniella humicola, Paecilomyces lilacinus, Pseudogymnoascus verrucosus, Phaeophlebiopsis ignerii and Thyronectria caraganae were recorded. Fatty acid methyl esters (FAME) analyses of representative species of each genus have shown predominance branched and unsaturated fatty acids indicate its adaptation strategy in Antarctic cold environment. To the best of our knowledge, this is the first record of culturable bacterial communities from Jutulsessen and Ahlmannryggen ranges in Western Dronning Maud Land, Antarctica.

Keywords: antarctica, microbe, adaptation, polar

Procedia PDF Downloads 86
1454 Beer Brand Commercials and Gender Representation in Nigeria: Contextualization's of Selected Television and YouTube Visuals of the 2010s and 2020s

Authors: Theresa Belema Chris-Biriowu

Abstract:

The change in trends in relation to gender representation in beer brand commercials was the thrust of the study. The study investigated how beer brand commercials reflect societal realities in their portrayals of gender roles within the span of a decade. The major objective of the study was to find out how gender was contextualized in selected beer brand commercials that both air on Nigerian television and stream on YouTube. The study was anchored on the muted group theory. The population of the study was in two streams: the total number of beer beverages that are produced by the eleven breweries in Nigeria and the registered advertising agencies in Lagos, Nigeria. The sample size was also two-pronged: the purposive selection of beer brands that have their commercials on television and YouTube and the purposive selection of an ad agency that has produced running commercials for beer brands within the period between 2010s and 2020s. They adopted visual framing analysis and narrative analysis research techniques. The study qualitatively analyzed the contents of beer brand commercials and conducted an interview with the management of the ad agency for data collection. The data was presented in images and words. The findings showed that females are underrepresented and misrepresented in the beer brand commercials and that the beer brands are not producing commercials that adequately reflect the realities of present times. It was also found that very little has changed in the ad industry between the periods studied, and commercial screenplays are not written with a specific aim to either target the female demographics or give them equal opportunities to thrive in the beer economy. The study concluded that the gender gap in beer commercials subsists and translates to gender discrimination, especially since it is established that females are also stakeholders in the beer economy. The study recommends that beer brands should produce commercials that appeal to their audience irrespective of gender, reflect contemporary realities, and give all genders equal opportunities to thrive in the increasingly competitive industry.

Keywords: beer brands, commercials, gender representation, visuals, television, YouTube

Procedia PDF Downloads 35
1453 Pegylated Liposomes of Trans Resveratrol, an Anticancer Agent, for Enhancing Therapeutic Efficacy and Long Circulation

Authors: M. R. Vijayakumar, Sanjay Kumar Singh, Lakshmi, Hithesh Dewangan, Sanjay Singh

Abstract:

Trans resveratrol (RES) is a natural molecule proved for cancer preventive and therapeutic activities devoid of any potential side effects. However, the therapeutic application of RES in disease management is limited because of its rapid elimination from blood circulation thereby low biological half life in mammals. Therefore, the main objective of this study is to enhance the circulation as well as therapeutic efficacy using PEGylated liposomes. D-α-tocopheryl polyethylene glycol 1000 succinate (vitamin E TPGS) is applied as steric surface decorating agent to prepare RES liposomes by thin film hydration method. The prepared nanoparticles were evaluated by various state of the art techniques such as dynamic light scattering (DLS) technique for particle size and zeta potential, TEM for shape, differential scanning calorimetry (DSC) for interaction analysis and XRD for crystalline changes of drug. Encapsulation efficiency and invitro drug release were determined by dialysis bag method. Cancer cell viability studies were performed by MTT assay, respectively. Pharmacokinetic studies were performed in sprague dawley rats. The prepared liposomes were found to be spherical in shape. Particle size and zeta potential of prepared formulations varied from 64.5±3.16 to 262.3±7.45 nm and -2.1 to 1.76 mV, respectively. DSC study revealed absence of potential interaction. XRD study revealed presence of amorphous form in liposomes. Entrapment efficiency was found to be 87.45±2.14 % and the drug release was found to be controlled up to 24 hours. Minimized MEC in MTT assay and tremendous enhancement in circulation time of RES PEGylated liposomes than its pristine form revealed that the stearic stabilized PEGylated liposomes can be an alternative tool to commercialize this molecule for chemopreventive and therapeutic applications in cancer.

Keywords: trans resveratrol, cancer nanotechnology, long circulating liposomes, bioavailability enhancement, liposomes for cancer therapy, PEGylated liposomes

Procedia PDF Downloads 589
1452 BFDD-S: Big Data Framework to Detect and Mitigate DDoS Attack in SDN Network

Authors: Amirreza Fazely Hamedani, Muzzamil Aziz, Philipp Wieder, Ramin Yahyapour

Abstract:

Software-defined networking in recent years came into the sight of so many network designers as a successor to the traditional networking. Unlike traditional networks where control and data planes engage together within a single device in the network infrastructure such as switches and routers, the two planes are kept separated in software-defined networks (SDNs). All critical decisions about packet routing are made on the network controller, and the data level devices forward the packets based on these decisions. This type of network is vulnerable to DDoS attacks, degrading the overall functioning and performance of the network by continuously injecting the fake flows into it. This increases substantial burden on the controller side, and the result ultimately leads to the inaccessibility of the controller and the lack of network service to the legitimate users. Thus, the protection of this novel network architecture against denial of service attacks is essential. In the world of cybersecurity, attacks and new threats emerge every day. It is essential to have tools capable of managing and analyzing all this new information to detect possible attacks in real-time. These tools should provide a comprehensive solution to automatically detect, predict and prevent abnormalities in the network. Big data encompasses a wide range of studies, but it mainly refers to the massive amounts of structured and unstructured data that organizations deal with on a regular basis. On the other hand, it regards not only the volume of the data; but also that how data-driven information can be used to enhance decision-making processes, security, and the overall efficiency of a business. This paper presents an intelligent big data framework as a solution to handle illegitimate traffic burden on the SDN network created by the numerous DDoS attacks. The framework entails an efficient defence and monitoring mechanism against DDoS attacks by employing the state of the art machine learning techniques.

Keywords: apache spark, apache kafka, big data, DDoS attack, machine learning, SDN network

Procedia PDF Downloads 169
1451 Designing Nickel Coated Activated Carbon (Ni/AC) Based Electrode Material for Supercapacitor Applications

Authors: Zahid Ali Ghazi

Abstract:

Supercapacitors (SCs) have emerged as auspicious energy storage devices because of their fast charge-discharge characteristics and high power densities. In the current study, a simple approach is used to coat activated carbon (AC) with a thin layer of nickel (Ni) by an electroless deposition process to enhance the electrochemical performance of the SC. The synergistic combination of large surface area and high electrical conductivity of the AC, as well as the pseudocapacitive behavior of the metallic Ni, has shown great potential to overcome the limitations of traditional SC materials. First, the materials were characterized using X-ray diffraction (XRD) for crystallography, scanning electron microscopy (SEM) for surface morphology and energy dispersion X-ray (EDX) for elemental analysis. The electrochemical performance of the nickel-coated activated carbon (Ni-AC) is systematically evaluated through various techniques, including galvanostatic charge-discharge (GCD), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The GCD results revealed that Ni/AC has a higher specific capacitance (1559 F/g) than bare AC (222 F/g) at 1 A/g current density in a 2 M KOH electrolyte. Even at a higher current density of 20 A/g, the Ni/AC showed a high capacitance of 944 F/g as compared to 77 F/g by AC. The specific capacitance (1318 F/g) calculated from CV measurements for Ni-AC at 10mV/sec was in close agreement with GCD data. Furthermore, the bare AC exhibited a low energy of 15 Wh/kg at a power density of 356 W/kg whereas, an energy density of 111 Wh/kg at a power density of 360 W/kg was achieved by Ni/AC-850 electrode and demonstrated a long life cycle with 94% capacitance retention over 50000 charge/discharge cycles at 10 A/g. In addition, the EIS study disclosed that the Rs and Rct values of Ni/AC electrodes were much lower than those of bare AC. The superior performance of Ni/AC is mainly attributed to the presence of excessive redox active sites, large electroactive surface area and corrosive resistance properties of Ni. We believe that this study will provide new insights into the controlled coating of ACs and other porous materials with metals for developing high-performance SCs and other energy storage devices.

Keywords: supercapacitor, cyclic voltammetry, coating, energy density, activated carbon

Procedia PDF Downloads 63
1450 A Study on the Application of Machine Learning and Deep Learning Techniques for Skin Cancer Detection

Authors: Hritwik Ghosh, Irfan Sadiq Rahat, Sachi Nandan Mohanty, J. V. R. Ravindra

Abstract:

In the rapidly evolving landscape of medical diagnostics, the early detection and accurate classification of skin cancer remain paramount for effective treatment outcomes. This research delves into the transformative potential of Artificial Intelligence (AI), specifically Deep Learning (DL), as a tool for discerning and categorizing various skin conditions. Utilizing a diverse dataset of 3,000 images representing nine distinct skin conditions, we confront the inherent challenge of class imbalance. This imbalance, where conditions like melanomas are over-represented, is addressed by incorporating class weights during the model training phase, ensuring an equitable representation of all conditions in the learning process. Our pioneering approach introduces a hybrid model, amalgamating the strengths of two renowned Convolutional Neural Networks (CNNs), VGG16 and ResNet50. These networks, pre-trained on the ImageNet dataset, are adept at extracting intricate features from images. By synergizing these models, our research aims to capture a holistic set of features, thereby bolstering classification performance. Preliminary findings underscore the hybrid model's superiority over individual models, showcasing its prowess in feature extraction and classification. Moreover, the research emphasizes the significance of rigorous data pre-processing, including image resizing, color normalization, and segmentation, in ensuring data quality and model reliability. In essence, this study illuminates the promising role of AI and DL in revolutionizing skin cancer diagnostics, offering insights into its potential applications in broader medical domains.

Keywords: artificial intelligence, machine learning, deep learning, skin cancer, dermatology, convolutional neural networks, image classification, computer vision, healthcare technology, cancer detection, medical imaging

Procedia PDF Downloads 86
1449 Effect of Electropolymerization Method in the Charge Transfer Properties and Photoactivity of Polyaniline Photoelectrodes

Authors: Alberto Enrique Molina Lozano, María Teresa Cortés Montañez

Abstract:

Polyaniline (PANI) photoelectrodes were electrochemically synthesized through electrodeposition employing three techniques: chronoamperometry (CA), cyclic voltammetry (CV), and potential pulse (PP) methods. The substrate used for electrodeposition was a fluorine-doped tin oxide (FTO) glass with dimensions of 2.5 cm x 1.3 cm. Subsequently, structural and optical characterization was conducted utilizing Fourier-transform infrared (FTIR) spectroscopy and UV-visible (UV-vis) spectroscopy, respectively. The FTIR analysis revealed variations in the molar ratio of benzenoid to quinonoid rings within the PANI polymer matrix, indicative of differing oxidation states arising from the distinct electropolymerization methodologies employed. In the optical characterization, differences in the energy band gap (Eg) values and positions of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were observed, attributable to variations in doping levels and structural irregularities introduced during the electropolymerization procedures. To assess the charge transfer properties of the PANI photoelectrodes, electrochemical impedance spectroscopy (EIS) experiments were carried out within a 0.1 M sodium sulfate (Na₂SO₄) electrolyte. The results displayed a substantial decrease in charge transfer resistance with the PANI coatings compared to uncoated substrates, with PANI obtained through cyclic voltammetry (CV) presenting the lowest charge transfer resistance, contrasting PANI obtained via chronoamperometry (CA) and potential pulses (PP). Subsequently, the photoactive response of the PANI photoelectrodes was measured through linear sweep voltammetry (LSV) and chronoamperometry. The photoelectrochemical measurements revealed a discernible photoactivity in all PANI-coated electrodes. However, PANI electropolymerized through CV displayed the highest photocurrent. Interestingly, PANI derived from chronoamperometry (CA) exhibited the highest degree of stable photocurrent over an extended temporal interval.

Keywords: PANI, photocurrent, photoresponse, charge separation, recombination

Procedia PDF Downloads 65
1448 Comparative Ante-Mortem Studies through Electrochemical Impedance Spectroscopy, Differential Voltage Analysis and Incremental Capacity Analysis on Lithium Ion Batteries

Authors: Ana Maria Igual-Munoz, Juan Gilabert, Marta Garcia, Alfredo Quijano-Lopez

Abstract:

Nowadays, several lithium-ion battery technologies are being commercialized. These chemistries present different properties that make them more suitable for different purposes. However, comparative studies showing the advantages and disadvantages of different chemistries are incomplete or scarce. Different non-destructive techniques are currently being employed to detect how ageing affects the active materials of lithium-ion batteries (LIBs). For instance, electrochemical impedance spectroscopy (EIS) is one of the most employed ones. This technique allows the user to identify the variations on the different resistances present in LIBs. On the other hand, differential voltage analysis (DVA) has shown to be a powerful technique to detect the processes affecting the different capacities present in LIBs. This technique shows variations in the state of health (SOH) and the capacities for one or both electrodes depending on their chemistry. Finally, incremental capacity analysis (ICA) is a widely known technique for being capable of detecting phase equilibria. It reminds of the commonly used cyclic voltamperometry, as it allows detecting some reactions taking place in the electrodes. In these studies, a set of ageing procedures have been applied to commercial batteries of different chemistries (NCA, NMC, and LFP). Afterwards, results of EIS, DVA, and ICA have been used to correlate them with the processes affecting each cell. Ciclability, overpotential, and temperature cycling studies envisage how the charge-discharge rates, cut-off voltage, and operation temperatures affect each chemistry. These studies will serve battery pack manufacturers, as for common battery users, as they will determine the different conditions affecting cells for each of the chemistry. Taking this into account, each cell could be adjusted to the final purpose of the battery application. Last but not least, all the degradation parameters observed are focused to be integrated into degradation models in the future. This fact will allow the implementation of the widely known digital twins to the degradation in LIBs.

Keywords: lithium ion batteries, non-destructive analysis, different chemistries, ante-mortem studies, ICA, DVA, EIS

Procedia PDF Downloads 128
1447 Nanomaterials Based Biosensing Chip for Non-Invasive Detection of Oral Cancer

Authors: Suveen Kumar

Abstract:

Oral cancer (OC) is the sixth most death causing cancer in world which includes tumour of lips, floor of the mouth, tongue, palate, cheeks, sinuses, throat, etc. Conventionally, the techniques used for OC detection are toluidine blue staining, biopsy, liquid-based cytology, visual attachments, etc., however these are limited by their highly invasive nature, low sensitivity, time consumption, sophisticated instrument handling, sample processing and high cost. Therefore, we developed biosensing chips for non-invasive detection of OC via CYFRA-21-1 biomarker. CYFRA-21-1 (molecular weight: 40 kDa) is secreted in saliva of OC patients which is a non-invasive biological fluid with a cut-off value of 3.8 ng mL-1, above which the subjects will be suffering from oral cancer. Therefore, in first work, 3-aminopropyl triethoxy silane (APTES) functionalized zirconia (ZrO2) nanoparticles (APTES/nZrO2) were used to successfully detect CYFRA-21-1 in a linear detection range (LDR) of 2-16 ng mL-1 with sensitivity of 2.2 µA mL ng-1. Successively, APTES/nZrO2-RGO was employed to prevent agglomeration of ZrO2 by providing high surface area reduced graphene oxide (RGO) support and much wider LDR (2-22 ng mL-1) was obtained with remarkable limit of detection (LOD) as 0.12 ng mL-1. Further, APTES/nY2O3/ITO platform was used for oral cancer bioseneor development. The developed biosensor (BSA/anti-CYFRA-21-1/APTES/nY2O3/ITO) have wider LDR (0.01-50 ng mL-1) with remarkable limit of detection (LOD) as 0.01 ng mL-1. To improve the sensitivity of the biosensing platform, nanocomposite of yattria stabilized nanostructured zirconia-reduced graphene oxide (nYZR) based biosensor has been developed. The developed biosensing chip having ability to detect CYFRA-21-1 biomolecules in the range of 0.01-50 ng mL-1, LOD of 7.2 pg mL-1 with sensitivity of 200 µA mL ng-1. Further, the applicability of the fabricated biosensing chips were also checked through real sample (saliva) analysis of OC patients and the obtained results showed good correlation with the standard protein detection enzyme linked immunosorbent assay (ELISA) technique.

Keywords: non-invasive, oral cancer, nanomaterials, biosensor, biochip

Procedia PDF Downloads 127
1446 Microstructure of Virgin and Aged Asphalts by Small-Angle X-Ray Scattering

Authors: Dong Tang, Yongli Zhao

Abstract:

The study of the microstructure of asphalt is of great importance for the analysis of its macroscopic properties. However, the peculiarities of the chemical composition of the asphalt itself and the limitations of existing direct imaging techniques have caused researchers to face many obstacles in studying the microstructure of asphalt. The advantage of small-angle X-ray scattering (SAXS) is that it allows quantitative determination of the internal structure of opaque materials and is suitable for analyzing the microstructure of materials. Therefore, the SAXS technique was used to study the evolution of microstructures on the nanoscale during asphalt aging. And the reasons for the change in scattering contrast during asphalt aging were also explained with the help of Fourier transform infrared spectroscopy (FTIR). SAXS experimental results show that the SAXS curves of asphalt are similar to the scattering curves of scattering objects with two-level structures. The Porod curve for asphalt shows that there is no obvious interface between the micelles and the surrounding mediums, and there is only a fluctuation of the hot electron density between the two. The Beaucage model fit SAXS patterns shows that the scattering coefficient P of the asphaltene clusters as well as the size of the micelles, gradually increase with the aging of the asphalt. Furthermore, aggregation exists between the micelles of asphalt and becomes more pronounced with increasing aging. During asphalt aging, the electron density difference between the micelles and the surrounding mediums gradually increases, leading to an increase in the scattering contrast of the asphalt. Under long-term aging conditions due to the gradual transition from maltenes to asphaltenes, the electron density difference between the micelles and the surrounding mediums decreases, resulting in a decrease in the scattering contrast of asphalt SAXS. Finally, this paper correlates the macroscopic properties of asphalt with microstructural parameters, and the results show that the high-temperature rutting resistance of asphalt is enhanced and the low-temperature cracking resistance decreases due to the aggregation of micelles and the generation of new micelles. These results are useful for understanding the relationship between changes in microstructure and changes in properties during asphalt aging and provide theoretical guidance for the regeneration of aged asphalt.

Keywords: asphalt, Beaucage model, microstructure, SAXS

Procedia PDF Downloads 80
1445 A General Framework for Measuring the Internal Fraud Risk of an Enterprise Resource Planning System

Authors: Imran Dayan, Ashiqul Khan

Abstract:

Internal corporate fraud, which is fraud carried out by internal stakeholders of a company, affects the well-being of the organisation just like its external counterpart. Even if such an act is carried out for the short-term benefit of a corporation, the act is ultimately harmful to the entity in the long run. Internal fraud is often carried out by relying upon aberrations from usual business processes. Business processes are the lifeblood of a company in modern managerial context. Such processes are developed and fine-tuned over time as a corporation grows through its life stages. Modern corporations have embraced technological innovations into their business processes, and Enterprise Resource Planning (ERP) systems being at the heart of such business processes is a testimony to that. Since ERP systems record a huge amount of data in their event logs, the logs are a treasure trove for anyone trying to detect any sort of fraudulent activities hidden within the day-to-day business operations and processes. This research utilises the ERP systems in place within corporations to assess the likelihood of prospective internal fraud through developing a framework for measuring the risks of fraud through Process Mining techniques and hence finds risky designs and loose ends within these business processes. This framework helps not only in identifying existing cases of fraud in the records of the event log, but also signals the overall riskiness of certain business processes, and hence draws attention for carrying out a redesign of such processes to reduce the chance of future internal fraud while improving internal control within the organisation. The research adds value by applying the concepts of Process Mining into the analysis of data from modern day applications of business process records, which is the ERP event logs, and develops a framework that should be useful to internal stakeholders for strengthening internal control as well as provide external auditors with a tool of use in case of suspicion. The research proves its usefulness through a few case studies conducted with respect to big corporations with complex business processes and an ERP in place.

Keywords: enterprise resource planning, fraud risk framework, internal corporate fraud, process mining

Procedia PDF Downloads 334
1444 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal

Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan

Abstract:

This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.

Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal

Procedia PDF Downloads 113
1443 Morphology Analysis of Apple-Carrot Juice Treated by Manothermosonication (MTS) and High Temperature Short Time (HTST) Processes

Authors: Ozan Kahraman, Hao Feng

Abstract:

Manothermosonication (MTS), which consists of the simultaneous application of heat and ultrasound under moderate pressure (100-700 kPa), is one of the technologies which destroy microorganisms and inactivates enzymes. Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through an ultra-thin specimen, interacting with the specimen as it passes through it. The environmental scanning electron microscope or ESEM is a scanning electron microscope (SEM) that allows for the option of collecting electron micrographs of specimens that are "wet," uncoated. These microscopy techniques allow us to observe the processing effects on the samples. This study was conducted to investigate the effects of MTS and HTST treatments on the morphology of apple-carrot juices by using TEM and ESEM microscopy. Apple-carrot juices treated with HTST (72 0C, 15 s), MTS 50 °C (60 s, 200 kPa), and MTS 60 °C (30 s, 200 kPa) were observed in both ESEM and TEM microscopy. For TEM analysis, a drop of the solution dispersed in fixative solution was put onto a Parafilm ® sheet. The copper coated side of the TEM sample holder grid was gently laid on top of the droplet and incubated for 15 min. A drop of a 7% uranyl acetate solution was added and held for 2 min. The grid was then removed from the droplet and allowed to dry at room temperature and presented into the TEM. For ESEM analysis, a critical point drying of the filters was performed using a critical point dryer (CPD) (Samdri PVT- 3D, Tousimis Research Corp., Rockville, MD, USA). After the CPD, each filter was mounted onto a stub and coated with gold/palladium with a sputter coater (Desk II TSC Denton Vacuum, Moorestown, NJ, USA). E.Coli O157:H7 cells on the filters were observed with an ESEM (Philips XL30 ESEM-FEG, FEI Co., Eindhoven, The Netherland). ESEM (Environmental Scanning Electron Microscopy) and TEM (Transmission Electron Microscopy) images showed extensive damage for the samples treated with MTS at 50 and 60 °C such as ruptured cells and breakage on cell membranes. The damage was increasing with increasing exposure time.

Keywords: MTS, HTST, ESEM, TEM, E.COLI O157:H7

Procedia PDF Downloads 285
1442 Optimization of Shale Gas Production by Advanced Hydraulic Fracturing

Authors: Fazl Ullah, Rahmat Ullah

Abstract:

This paper shows a comprehensive learning focused on the optimization of gas production in shale gas reservoirs through hydraulic fracturing. Shale gas has emerged as an important unconventional vigor resource, necessitating innovative techniques to enhance its extraction. The key objective of this study is to examine the influence of fracture parameters on reservoir productivity and formulate strategies for production optimization. A sophisticated model integrating gas flow dynamics and real stress considerations is developed for hydraulic fracturing in multi-stage shale gas reservoirs. This model encompasses distinct zones: a single-porosity medium region, a dual-porosity average region, and a hydraulic fracture region. The apparent permeability of the matrix and fracture system is modeled using principles like effective stress mechanics, porous elastic medium theory, fractal dimension evolution, and fluid transport apparatuses. The developed model is then validated using field data from the Barnett and Marcellus formations, enhancing its reliability and accuracy. By solving the partial differential equation by means of COMSOL software, the research yields valuable insights into optimal fracture parameters. The findings reveal the influence of fracture length, diversion capacity, and width on gas production. For reservoirs with higher permeability, extending hydraulic fracture lengths proves beneficial, while complex fracture geometries offer potential for low-permeability reservoirs. Overall, this study contributes to a deeper understanding of hydraulic cracking dynamics in shale gas reservoirs and provides essential guidance for optimizing gas production. The research findings are instrumental for energy industry professionals, researchers, and policymakers alike, shaping the future of sustainable energy extraction from unconventional resources.

Keywords: fluid-solid coupling, apparent permeability, shale gas reservoir, fracture property, numerical simulation

Procedia PDF Downloads 71