Search results for: receptor diffusion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1619

Search results for: receptor diffusion

1619 On the Thermodynamics of Biological Cell Adhesion

Authors: Ben Nadler

Abstract:

Cell adhesion plays a vital role in many cell activities. The motivation to model cell adhesion is to study important biological processes, such as cell spreading, cell aggregation, tissue formation, and cell adhesion, which are very challenging to study by experimental methods alone. This study provides important insight into cell adhesion, which can lead to improve regenerative medicine and tissue formation techniques. In this presentation the biological cells adhesion is mediated by receptors–ligands binding and the diffusivity of the receptor on the cell membrane surface. The ability of receptors to diffuse on the cell membrane surface yields a very unique and complicated adhesion mechanism, which is exclusive to cells. The phospholipid bilayer, which is the main component in the cell membrane, shows fluid-like behavior associated with the molecules’ diffusivity. The biological cell is modeled as a fluid-like membrane with negligible bending stiffness enclosing the cytoplasm fluid. The in-plane mechanical behavior of the cell membrane is assumed to depend only on the area change, which is motivated by the fluidity of the phospholipid bilayer. In addition, the presence of receptors influences on the local mechanical properties of the cell membrane is accounted for by including stress-free area change, which depends on the receptor density. Based on the physical properties of the receptors and ligands the attraction between the receptors and ligands is modeled as a charged-nonpolar which is a noncovalent interaction. Such interaction is a short-range type, which decays fast with distance. The mobility of the receptor on the cell membrane is modeled using the diffusion equation and Fick’s law is used to model the receptor–receptor interactions. The resultant interaction force, which includes receptor–ligand and receptor–receptor interaction, is decomposed into tangential part, which governs the receptor diffusion, and normal part, which governs the cell deformation and adhesion. The formulation of the governing equations and numerical simulations will be presented. Analysis of the adhesion characteristic and properties are discussed. The roles of various thermomechanical properties of the cell, receptors and ligands on the cell adhesion are investigated.

Keywords: cell adhesion, cell membrane, receptor-ligand interaction, receptor diffusion

Procedia PDF Downloads 307
1618 Signaling of Leucine-Rich-Repeat Receptor-Like Kinases in Higher Plants

Authors: Man-Ho Oh

Abstract:

Membrane localized Leucine-Rich-Repeat Receptor-Like Kinases (LRR-RLKs) play crucial roles in plant growth and abiotic/biotic stress responses in higher plants including Arabidopsis and Brassica species. Among several Receptor-Like Kinases (RLKs), Leucine-Rich-Repeat Receptor-Like-Kinases (LRR-RLKs) are the major group of genes that play crucial roles related to growth, development and stress conditions in plant system. Since it is involved in several functional roles, it seems to be very important to investigate their roles in higher plants. We are particularly interested in brassinosteroid (BR) signaling, which is mediated by the BRASSINOSTEROID INSENSITIVE 1 (BRI1) receptor kinase and its co-receptor, BRI1-ASSOCIATED KINASE 1 (BAK1). Autophosphorylation of receptor kinases is recognized to be an important process in activation of signaling in higher plants. Although the plant receptors are generally classified as Ser/Thr protein kinases, many other receptor kinases including BRI1 and BAK1 are shown to autophosphorylate on Tyr residues in addition to Ser/Thr. As an interesting result, we determined that several 14-3-3 regulatory proteins bind to BRI1-CD and are phosphorylated by several receptor kinases in vitro, suggesting that BRI1 is critical for diverse signaling.

Keywords: autophosphorylation, brassinosteroid, BRASSINOSTEROID INSENSITIVE 1, BRI1-ASSOCIATED KINASE 1, Leucine-Rich-Repeat Receptor-Like Kinases (LRR-RLKs)

Procedia PDF Downloads 191
1617 The Diffusion of Membrane Nanodomains with Specific Ganglioside Composition

Authors: Barbora Chmelova, Radek Sachl

Abstract:

Gangliosides are amphipathic membrane lipids. Due to the composition of bulky oligosaccharide chains containing one or more sialic acids linked to the hydrophobic ceramide base, gangliosides are classified among glycosphingolipids. This unique structure induces a high self-aggregating tendency of gangliosides and, therefore, the formation of nanoscopic clusters called nanodomains. Gangliosides are preferentially present in an extracellular membrane leaflet of all human tissues and thus have an impact on a huge number of biological processes, such as intercellular communication, cell signalling, membrane trafficking, and regulation of receptor activity. Defects in their metabolism, impairment of proper ganglioside function, or changes in their organization lead to serious health conditions such as Alzheimer´s and Parkinson´s diseases, autoimmune diseases, tumour growth, etc. This work mainly focuses on ganglioside organization into nanodomains and their dynamics within the plasma membrane. Current research investigates static ganglioside nanodomains characterization; nevertheless, the information about their diffusion is missing. In our study, fluorescence correlation spectroscopy is implemented together with stimulated emission depletion (STED-FCS), which combines the diffraction-unlimited spatial resolution with high temporal resolution. By comparison of the experiments performed on model vesicles containing 4 % of either GM1, GM2, or GM3 and Monte Carlo simulations of diffusion on the plasma membrane, the description of ganglioside clustering, diffusion of nanodomains, and even diffusion of ganglioside molecules inside investigated nanodomains are described.

Keywords: gangliosides, nanodomains, STED-FCS, flourescence microscopy, membrane diffusion

Procedia PDF Downloads 46
1616 Conformational Switch of hRAGE upon Self-Association

Authors: Ikhlas Ahmed, Jamillah Zamoon

Abstract:

The human receptor for advanced glycation end product is a plasma membrane receptor with an intrinsically disordered region. The protein consists of three extracellular domains, a single membrane spanning transmembrane domain, and a cytosolic domain which is intrinsically disordered and responsible for signaling. The disordered nature of the cytosolic domain allows it to be dynamic in solution. This receptor self-associates to higher forms. The association is triggered by ligand, metal or by the extracellular domain. Fluorescence spectroscopy technique is used to test the self-association of the different concentrations of the cytosolic domain. This work has concluded that the cytosolic domain of this receptor also self-associates. Moreover, the self-association does not require ligand or metal.

Keywords: fluorescence spectroscopy, hRAGE, IDP, Self-association

Procedia PDF Downloads 333
1615 The Quantitative Optical Modulation of Dopamine Receptor-Mediated Endocytosis Using an Optogenetic System

Authors: Qiaoyue Kuang, Yang Li, Mizuki Endo, Takeaki Ozawa

Abstract:

G protein-coupled receptors (GPCR) are the largest family of receptor proteins that detect molecules outside the cell and activate cellular responses. Of the GPCRs, dopamine receptors, which recognize extracellular dopamine, are essential to mammals due to their roles in numerous physiological events, including autonomic movement, hormonal regulation, emotions, and the reward system in the brain. To precisely understand the physiological roles of dopamine receptors, it is important to spatiotemporally control the signaling mediated by dopamine receptors, which is strongly dependent on their surface expression. Conventionally, chemical-induced interactions were applied to trigger the endocytosis of cell surface receptors. However, these methods were subjected to diffusion and therefore lacked temporal and special precision. To further understand the receptor-mediated signaling and to control the plasma membrane expression of receptors, an optogenetic tool called E-fragment was developed. The C-terminus of a light-sensitive photosensory protein cyptochrome2 (CRY2) was attached to β-Arrestin, and the E-fragment was generated by fusing the C-terminal peptide of vasopressin receptor (V2R) to CRY2’s binding partner protein CIB. The CRY2-CIB heterodimerization triggered by blue light stimulation brings β-Arrestin to the vicinity of membrane receptors and results in receptor endocytosis. In this study, the E-fragment system was applied to dopamine receptors 1 and 2 (DRD1 and DRD2) to control dopamine signaling. First, confocal fluorescence microscope observation qualitatively confirmed the light-induced endocytosis of E-fragment fused receptors. Second, NanoBiT bioluminescence assay verified quantitatively that the surface amount of E-fragment labeled receptors decreased after light treatment. Finally, GloSensor bioluminescence assay results suggested that the E-fragment-dependent receptor light-induced endocytosis decreased cAMP production in DRD1 signaling and attenuated the inhibition effect of DRD2 on cAMP production. The developed optogenetic tool was able to induce receptor endocytosis by external light, providing opportunities to further understand numerous physiological activities by controlling receptor-mediated signaling spatiotemporally.

Keywords: dopamine receptors, endocytosis, G protein-coupled receptors, optogenetics

Procedia PDF Downloads 62
1614 Using of Bimolecular Fluorescence Complementation (BiFC) Assays to Study Homo and/ or Heterodimerization of Laminin Receptor 37 LRP/ 67 LR with Galectin-3

Authors: Fulwah Alqahtani, Jafar Mahdavi, Lee Weldon, Nick Holliday, Dlawer Ala'Aldeen

Abstract:

There are two isoforms of laminin receptor; monomeric 37 kDa laminin receptor precursor (37 LRP) and mature 67 kDa laminin receptor (67 LR). The relationship between the 67 LR and its precursor 37 LRP is not completely understood, but previous observations have suggested that 37 LRP can undergo homo- and/or hetero- dimerization with Galectin-3 (Gal-3) to form mature 67 LR. Gal-3 is the only member of the chimera-type group of galectins, and has one C-terminal carbohydrate recognition domain (CRD) that is responsible for binding the ß-galactoside moieties of mono- or oligosaccharides on several host and microbial molecules. The aim of this work was to investigate homo- and hetero-dimerization among the 37 LRP and Gal-3 to form mature 67 LR in mammalian cells using bimolecular fluorescence complementation (BiFC).

Keywords: 37 LRP, 67 LR, Gal-3, BiFC

Procedia PDF Downloads 474
1613 Role of Imaging in Predicting the Receptor Positivity Status in Lung Adenocarcinoma: A Chapter in Radiogenomics

Authors: Sonal Sethi, Mukesh Yadav, Abhimanyu Gupta

Abstract:

The upcoming field of radiogenomics has the potential to upgrade the role of imaging in lung cancer management by noninvasive characterization of tumor histology and genetic microenvironment. Receptor positivity like epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) genotyping are critical in lung adenocarcinoma for treatment. As conventional identification of receptor positivity is an invasive procedure, we analyzed the features on non-invasive computed tomography (CT), which predicts the receptor positivity in lung adenocarcinoma. Retrospectively, we did a comprehensive study from 77 proven lung adenocarcinoma patients with CT images, EGFR and ALK receptor genotyping, and clinical information. Total 22/77 patients were receptor-positive (15 had only EGFR mutation, 6 had ALK mutation, and 1 had both EGFR and ALK mutation). Various morphological characteristics and metastatic distribution on CT were analyzed along with the clinical information. Univariate and multivariable logistic regression analyses were used. On multivariable logistic regression analysis, we found spiculated margin, lymphangitic spread, air bronchogram, pleural effusion, and distant metastasis had a significant predictive value for receptor mutation status. On univariate analysis, air bronchogram and pleural effusion had significant individual predictive value. Conclusions: Receptor positive lung cancer has characteristic imaging features compared with nonreceptor positive lung adenocarcinoma. Since CT is routinely used in lung cancer diagnosis, we can predict the receptor positivity by a noninvasive technique and would follow a more aggressive algorithm for evaluation of distant metastases as well as for the treatment.

Keywords: lung cancer, multidisciplinary cancer care, oncologic imaging, radiobiology

Procedia PDF Downloads 88
1612 Solutions of Fractional Reaction-Diffusion Equations Used to Model the Growth and Spreading of Biological Species

Authors: Kamel Al-Khaled

Abstract:

Reaction-diffusion equations are commonly used in population biology to model the spread of biological species. In this paper, we propose a fractional reaction-diffusion equation, where the classical second derivative diffusion term is replaced by a fractional derivative of order less than two. Based on the symbolic computation system Mathematica, Adomian decomposition method, developed for fractional differential equations, is directly extended to derive explicit and numerical solutions of space fractional reaction-diffusion equations. The fractional derivative is described in the Caputo sense. Finally, the recent appearance of fractional reaction-diffusion equations as models in some fields such as cell biology, chemistry, physics, and finance, makes it necessary to apply the results reported here to some numerical examples.

Keywords: fractional partial differential equations, reaction-diffusion equations, adomian decomposition, biological species

Procedia PDF Downloads 336
1611 A Study on Temperature and Drawing Speed for Diffusion Bonding Enhancement in Drawing of Hot Lined Pipes by FEM Analysis

Authors: M. T. Ahn, J. H. Park, S. H. Park, S. H. Ha

Abstract:

Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in hot drawing even if the reduction in the section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision.

Keywords: diffusion bonding, temperature, pressure, drawing speed

Procedia PDF Downloads 339
1610 Analysis of Vapor-Phase Diffusion of Benzene from Contaminated Soil

Authors: Asma A. Parlin, K. Nakamura, N. Watanabe, T. Komai

Abstract:

Understanding the effective diffusion of benzene vapor in the soil-atmosphere interface is important as an intrusion of benzene into the atmosphere from the soil is largely driven by diffusion. To analyze the vertical one dimensional effective diffusion of benzene vapor in porous medium with high water content, diffusion experiments were conducted in soil columns using Andosol soil and Toyoura silica sand with different water content; for soil water content was from 0 to 30 wt.% and for sand it was from 0.06 to 10 wt.%. In soil, a linear relation was found between water content and effective diffusion coefficient while the effective diffusion coefficient didn’t change in the sand with increasing water. A numerical transport model following unsteady-state approaches based on Fick’s second law was used to match the required time for a steady state of the gas phase concentration profile of benzene to the experimentally measured concentration profile gas phase in the column. The result highlighted that both the water content and porosity might increase vertical diffusion of benzene vapor in soil.

Keywords: benzene vapor-phase, effective diffusion, subsurface soil medium, unsteady state

Procedia PDF Downloads 101
1609 Produced Gas Conversion of Microwave Carbon Receptor Reforming

Authors: Young Nam Chun, Mun Sup Lim

Abstract:

Carbon dioxide and methane, the major components of biomass pyrolysis/gasification gas and biogas, top the list of substances that cause climate change, but they are also among the most important renewable energy sources in modern society. The purpose of this study is to convert carbon dioxide and methane into high-quality energy using char and commercial activated carbon obtained from biomass pyrolysis as a microwave receptor. The methane reforming process produces hydrogen and carbon. This carbon is deposited in the pores of the microwave receptor and lowers catalytic activity, thereby reducing the methane conversion rate. The deposited carbon was removed by carbon gasification due to the supply of carbon dioxide, which solved the problem of microwave receptor inactivity. In particular, the conversion rate remained stable at over 90% when the ratio of carbon dioxide to methane was 1:1. When the reforming results of carbon dioxide and methane were compared after fabricating nickel and iron catalysts using commercial activated carbon as a carrier, the conversion rate was higher in the iron catalyst than in the nickel catalyst and when no catalyst was used. 

Keywords: microwave, gas reforming, greenhouse gas, microwave receptor, catalyst

Procedia PDF Downloads 339
1608 Study of Functional Relevant Conformational Mobility of β-2 Adrenoreceptor by Means of Molecular Dynamics Simulation

Authors: G. V. Novikov, V. S. Sivozhelezov, S. S. Kolesnikov, K. V. Shaitan

Abstract:

The study reports about the influence of binding of orthosteric ligands as well as point mutations on the conformational dynamics of β-2-adrenoreceptor. Using molecular dynamics simulation we found that there was a little fraction of active states of the receptor in its apo (ligand free) ensemble corresponded to its constitutive activity. Analysis of MD trajectories indicated that such spontaneous activation of the receptor is accompanied by the motion in intracellular part of its alpha-helices. Thus receptor’s constitutive activity directly results from its conformational dynamics. On the other hand the binding of a full agonist resulted in a significant shift of the initial equilibrium towards its active state. Finally, the binding of the inverse agonist stabilized the receptor in its inactive state. It is likely that the binding of inverse agonists might be a universal way of constitutive activity inhibition in vivo. Our results indicate that ligand binding redistribute pre-existing conformational degrees of freedom (in accordance to the Monod-Wyman-Changeux-Model) of the receptor rather than cause induced fit in it. Therefore, the ensemble of biologically relevant receptor conformations is encoded in its spatial structure, and individual conformations from that ensemble might be used by the cell in conformity with the physiological behaviour.

Keywords: seven-transmembrane receptors, constitutive activity, activation, x-ray crystallography, principal component analysis, molecular dynamics simulation

Procedia PDF Downloads 225
1607 Targeting Trypanosoma brucei Using Antibody Drug Conjugates against the Transferrin Receptor

Authors: Camilla Trevor, Matthew K. Higgins, Andrea Gonzalez-Munoz, Mark Carrington

Abstract:

Trypanosomiasis is a devastating disease affecting both humans and livestock in sub-Saharan Africa. The diseases are caused by infection with African trypanosomes, protozoa transmitted by tsetse flies. Treatment currently relies on the use of chemotherapeutics with ghastly side effects. Here, we describe the development of effective antibody-drug conjugates that target the T. brucei transferrin receptor. The receptor is essential for trypanosome growth in a mammalian host but there are approximately 12 variants of the transferrin receptor in the genome. Two of the most divergent variants were used to generate recombinant monoclonal immunoglobulin G using phage display and we identified cross-reactive antibodies that bind both variants using phage ELISA, fluorescence resonance energy transfer assays and surface plasmon resonance. Fluorescent antibodies were used to demonstrate uptake into trypanosomes in culture. Toxin-conjugated antibodies were effective at killing trypanosomes at sub-nanomolar concentrations. The approach of using antibody-drug conjugates has proven highly effective.

Keywords: antibody-drug conjugates, phage display, transferrin receptor, trypanosomes

Procedia PDF Downloads 129
1606 An Unbiased Profiling of Immune Repertoire via Sequencing and Analyzing T-Cell Receptor Genes

Authors: Yi-Lin Chen, Sheng-Jou Hung, Tsunglin Liu

Abstract:

Adaptive immune system recognizes a wide range of antigens via expressing a large number of structurally distinct T cell and B cell receptor genes. The distinct receptor genes arise from complex rearrangements called V(D)J recombination, and constitute the immune repertoire. A common method of profiling immune repertoire is via amplifying recombined receptor genes using multiple primers and high-throughput sequencing. This multiplex-PCR approach is efficient; however, the resulting repertoire can be distorted because of primer bias. To eliminate primer bias, 5’ RACE is an alternative amplification approach. However, the application of RACE approach is limited by its low efficiency (i.e., the majority of data are non-regular receptor sequences, e.g., containing intronic segments) and lack of the convenient tool for analysis. We propose a computational tool that can correctly identify non-regular receptor sequences in RACE data via aligning receptor sequences against the whole gene instead of only the exon regions as done in all other tools. Using our tool, the remaining regular data allow for an accurate profiling of immune repertoire. In addition, a RACE approach is improved to yield a higher fraction of regular T-cell receptor sequences. Finally, we quantify the degree of primer bias of a multiplex-PCR approach via comparing it to the RACE approach. The results reveal significant differences in frequency of VJ combination by the two approaches. Together, we provide a new experimental and computation pipeline for an unbiased profiling of immune repertoire. As immune repertoire profiling has many applications, e.g., tracing bacterial and viral infection, detection of T cell lymphoma and minimal residual disease, monitoring cancer immunotherapy, etc., our work should benefit scientists who are interested in the applications.

Keywords: immune repertoire, T-cell receptor, 5' RACE, high-throughput sequencing, sequence alignment

Procedia PDF Downloads 152
1605 Correlation of Leptin with Clinico-Pathological Features of Breast Cancer

Authors: Saad Al-Shibli, Nasser Amjad, Muna Al Kubaisi, Norra Harun, Shaikh Mizan

Abstract:

Leptin is a multifunctional hormone produced mainly by adipocyte. Leptin and its receptor have long been found associated with breast cancer. The main aim of this study is to investigate the correlation between Leptin/Leptin receptor and the clinicopathological features of breast cancer. Blood samples for ELISA, tissue samples from tumors and adjacent breast tissue were taken from 51 women with breast cancer with a control group of 40 women with a negative mammogram. Leptin and Leptin receptor in the tissues were estimated by immunohistochemistry (IHC). They were localized at the subcellular level by immunocytochemistry using transmission electron microscopy (TEM). Our results showed significant difference in serum leptin level between control and the patient group, but no difference between pre and post-operative serum leptin levels in the patient group. By IHC, we found that the majority of the breast cancer cells studied, stained positively for leptin and leptin receptors with co-expression of leptin and its receptors. No significant correlation was found between leptin/leptin receptors expression with the race, menopausal status, lymph node metastasis, estrogen receptor expression, progesterone receptor expression, HER2 expression and tumor size. Majority of the patients with distant metastasis were associated with high leptin and leptin receptor expression. TEM views both Leptin and Leptin receptor were found highly concentrated within and around the nucleus of the cancer breast cells, indicating nucleus is their principal seat of actions while the adjacent breast epithelial cells showed that leptin gold particles are scattered all over the cell with much less than that of the cancerous cells. However, presence of high concentration of leptin does not necessarily prove its over-expression, because it could be internalized from outside by leptin receptor in the cells. In contrast, leptin receptor is definitely over-expressed in the ductal breast cancer cells. We conclude that reducing leptin levels, blocking its downstream tissue specific signal transduction, and/or blocking the upstream leptin receptor pathway might help in prevention and therapy of breast cancer.

Keywords: breast cancer, expression, leptin, leptin receptors

Procedia PDF Downloads 106
1604 A Simple Finite Element Method for Glioma Tumor Growth Model with Density Dependent Diffusion

Authors: Shangerganesh Lingeshwaran

Abstract:

In this presentation, we have performed numerical simulations for a reaction-diffusion equation with various nonlinear density-dependent diffusion operators and proliferation functions. The mathematical model represented by parabolic partial differential equation is considered to study the invasion of gliomas (the most common type of brain tumors) and to describe the growth of cancer cells and response to their treatment. The unknown quantity of the given reaction-diffusion equation is the density of cancer cells and the mathematical model based on the proliferation and migration of glioma cells. A standard Galerkin finite element method is used to perform the numerical simulations of the given model. Finally, important observations on the each of nonlinear diffusion functions and proliferation functions are presented with the help of computational results.

Keywords: glioma invasion, nonlinear diffusion, reaction-diffusion, finite eleament method

Procedia PDF Downloads 197
1603 The Role of Estradiol-17β and Type IV Collagen on the Regulation and Expression Level Of C-Erbb2 RNA and Protein in SKOV-3 Ovarian Cancer Cell Line

Authors: Merry Meryam Martgrita, Marselina Irasonia Tan

Abstract:

One of several aggresive cancer is cancer that overexpress c-erbB2 receptor along with the expression of estrogen receptor. Components of extracellular matrix play an important role to increase cancer cells proliferation, migration and invasion. Both components can affect cancer development by regulating the signal transduction pathways in cancer cells. In recent research, SKOV-3 ovarian cancer cell line, that overexpress c-erbB2 receptor was cultured on type IV collagen and treated with estradiol-17β, to reveal the role of both components on RNA and protein level of c-erbB2 receptor. In this research we found a modulation phenomena of increasing and decreasing of c-erbB2 RNA level and a stabilisation phenomena of c-erbB2 protein expression due to estradiol-17β and type IV collagen. It seemed that estradiol-17β has an important role to increase c-erbB2 transcription and the stability of c-erbB2 protein expression. Type IV collagen has an opposite role. It blocked c-erbB2 transcription when it bound to integrin receptor in SKOV-3 cells.

Keywords: c-erbB2, estradiol-17β, SKOV-3, type IV collagen

Procedia PDF Downloads 251
1602 A Study of Numerical Reaction-Diffusion Systems on Closed Surfaces

Authors: Mei-Hsiu Chi, Jyh-Yang Wu, Sheng-Gwo Chen

Abstract:

The diffusion-reaction equations are important Partial Differential Equations in mathematical biology, material science, physics, and so on. However, finding efficient numerical methods for diffusion-reaction systems on curved surfaces is still an important and difficult problem. The purpose of this paper is to present a convergent geometric method for solving the reaction-diffusion equations on closed surfaces by an O(r)-LTL configuration method. The O(r)-LTL configuration method combining the local tangential lifting technique and configuration equations is an effective method to estimate differential quantities on curved surfaces. Since estimating the Laplace-Beltrami operator is an important task for solving the reaction-diffusion equations on surfaces, we use the local tangential lifting method and a generalized finite difference method to approximate the Laplace-Beltrami operators and we solve this reaction-diffusion system on closed surfaces. Our method is not only conceptually simple, but also easy to implement.

Keywords: closed surfaces, high-order approachs, numerical solutions, reaction-diffusion systems

Procedia PDF Downloads 336
1601 A Study on the Relationship between Shear Strength and Surface Roughness of Lined Pipes by Cold Drawing

Authors: Mok-Tan Ahn, Joon-Hong Park, Yeon-Jong Jeong

Abstract:

Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in heat drawing even if the reduction in section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision.

Keywords: drawing speed, FEM (Finite Element Method), diffusion bonding, temperature, heat drawing, lined pipe

Procedia PDF Downloads 278
1600 Heat Transfer and Diffusion Modelling

Authors: R. Whalley

Abstract:

The heat transfer modelling for a diffusion process will be considered. Difficulties in computing the time-distance dynamics of the representation will be addressed. Incomplete and irrational Laplace function will be identified as the computational issue. Alternative approaches to the response evaluation process will be provided. An illustration application problem will be presented. Graphical results confirming the theoretical procedures employed will be provided.

Keywords: heat, transfer, diffusion, modelling, computation

Procedia PDF Downloads 519
1599 Optimization and Evaluation of 177lu-Dotatoc as a Potential Agent for Peptide Receptor Radionuclide Therapy

Authors: H. Yousefnia, MS. Mousavi-Daramoroudi, S. Zolghadri, F. Abbasi-Davani

Abstract:

High expression of somatostatin receptors on a wide range of human tumours makes them as potential targets for peptide receptor radionuclide tomography. A series of octreotide analogues were synthesized while [DOTA-DPhe1, Tyr3]octreotide (DOTATOC) indicated advantageous properties in tumour models. In this study, 177Lu-DOTATOC was prepared with the radiochemical purity of higher than 99% in 30 min at the optimized condition. Biological behavior of the complex was studied after intravenous injection into the Syrian rats. Major difference uptake was observed compared to 177LuCl3 solution especially in somatostatin receptor-positive tissues such as pancreas and adrenal.

Keywords: Biodistribution, 177Lu, Octreotide, Syrian rats

Procedia PDF Downloads 410
1598 The Transcription Factor HNF4a: A Key Player in Haematological Disorders

Authors: Tareg Belali, Mosleh Abomughaid, Muhanad Alhujaily

Abstract:

HNF4a is one of the steroid hormone receptor family of transcription factors with roles in the development of the liver and the regulation of several critical metabolic pathways, such as glycolysis, drug metabolism, and apolipoproteins and blood coagulation. The transcriptional potency of HNF4a is well known due to its involvement in diabetes and other metabolic diseases. However, recently HNF4a has been discovered to be closely associated with several haematological disorders, mainly because of genetic mutations, drugs, and hepatic disorders. We review HNF4a structure and function and its role in haematological disorders. We discuss possible good therapies that are based on targeting HNF4a.

Keywords: hepatocyte nuclear factor 4 alpha, HNF4a nuclear receptor, steroid hormone receptor family of transcription factors, hematological disorders

Procedia PDF Downloads 66
1597 Influence Maximization in Dynamic Social Networks and Graphs

Authors: Gkolfo I. Smani, Vasileios Megalooikonomou

Abstract:

Social influence and influence diffusion have been studied in social networks. However, most existing tasks on this subject focus on static networks. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time, is studied. The DM algorithm is an extension of the MATI algorithm and solves the influence maximization (IM) problem in dynamic networks and is proposed under the linear threshold (LT) and independent cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.

Keywords: influence maximization, dynamic social networks, diffusion, social influence, graphs

Procedia PDF Downloads 204
1596 Data-Centric Anomaly Detection with Diffusion Models

Authors: Sheldon Liu, Gordon Wang, Lei Liu, Xuefeng Liu

Abstract:

Anomaly detection, also referred to as one-class classification, plays a crucial role in identifying product images that deviate from the expected distribution. This study introduces Data-centric Anomaly Detection with Diffusion Models (DCADDM), presenting a systematic strategy for data collection and further diversifying the data with image generation via diffusion models. The algorithm addresses data collection challenges in real-world scenarios and points toward data augmentation with the integration of generative AI capabilities. The paper explores the generation of normal images using diffusion models. The experiments demonstrate that with 30% of the original normal image size, modeling in an unsupervised setting with state-of-the-art approaches can achieve equivalent performances. With the addition of generated images via diffusion models (10% equivalence of the original dataset size), the proposed algorithm achieves better or equivalent anomaly localization performance.

Keywords: diffusion models, anomaly detection, data-centric, generative AI

Procedia PDF Downloads 37
1595 Development and Pre-clinical Evaluation of New ⁶⁴Cu-NOTA-Folate Conjugates for PET Imaging of Folate Receptor-Positive Tumors

Authors: Norah Al Hokbany, Ibrahim Al Jammaz, Basem Al Otaibi, Yousif Al Malki, Subhani M. Okarvi

Abstract:

Objective: The folate receptor is over-expressed in a wide variety of human tumors. Conjugates of folate have been shown to be selectively taken up by tumor cells via the folate receptor. In an attempt to develop new folate radiotracers with favorable biochemical properties for detecting folate receptor-positive cancers. Methods: we synthesized ⁶⁴Cu-NOTA- and ⁶⁴Cu-NOTAM-folate conjugates using a straightforward and simple one-step reaction. Radiochemical yields were greater than 95% (decay-corrected) with a total synthesis time of less than 20 min. Results: Radiochemical purities were always greater than 98% without high-performance liquid chromatography (HPLC) purification. These synthetic approaches hold considerable promise as a rapid and simple method for ⁶⁴Cu-folate conjugate preparation with high radiochemical yield in a short synthesis time. In vitro tests on the KB cell line showed that significant amounts of the radio conjugates were associated with cell fractions. Bio-distribution studies in nude mice bearing human KB xenografts demonstrated a significant tumor uptake and favorable bio-distribution profile for ⁶⁴Cu-NOTA- and ⁶⁴Cu-NOTAM-folate conjugate. The uptake in the tumors was blocked by the excess injection of folic acid, suggesting a receptor-mediated process. Conclusion: These results demonstrate that the ⁶⁴Cu-NOTAM-folate conjugate may be useful as a molecular probe for the detection and staging of folate receptor-positive cancers, such as ovarian cancer and their metastasis, as well as monitoring tumor response to treatment.

Keywords: folate, receptor, tumor imaging, ⁶⁴Cu-NOTA-folate, PET

Procedia PDF Downloads 77
1594 Identification of Target Receptor Compound 10,11-Dihidroerisodin as an Anti-Cancer Candidate

Authors: Srie Rezeki Nur Endah, Richa Mardianingrum

Abstract:

Cancer is one of the most feared diseases and is considered the leading cause of death worldwide. Generally, cancer drugs are synthetic drugs with relatively more expensive prices and have harmful side effects, so many people turn to traditional medicine, for example by utilizing herbal medicine. Erythrina poeppigiana is one of the plants that can be used as a medicinal plant containing 10,11-dihidroerisodin compounds that are useful anticancer etnofarmakologi. The purpose of this study was to identify the target of 10,11 dihydroerisodin receptor compound as in silico anticancer candidate. The pure isolate was tested physicochemically by MS (Mass Spectrometry), UV-Vis (Ultraviolet – Visible), IR (Infra Red), 13C-NMR (Carbon-13 Nuclear Magnetic Resonance), 1H-NMR (Hydrogen-1 Nuclear Magnetic Resonance), to obtain the structure of 10,11-dihydroerisodin alkaloid compound then identified to target receptors in silico. From the results of the study, it was found that 10,11-dihydroerisodin compound can work on the Serine / threonine-protein kinase Chk1 receptor that serves as an anti-cancer candidate.

Keywords: anti-cancer, Erythrina poeppigiana, target receptor, 10, 11- dihidroerisodin

Procedia PDF Downloads 224
1593 Insights Into Serotonin-Receptor Binding and Stability via Molecular Dynamics Simulations: Key Residues for Electrostatic Interactions and Signal Transduction

Authors: Arunima Verma, Padmabati Mondal

Abstract:

Serotonin-receptor binding plays a key role in several neurological and biological processes, including mood, sleep, hunger, cognition, learning, and memory. In this article, we performed molecular dynamics simulation to examine the key residues that play an essential role in the binding of serotonin to the G-protein-coupled 5-HT₁ᴮ receptor (5-HT₁ᴮ R) via electrostatic interactions. An end-point free energy calculation method (MM-PBSA) determines the stability of the 5-HT1B R due to serotonin binding. The single-point mutation of the polar or charged amino acid residues (Asp129, Thr134) on the binding sites and the calculation of binding free energy validate the importance of these residues in the stability of the serotonin-receptor complex. Principal component analysis indicates the serotonin-bound 5-HT1BR is more stabilized than the apo-receptor in terms of dynamical changes. The difference dynamic cross-correlations map shows the correlation between the transmembrane and mini-Go, which indicates signal transduction happening between mini-Go and the receptor. Allosteric communication reveals the key nodes for signal transduction in 5-HT1BR. These results provide useful insights into the signal transduction pathways and mutagenesis study to regulate the functionality of the complex. The developed protocols can be applied to study local non-covalent interactions and long-range allosteric communications in any protein-ligand system for computer-aided drug design.

Keywords: allostery, CADD, MD simulations, MM-PBSA

Procedia PDF Downloads 36
1592 Influence of Photophysical Parameters of Photoactive Materials on Exciton Diffusion Length and Diffusion Coefficient in Bulk Heterojunction Organic Solar Cells

Authors: Douglas Yeboah, Jai Singh

Abstract:

It has been experimentally demonstrated that exciton diffusion length in organic solids can be improved by fine-tuning the material parameters that govern exciton transfer. Here, a theoretical study is carried out to support this finding. We have therefore derived expressions for the exciton diffusion length and diffusion coefficient of singlet and triplet excitons using Förster resonance energy transfer and Dexter carrier transfer mechanisms and are plotted as a function of photoluminescence (PL) quantum yield, spectral overlap integral, refractive index and dipole moment of the photoactive material. We found that singlet exciton diffusion length increases with PL quantum yield and spectral overlap integral, and decreases with increase in refractive index. Likewise, the triplet exciton diffusion length increases when PL quantum yield increases and dipole moment decreases. The calculated diffusion lengths in different organic materials are compared with existing experimental values and found to be in reasonable agreement. The results are expected to provide insight in developing new organic materials for fabricating bulk heterojunction (BHJ) organic solar cells (OSCs) with better photoconversion efficiency.

Keywords: Dexter carrier transfer, diffusion coefficient, exciton diffusion length, Föster resonance energy transfer, photoactive materials, photophysical parameters

Procedia PDF Downloads 295
1591 Microglia Activity and Induction of Mechanical Allodynia after Mincle Receptor Ligand Injection in Rat Spinal Cord

Authors: Jihoon Yang, Jeong II Choi

Abstract:

Mincle is expressed in macrophages and is members of immunoreceptors induced after exposure to various stimuli and stresses. Mincle receptor activation promotes the production of these substances by increasing the transcription of inflammatory cytokines and chemokines. Cytokines, which play an important role in the initiation and maintenance of such inflammatory pain diseases, have a significant effect on sensory neurons in addition to their enhancement and inhibitory effects on immune and inflammatory cells as mediators of cell interaction. Glial cells in the central nervous system play a critical role in development and maintenance of chronic pain states. Microglia are tissue-resident macrophages in the central nervous system, and belong to a group of mononuclear phagocytes. In the central nervous system, mincle receptor is present in neurons and glial cells of the brain.This study was performed to identify the Mincle receptor in the spinal cord and to investigate the effect of Mincle receptor activation on nociception and the changes of microglia. Materials and Methods: C-type lectins(Mincle) was identified in spinal cord of Male Sprague–Dawley rats. Then, mincle receptor ligand (TDB), via an intrathecal catheter. Mechanical allodynia was measured using von Frey test to evaluate the effect of intrathecal injection of TDB. Result: The present investigation shows that the intrathecal administration of TDB in the rat produces a reliable and quantifiable mechanical hyperalgesia. In addition, The mechanical hyperalgesia after TDB injection gradually developed over time and remained until 10 days. Mincle receptor is identified in the spinal cord, mainly expressed in neuronal cells, but not in microglia or astrocyte. These results suggest that activation of mincle receptor pathway in neurons plays an important role in inducing activation of microglia and inducing mechanical allodynia.

Keywords: mincle, spinal cord, pain, microglia

Procedia PDF Downloads 133
1590 Ex Vivo Permeation Comparison Study of Flurbiprofen from Nanoparticles through Human Skin

Authors: Sheimah El Bejjaji, Lara Gorsek, Chandler Quilchez, Joaquim Suñer, Mireia Mallandrich

Abstract:

Flurbiprofen is an anti-inflammatory drug used in several treatments. The purpose of this study was to compare the permeation of two different formulations of flurbiprofen through the human skin. The first formulation was a solution of flurbiprofen dissolved with polyethylene glycol 3350 (PEG 3350). The second formulation was flurbiprofen encapsulated in poly-ɛ-caprolactone (PɛCL) nanoparticles (NPs), stabilized with poloxamer 188, submitted individually for freeze-drying with PEG 3350 as a cryoprotectant and sterilized by gamma-irradiation. Human skin was obtained from the abdominal region of a healthy patient. The experimental protocol was approved by the Bioethics Committee of Barcelona SCIAS Hospital (Spain), and they obtained the written informed consent forms. After being frozen to -20ºC, the skin samples were cut with a dermatome at 400 µm. The ex vivo permeation study was performed in Franz diffusion cells with a diffusion area of 2.54 cm². Skin samples were placed between two compartment sites, the dermal side in contact with the receptor medium and the epidermis side in contact with the donor chamber to which the formulation was applied. The permeation study was conducted for 24 hours at 32 ± 0.5 °C in accordance with sink conditions. The results were analyzed with an unpaired t-test, and the p-values indicate the formulation with nanoparticles had a higher permeability coefficient, flux, partition parameter, diffusion parameter, and lag time. The applicability of this formulation topically can benefit articulations and ligament inflammation as an alternative to oral drugs.

Keywords: anti-inflammatory drug, flurbiprofen, human skin, nanoparticles, skin permeation

Procedia PDF Downloads 55