Search results for: heat sources
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6617

Search results for: heat sources

1427 Comparative Evaluation of a Dynamic Navigation System Versus a Three-Dimensional Microscope in Retrieving Separated Endodontic Files: An in Vitro Study

Authors: Mohammed H. Karim, Bestoon M. Faraj

Abstract:

Introduction: instrument separation is a common challenge in the endodontic field. Various techniques and technologies have been developed to improve the retrieval success rate. This study aimed to compare the effectiveness of a Dynamic Navigation System (DNS) and a three-dimensional microscope in retrieving broken rotary NiTi files when using trepan burs and the extractor system. Materials and Methods: Thirty maxillary first bicuspids with sixty separate roots were split into two comparable groups based on a comprehensive Cone-Beam Computed Tomography (CBCT) analysis of the root length and curvature. After standardised access opening, glide paths, and patency attainment with the K file (sizes 10 and 15), the teeth were arranged on 3D models (three per quadrant, six per model). Subsequently, controlled-memory heat-treated NiTi rotary files (#25/0.04) were notched 4 mm from the tips and fractured at the apical third of the roots. The C-FR1 Endo file removal system was employed under both guidance to retrieve the fragments, and the success rate, canal aberration, treatment time and volumetric changes were measured. The statistical analysis was performed using IBM SPSS software at a significance level of 0.05. Results: The microscope-guided group had a higher success rate than the DNS guidance, but the difference was insignificant (p > 0.05). In addition, the microscope-guided drills resulted in a substantially lower proportion of canal aberration, required less time to retrieve the fragments and caused a minor change in the root canal volume (p < 0.05). Conclusion: Although dynamically guided trephining with the extractor can retrieve separated instruments, it is inferior to three-dimensional microscope guidance regarding treatment time, procedural errors, and volume change.

Keywords: dynamic navigation system, separated instruments retrieval, trephine burs and extractor system, three-dimensional video microscope

Procedia PDF Downloads 75
1426 Inducing Cryptobiosis State of Tardigrades in Cyanobacteria Synechococcus elongatus for Effective Preservation

Authors: Nilesh Bandekar, Sumita Dasgupta, Luis Alberto Allcahuaman Huaya, Souvik Manna

Abstract:

Cryptobiosis is a dormant state where all measurable metabolic activities are at a halt, allowing an organism to survive in extreme conditions like low temperature (cryobiosis), extreme drought (anhydrobiosis), etc. This phenomenon is observed especially in tardigrades that can retain this state for decades depending on the abiotic environmental conditions. On returning to favorable conditions, tardigrades re-attain a metabolically active state. In this study, cyanobacteria as a model organism are being chosen to induce cryptobiosis for its effective preservation over a long period of time. Preserving cyanobacteria using this strategy will have multiple space applications because of its ability to produce oxygen. In addition, research has shown the survivability of this organism in space for a certain period of time. Few species of cyanobacterial residents of the soil such as Microcoleus, are able to survive in extreme drought as well. This work specifically focuses on Synechococcus elongatus, an endolith cyanobacteria with multiple benefits. It has the capability to produce 25% oxygen in water bodies. It utilizes carbon dioxide to produce oxygen via photosynthesis and also uses carbon dioxide as an energy source to form glucose via the Calvin cycle. There is a fair possibility of initiating cryptobiosis in such an organism by inducing certain proteins extracted from tardigrades such as Heat Shock Proteins (Hsp27 and Hsp30c) and/or hydrophilic Late Embryogenesis Abundant proteins (LEA). Existing methods like cryopreservation are difficult to execute in space keeping in mind their cost and heavy instrumentation. Also, extensive freezing may cause cellular damage. Therefore, cryptobiosis-induced cyanobacteria for its transportation from Earth to Mars as a part of future terraforming missions on Mars will save resources and increase the effectiveness of preservation. Finally, Cyanobacteria species like Synechococcus elongatus can also produce oxygen and glucose on Mars in favorable conditions and holds the key to terraforming Mars.

Keywords: cryptobiosis, cyanobacteria, glucose, mars, Synechococcus elongatus, tardigrades

Procedia PDF Downloads 176
1425 Designing a Syllabus for an Academic Writing Course Instruction Based on Students' Needs

Authors: Nuur Insan Tangkelangi

Abstract:

Needs on academic writing competence as the primary focus in higher education encourage the university institutions around the world to provide academic writing courses to support their students dealing with their tasks pertaining to this competence. However, a pilot study conducted previously in one of the universities in Palopo, a city in South Sulawesi, revealed that even though the institution has provided academic writing courses, supported by some workshops related to academic writing and some supporting facilities at campus, the students still face difficulties in completing their assignments related to academic writing, particularly in writing their theses. The present study focuses on investigating the specific needs of the students in the same institution in terms of competences required in academic writing. It is also carried out to examine whether the syllabus exists and accommodates the students’ needs or not. Questionnaire and interview were used to collect data from sixty students of sixth semester and two lecturers of the academic courses. The results reveal that the students need to learn all aspects of linguistic competence (language features, lexical phrases, academic language and vocabulary, and proper language) and some aspects in discourse competence (how to write introduction, search for appropriate literature, design research method, write coherent paragraphs, refer to sources, summarize and display data, and link sentences smoothly). Regarding the syllabus, it is found that the academic writing courses provided in the institution, where this study takes place, do not have syllabus. This condition is different from other institutions which provide syllabi for all courses. However, at the commencement of the course, the students and the lecturers have negotiated their learning goals, topics discussed, learning activities, and assessment criteria for the course. Therefore, even though the syllabus does not exist, but the elements of the syllabus are there. The negotiation between the students and the lecturers contributes to the students’ attitude toward the courses. The students are contented with the course and they feel that their needs in academic writing have been accommodated. However, some suggestions for the next academic writing courses are stated by the students. Considering the results of this study, a syllabus is then proposed which is expected to accommodate the specific needs of students in that institution.

Keywords: Students' needs, academic writing, syllabus design for instruction, case study

Procedia PDF Downloads 186
1424 Remote Sensing and Geographic Information Systems for Identifying Water Catchments Areas in the Northwest Coast of Egypt for Sustainable Agricultural Development

Authors: Mohamed Aboelghar, Ayman Abou Hadid, Usama Albehairy, Asmaa Khater

Abstract:

Sustainable agricultural development of the desert areas of Egypt under the pressure of irrigation water scarcity is a significant national challenge. Existing water harvesting techniques on the northwest coast of Egypt do not ensure the optimal use of rainfall for agricultural purposes. Basin-scale hydrology potentialities were studied to investigate how available annual rainfall could be used to increase agricultural production. All data related to agricultural production included in the form of geospatial layers. Thematic classification of Sentinal-2 imagery was carried out to produce the land cover and crop maps following the (FAO) system of land cover classification. Contour lines and spot height points were used to create a digital elevation model (DEM). Then, DEM was used to delineate basins, sub-basins, and water outlet points using the Soil and Water Assessment Tool (Arc SWAT). Main soil units of the study area identified from Land Master Plan maps. Climatic data collected from existing official sources. The amount of precipitation, surface water runoff, potential, and actual evapotranspiration for the years (2004 to 2017) shown as results of (Arc SWAT). The land cover map showed that the two tree crops (olive and fig) cover 195.8 km2 when herbaceous crops (barley and wheat) cover 154 km2. The maximum elevation was 250 meters above sea level when the lowest one was 3 meters below sea level. The study area receives a massive variable amount of precipitation; however, water harvesting methods are inappropriate to store water for purposes.

Keywords: water catchements, remote sensing, GIS, sustainable agricultural development

Procedia PDF Downloads 94
1423 Impact of Fermentation Time and Microbial Source on Physicochemical Properties, Total Phenols and Antioxidant Activity of Finger Millet Malt Beverage

Authors: Henry O. Udeha, Kwaku G. Duodub, Afam I. O. Jideanic

Abstract:

Finger millet (FM) [Eleusine coracana] is considered as a potential ‘‘super grain’’ by the United States National Academies as one of the most nutritious among all the major cereals. The regular consumption of FM-based diets has been associated with reduced risk of diabetes, cataract and gastrointestinal tract disorder. Hyperglycaemic, hypocholesterolaemic and anticataractogenic, and other health improvement properties have been reported. This study examined the effect of fermentation time and microbial source on physicochemical properties, phenolic compounds and antioxidant activity of two finger millet (FM) malt flours. Sorghum was used as an external reference. The grains were malted, mashed and fermented using the grain microflora and Lactobacillus fermentum. The phenolic compounds of the resulting beverage were identified and quantified using ultra-performance liquid chromatography (UPLC) and mass spectrometer system (MS). A fermentation-time dependent decrease in pH and viscosities of the beverages, with a corresponding increase in sugar content were noted. The phenolic compounds found in the FM beverages were protocatechuic acid, catechin and epicatechin. Decrease in total phenolics of the beverages was observed with increased fermentation time. The beverages exhibited 2, 2-diphenyl-1-picrylhydrazyl, 2, 2՛-azinobis-3-ethylbenzthiazoline-6-sulfonic acid radical scavenging action and iron reducing activities, which were significantly (p < 0.05) reduced at 96 h fermentation for both microbial sources. The 24 h fermented beverages retained a higher amount of total phenolics and had higher antioxidant activity compared to other fermentation periods. The study demonstrates that FM could be utilised as a functional grain in the production of non-alcoholic beverage with important phenolic compounds for health promotion and wellness.

Keywords: antioxidant activity, eleusine coracana, fermentation, phenolic compounds

Procedia PDF Downloads 92
1422 Whey Protein in Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis

Authors: Zyrah Lou R. Samar, Genecarlo Liwanag

Abstract:

Type 2 Diabetes Mellitus is the more prevalent type, caused by a combination of insulin resistance and inadequate insulin response to hyperglycemia1. Aside from pharmacologic interventions, medical nutrition therapy is an integral part of the management of patients with Type 2 Diabetes Mellitus. Whey protein, which is one of the best protein sources, has been investigated for its applicability in improving glycemic control in patients with Type 2 Diabetes Mellitus. This systematic review and meta-analysis was conducted to measure the magnitude of the effect of whey protein on glycemic control in type 2 diabetes mellitus. The aim of this review is to evaluate the efficacy and safety of whey protein in patients with type 2 diabetes mellitus. Methods: A systematic electronic search for studies in the PubMed and Cochrane Collaboration database was done. Included in this review were randomized controlled trials of whey protein enrolling patients with type 2 diabetes mellitus. Three reviewers independently searched, assessed, and extracted data from the individual studies. Results: A systematic literature search on online databases such as Cochrane Central Registry, PubMed, and Herdin Plus was conducted in April to September 2021 to identify eligible studies. The search yielded 21 randomized controlled trials after removing duplicates. Only 5 articles were included after reviewing the full text, which met the criteria for selection. Conclusion: Whey protein supplementation significantly reduced fasting blood glucose. However, it did not reduce post-prandial blood glucose, HbA1c level, and weight when compared with the placebo. There has been a considerate heterogeneity across all studies, which may have contributed/confounded its effects. A larger sample size and better inclusion, and a more specific study may be included in the future reviews.

Keywords: whey protein, diabetes, nutrition, fasting blood sugar, postprandial glucose, HbA1c, weight reduction

Procedia PDF Downloads 88
1421 Phase Optimized Ternary Alloy Material for Gas Turbines

Authors: Mayandi Ramanathan

Abstract:

Gas turbine blades see the most aggressive thermal stress conditions within the engine, due to Turbine Entry Temperatures in the range of 1500 to 1600°C, but in synchronization with other functional components, they must readily deliver efficient performance, whilst incurring minimal overhaul and repair costs during its service life up to 5 million flying miles. The blades rotate at very high rotation rates and remove significant amount of thermal power from the gas stream. At high temperatures the major component failure mechanism is creep. During its service over time under high temperatures and loads, the blade will deform, lengthen and rupture. High strength and stiffness in the longitudinal direction up to elevated service temperatures are certainly the most needed properties of turbine blades. The proposed advanced Ti alloy material needs a process that provides strategic orientation of metallic ordering, uniformity in composition and high metallic strength. 25% Ta/(Al+Ta) ratio ensures TaAl3 phase formation, where as 51% Al/(Al+Ti) ratio ensures formation of α-Ti3Al and γ-TiAl mixed phases fand the three phase combination ensures minimal Al excess (~1.4% Al excess), unlike Ti-47Al-2Cr-2Nb which has significant excess Al (~5% Al excess) that could affect the service life of turbine blades. This presentation will involve the summary of additive manufacturing and heat treatment process conditions to fabricate turbine blade with Ti-43Al matrix alloyed with optimized amount of refractory Ta metal. Summary of thermo-mechanical test results such as high temperature tensile strength, creep strain rate, thermal expansion coefficient and fracture toughness will be presented. Improvement in service temperature of the turbine blades and corrosion resistance dependence on coercivity of the alloy material will be reported. Phase compositions will be quantified, and a summary of its correlation with creep strain rate will be presented.

Keywords: gas turbine, aerospace, specific strength, creep, high temperature materials, alloys, phase optimization

Procedia PDF Downloads 155
1420 Crafting a Livelihood: A Story of the Kotpad Dyers and Weavers

Authors: Anahita Suri

Abstract:

Craft -an integral part of the conduit to create something beautiful- is a visual representation of the human imagination given life through the hand. The Mirgan tribe in the Naxalite infested forests of Koraput, Odisha are not exempt from this craving for beauty. These skilled craftsmen dye and weave the simple yet sophisticated Kotpad textiles. The women undertake the time-consuming task of dyeing the cotton and silk yarns with the root of the aul tree. The men then weave these yarns into beautiful sarees and dupattas. The root of the aul tree lends the textile its maroon to brown color, which is offset against the unbleached cotton to create a minimalist and distinctive look. The motifs, incorporated through the extra weft technique, reflect the rich tribal heritage of the community. This is an eco-friendly, non-toxic textile. Kotpad fabrics were on the verge of extinction due to various factors like poor infrastructure, no innovation in traditional designs/products, customer ignorance leading to low demand. With livelihood opportunities through craft slowly dwindling, artisans were moving to alternative sources of income generation, like agriculture and daily wage labor. There was an urgent need for intervention to revive the craft, spread awareness about them in urban spaces, and strengthen the artisan’s ability to innovate and create. Recent efforts by government bodies and local designers have given Kotpad handloom a contemporary look without diluting its essence. This research explores the possibilities to leverage Kotpad handloom to find a place in the dynamic culture of the world by its promotion among different target groups and incorporating self-sustaining practices for the artisans. This could further encourage a space for handmade and handcrafted art, rich with stories about India, with a contemporary visual sensibility. This will strengthen environmental and ethical sustainability.

Keywords: craft, contemporary, handloom, natural dye, tribal

Procedia PDF Downloads 124
1419 Arsenic and Fluoride Contamination in Lahore, Pakistan: Spatial Distribution, Mineralization Control and Sources

Authors: Zainab Abbas Soharwardi, Chunli Su, Harold Wilson Tumwitike Mapoma, Syed Zahid Aziz, Mahmut Ince

Abstract:

This study investigated the spatial variations of groundwater chemistry used by communities in Lahore city with emphasis on arsenic (As) and fluoride (F) levels. A total of 472 tubewell samples were collected from 7 towns and analyzed for physical and chemical parameters, including pH, turbidity, electrical conductivity (EC), total dissolved solids (TDS), total hardness, HCO3, Ca2+, Mg2+, Na+, K+, SO42-, Cl-, NO3-, NO2-, F- and As. There were significant spatial variations observed for total hardness, TDS, HCO3, NO3 and As. In general, the south-east of the city displayed higher TH and HCO3 while the north-east showed significantly higher As concentrations attributed to the heterogeneity of the aquifer and industrial activities. In most cases, As was higher than WHO limit value. Indiscriminate disposal of domestic and commercial wastewater into River Ravi is the cause of elevated NO3 observed in the north-west compared to other places in the area. Investigation of the groundwater type revealed facies in the order: Ca-Mg-HCO3-SO4 > Mg-Ca-HCO3-SO4 > Ca-Mg-HCO3-SO4-Cl > Mg-Ca-HCO3-SO4 > Ca-HCO3-SO4 > Ca-Mg-SO4-HCO3. The plausible mineralization control mechanism seems to be that of carbonate weathering, although silicate weathering is probable. Moreover, PHREEQC model results showed that the groundwater was under saturated with respect to evaporites (anhydrite, fluorite, gypsum and halite) while generally equilibrium to saturated with respect to aragonite, calcite and dolomite. The Hierarchical Cluster Analysis (HCA) showed that pH significantly affected As, F, NO3 and NO2 while HCO3 contributing most to the observed TDS values in Lahore. It is concluded that inherent mineral dissolution/ precipitation, pH, oxic conditions, anthropogenic activities, atmospheric transport/ wet deposition, microbial activities and surface soil characteristics play their significant roles in elevating both As and F in the city's groundwater.

Keywords: Lahore, arsenic, fluoride, groundwater

Procedia PDF Downloads 534
1418 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review

Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha

Abstract:

Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.

Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text

Procedia PDF Downloads 97
1417 Developing a Process and Cost Model for Xanthan Biosynthesis from Bioethanol Production Waste Effluents

Authors: Bojana Ž. Bajić, Damjan G. Vučurović, Siniša N. Dodić, Jovana A. Grahovac, Jelena M. Dodić

Abstract:

Biosynthesis of xanthan, a microbial polysaccharide produced by Xanthomonas campestris, is characterized by the possibility of using non-specific carbohydrate substrates, which means different waste effluents can be used as a basis for the production media. Potential raw material sources for xanthan production come from industries with large amounts of waste effluents that are rich in compounds necessary for microorganism growth and multiplication. Taking into account the amount of waste effluents generated by the bioethanol industry and the fact that it contains a high inorganic and organic load it is clear that they represent a potential environmental pollutants if not properly treated. For this reason, it is necessary to develop new technologies which use wastes and wastewaters of one industry as raw materials for another industry. The result is not only a new product, but also reduction of pollution and environmental protection. Biotechnological production of xanthan, which consists of using biocatalysts to convert the bioethanol waste effluents into a high-value product, presents a possibility for sustainable development. This research uses scientific software developed for the modeling of biotechnological processes in order to design a xanthan production plant from bioethanol production waste effluents as raw material. The model was developed using SuperPro Designer® by using input data such as the composition of raw materials and products, defining unit operations, utility consumptions, etc., while obtaining capital and operating costs and the revenues from products to create a baseline production plant model. Results from this baseline model can help in the development of novel biopolymer production technologies. Additionally, a detailed economic analysis showed that this process for converting waste effluents into a high value product is economically viable. Therefore, the proposed model represents a useful tool for scaling up the process from the laboratory or pilot plant to a working industrial scale plant.

Keywords: biotechnology, process model, xanthan, waste effluents

Procedia PDF Downloads 326
1416 Assessing the Impact of Low Carbon Technology Integration on Electricity Distribution Networks: Advancing towards Local Area Energy Planning

Authors: Javier Sandoval Bustamante, Pardis Sheikhzadeh, Vijayanarasimha Hindupur Pakka

Abstract:

In the pursuit of achieving net-zero carbon emissions, the integration of low carbon technologies into electricity distribution networks is paramount. This paper delves into the critical assessment of how the integration of low carbon technologies, such as heat pumps, electric vehicle chargers, and photovoltaic systems, impacts the infrastructure and operation of electricity distribution networks. The study employs rigorous methodologies, including power flow analysis and headroom analysis, to evaluate the feasibility and implications of integrating these technologies into existing distribution systems. Furthermore, the research utilizes Local Area Energy Planning (LAEP) methodologies to guide local authorities and distribution network operators in formulating effective plans to meet regional and national decarbonization objectives. Geospatial analysis techniques, coupled with building physics and electric energy systems modeling, are employed to develop geographic datasets aimed at informing the deployment of low carbon technologies at the local level. Drawing upon insights from the Local Energy Net Zero Accelerator (LENZA) project, a comprehensive case study illustrates the practical application of these methodologies in assessing the rollout potential of LCTs. The findings not only shed light on the technical feasibility of integrating low carbon technologies but also provide valuable insights into the broader transition towards a sustainable and electrified energy future. This paper contributes to the advancement of knowledge in power electrical engineering by providing empirical evidence and methodologies to support the integration of low carbon technologies into electricity distribution networks. The insights gained are instrumental for policymakers, utility companies, and stakeholders involved in navigating the complex challenges of energy transition and achieving long-term sustainability goals.

Keywords: energy planning, energy systems, digital twins, power flow analysis, headroom analysis

Procedia PDF Downloads 21
1415 Political Economy on the Recent Labor Condition in the Philippines: A Literature Review

Authors: Lloyd B. Ranises

Abstract:

The Philippine labor force has been affected by the pandemic recently. The situation was added by the high inflation rate, which makes matter worse. Since the Philippines has a new government after the 2022 national election, the labor condition under the previous government has been passed on to the new one. To understand the labor challenges the present government faces, this study revisits the labor conditions and responses of the previous government from 2016 to 2022. Thus, this study reviews the labor force of the Philippines within the time frame. It explores the challenges in the labor market and examines government policy. This study uses secondary sources in tracing the labor conditions and government actions that addressed them. The Literatures are consolidated to see its relevance to the new government’s labor policy. This study found that the labor force had a sluggish growth earlier until 2018 and thrived on but was affected by the pandemic. By 2020, the National Capital Region’s labor force dropped, although, after which, it begins to thrive again, showing recovery. However, its composition is much more complex. Cognitive skill is high in demand that requires tertiary education. But the production of goods and services is low in the scientific workforce in addition to the mismatch between position and profession. Moreover, Philippine labor has poor female participation. In addition to these complexities, the agricultural rural areas have high underemployment, which implies surplus labor of low skill. Overseas employment, on the other, is significant to the decrease in domestic production. The major responses of the previous government, by far, have been focused on the minimum wage increase and the social services and health insurance, which are appropriate to the post-pandemic needs. Yet still, some issues are unattended. This study concludes that the previous government’s policy needs to be fleshed out substantially. It necessitates that the new administration shall consider encompassing all aspects of the Philippine labor force to sustain and strengthen the economy of the country.

Keywords: cognitive skills, minimum wage, national capital region, underemployment

Procedia PDF Downloads 89
1414 Magnetic Bio-Nano-Fluids for Hyperthermia

Authors: Z. Kolacinski, L. Szymanski. G. Raniszewski, D. Koza, L. Pietrzak

Abstract:

Magnetic Bio-Nano-Fluid (BNF) can be composed of a buffer fluid such as plasma and magnetic nanoparticles such as iron, nickel, cobalt and their oxides. However iron is one of the best elements for magnetization by electromagnetic radiation. It can be used as a tool for medical diagnosis and treatment. Radio frequency (RF) radiation is able to heat iron nanoparticles due to magnetic hysteresis. Electromagnetic heating of iron nanoparticles and ferro-fluids BNF can be successfully used for non-invasive thermal ablation of cancer cells. Moreover iron atoms can be carried by carbon nanotubes (CNTs) if iron is used as catalyst for CNTs synthesis. Then CNTs became the iron containers and they screen the iron content against oxidation. We will present a method of CNTs addressing to the required cells. For thermal ablation of cancer cells we use radio frequencies for which the interaction with human body should be limited to minimum. Generally, the application of RF energy fields for medical treatment is justified by deep tissue penetration. The highly iron doped CNTs as the carriers creating magnetic fluid will be presented. An excessive catalyst injection method using electrical furnace and microwave plasma reactor will be presented. This way it is possible to grow the Fe filled CNTs on a moving surface in continuous synthesis process. This also allows producing uniform carpet of the Fe filled CNTs carriers. For the experimental work targeted to cell ablation we used RF generator to measure the increase in temperature for some samples like: solution of Fe2O3 in BNF which can be plasma-like buffer, solutions of pure iron of different concentrations in plasma-like buffer and in buffer used for a cell culture, solutions of carbon nanotubes (MWCNTs) of different concentrations in plasma-like buffer and in buffer used for a cell culture. Then the targeted therapies which can be effective if the carriers are able to distinguish the difference between cancerous and healthy cell’s physiology are considered. We have developed an approach based on ligand-receptor or antibody-antigen interactions for the case of colon cancer.

Keywords: cancer treatment, carbon nano tubes, drag delivery, hyperthermia, iron

Procedia PDF Downloads 393
1413 Oil Logistics for Refining to Northern Europe

Authors: Vladimir Klepikov

Abstract:

To develop the programs to supply crude oil to North European refineries, it is necessary to take into account the refineries’ location, crude refining capacity, and the transport infrastructure capacity. Among the countries of the region, we include those having a marine boundary along the Northern Sea and the Baltic Sea (from France in the west to Finland in the east). The paper envisages the geographic allocation of the refineries and contains the evaluation of the refineries’ capacities for the region under review. The sustainable operations of refineries in the region are determined by the transportation system capacity to supply crude oil to them. The assessment of capacity of crude oil transportation to the refineries is conducted. The research is performed for the period of 2005/2015, using the quantitative analysis method. The countries are classified by the refineries’ aggregate capacities and the crude oil output on their territory. The crude oil output capacities in the region in the period under review are determined. The capacities of the region’s transportation system to supply crude oil produced in the region to the refineries are revealed. The analysis suggested that imported raw materials are the main source of oil for the refineries in the region. The main sources of crude oil supplies to North European refineries are reviewed. The change in the refineries’ capacities in the group of countries and each particular country, as well as the utilization of the refineries' capacities in the region in the period under review, was studied. The input suggests that the bulk of crude oil is supplied by marine and pipeline transport. The paper contains the assessment of the crude oil transportation by pipeline transport in the overall crude oil cargo flow. The refineries’ production rate for the groups of countries under the review and for each particular country was the subject of study. Our study yielded the trend towards the increase in the crude oil refining at the refineries of the region and reduction in the crude oil output. If this trend persists in the near future, the cargo flow of imported crude oil and the utilization of the North European logistics infrastructure may increase. According to the study, the existing transport infrastructure in the region is able to handle the increasing imported crude oil flow.

Keywords: European region, infrastructure, oil terminal capacity, pipeline capacity, tanker draft

Procedia PDF Downloads 150
1412 Bioaccessible Phenolics, Phenolic Bioaccessibilities and Antioxidant Activities of Cookies Supplemented with Pumpkin Flour

Authors: Emine Aydin, Duygu Gocmen

Abstract:

In this study, pumpkin flours (PFs) were used to replace wheat flour in cookie formulation at three different levels (10%, 20% and 30% w/w). For this purpose PFs produced by two different applications (with or without metabisulfite pre-treatment) and then dried in freeze dryer. Control sample included no PFs. The total phenolic contents of the cookies supplemented with PFs were higher than that of control and gradually increased in total phenolic contents of cookies with increasing PF supplementation levels. Phenolic content makes also significant contribution on nutritional excellence of the developed cookies. Pre-treatment with metabisulfite (MS) had a positive effect on free, bound and total phenolics of cookies which are supplemented with various levels of MS-PF. This is due to a protective effect of metabisulfite pretreatment for phenolic compounds in the pumpkin flour. Phenolic antioxidants may act and absorb in a different way in humans and thus their antioxidant and health effects will be changed accordingly. In the present study phenolics’ bioavailability of cookies was investigated in order to assess PF as sources of accessible phenolics. The content of bioaccessible phenolics and phenolic bioaccessibility of cookies supplemented with PFs had higher than those of control sample. Cookies enriched with 30% MS-PF had the highest bioaccessible phenolics (597.86 mg GAE 100g-1) and phenolic bioaccessibility (41.71%). MS application in PF production caused a significant increase in phenolic bioaccessibility of cookies. According to all assay (ABTS, CUPRAC, FRAP and DPPH), antioxidant activities of cookies with PFs higher than that of control cookie. It was also observed that the cookies supplemented with MS-PF had significantly higher antioxidant activities than those of cookies including PF. In presented study, antioxidative bioaccessibilities of cookies were also determined. The cookies with PFs had significantly (p ≤ 0.05) higher antioxidative bioaccessibilities than control ones. Increasing PFs levels enhanced antioxidative bioaccessibilities of cookies. As a result, PFs addition improved the nutritional and functional properties of cookie by causing increase in antioxidant activity, total phenolic content, bioaccessible phenolics and phenolic bioaccessibilities.

Keywords: phenolic compounds, antioxidant activity, dietary fiber, pumpkin, freeze drying, cookie

Procedia PDF Downloads 240
1411 Towards the Need of Resilient Design and Its Assessment in South China

Authors: Alan Lai, Wilson Yik

Abstract:

With rapid urbanization, there has been a dramatic increase in global urban population in Asia and over half of population in Asia will live in urban regions in the near future. Facing with increasing exposure to climate-related stresses and shocks, most of the Asian cities will very likely to experience more frequent heat waves and flooding with rising sea levels, particularly the coastal cities will grapple for intense typhoons and storm surges. These climate changes have severe impacts in urban areas at the costs of infrastructure and population, for example, human health, wellbeing and high risks of dengue fever, malaria and diarrheal disease. With the increasing prominence of adaptation to climate changes, there have been changes in corresponding policies. Smaller cities have greater potentials for integrating the concept of resilience into their infrastructure as well as keeping pace with their rapid growths in population. It is therefore important to explore the potentials of Asian cities adapting to climate change and the opportunities of building climate resilience in urban planning and building design. Furthermore, previous studies have mainly attempted at exploiting the potential of resilience on a macro-level within urban planning rather than that on micro-level within the context of individual building. The resilience of individual building as a research field has not yet been much explored. Nonetheless, recent studies define that the resilience of an individual building is the one which is able to respond to physical damage and recover from such damage in a quickly and cost-effectively manner, while maintain its primary functions. There is also a need to develop an assessment tool to evaluate the resilience on building scale which is still largely uninvestigated as it should be regarded as a basic function of a building. Due to the lack of literature reporting metric for assessing building resilience with sustainability, the research will be designed as a case study to provide insight into the issue. The aim of this research project is to encourage and assist in developing neighborhood climate resilience design strategies for Hong Kong so as to bridge the gap between difference scales and that between theory and practice.

Keywords: resilience cities, building resilience, resilient buildings and infrastructure, climate resilience, hot and humid southeast area, high-density cities

Procedia PDF Downloads 148
1410 Enhancement in Antimicrobial and Antioxidant Activity of Cuminum cyminum L. through Niosome Nanocarries

Authors: Fatemeh Haghiralsadat, Mohadese Hashemi, Elham Akhoundi Kharanaghi, Mojgan Yazdani, Mahboobe Sharafodini, Omid Javani

Abstract:

Niosomes are colloidal particles formed from the self-assembly of non-ionic surfactants in aqueous medium resulting in closed bilayer structures. As a consequence of this hydrophilic and hydrophobic structure, niosomes have the capacity to entrap compounds of different solubilities. Niosomes are promising vehicle for drug delivery which protect sensitive drugs and improve the therapeutic index of drugs by restricting their action to target cells. Essential oils are complex mixtures of volatile compounds such as terpenoids, phenol-derived aromatic components that have been used for many biological properties including bactericidal, fungicidal, insecticidal, antioxidant, anti-tyrosinase and other medicinal properties. Encapsulation of essential oils in niosomes can be an attractive method to overcome their limitation such as volatility, easily decomposition by heat, humidity, light, or oxygen. Cuminum cyminum L. (Cumin) is an aromatic plant included in the Apiaceae family and is used to flavor foods, added to fragrances, and for medical preparations which is indigenous to Egypt, the Mediterranean region, Iran and India. The major components of the Cumin oil were reported as cuminaldehyde, γ -terpinene, β-pinene, p-cymene, p-mentha-1, 3-dien-7-al, and p-mentha-1, 4-dien-7-al which provide the antimicrobial and antioxidant activity. The aim of this work was to formulate Cumin essential oil-loaded niosomes to improve water solubility of natural product and evaluate its physico-chemical features and stability. Cumin oil was obtained through steam distillation using a clevenger-type apparatus and GC/MS was applied to identify the main components of the essential oil. Niosomes were prepared by using thin film hydration method and nanoparticles were characterized for particle size, dispersity index, zeta potential, encapsulation efficiency, in vitro release, and morphology.

Keywords: Cuminum cyminum L., Cumin, niosome, essential oil, encapsulation

Procedia PDF Downloads 501
1409 Need of Trained Clinical Research Professionals Globally to Conduct Clinical Trials

Authors: Tambe Daniel Atem

Abstract:

Background: Clinical Research is an organized research on human beings intended to provide adequate information on the drug use as a therapeutic agent on its safety and efficacy. The significance of the study is to educate the global health and life science graduates in Clinical Research in depth to perform better as it involves testing drugs on human beings. Objectives: to provide an overall understanding of the scientific approach to the evaluation of new and existing medical interventions and to apply ethical and regulatory principles appropriate to any individual research. Methodology: It is based on – Primary data analysis and Secondary data analysis. Primary data analysis: means the collection of data from journals, the internet, and other online sources. Secondary data analysis: a survey was conducted with a questionnaire to interview the Clinical Research Professionals to understand the need of training to perform clinical trials globally. The questionnaire consisted details of the professionals working with the expertise. It also included the areas of clinical research which needed intense training before entering into hardcore clinical research domain. Results: The Clinical Trials market worldwide worth over USD 26 billion and the industry has employed an estimated 2,10,000 people in the US and over 70,000 in the U.K, and they form one-third of the total research and development staff. There are more than 2,50,000 vacant positions globally with salary variations in the regions for a Clinical Research Coordinator. R&D cost on new drug development is estimated at US$ 70-85 billion. The cost of doing clinical trials for a new drug is US$ 200-250 million. Due to an increase trained Clinical Research Professionals India has emerged as a global hub for clinical research. The Global Clinical Trial outsourcing opportunity in India in the pharmaceutical industry increased to more than $2 billion in 2014 due to increased outsourcing from U.S and Europe to India. Conclusion: Assessment of training need is recommended for newer Clinical Research Professionals and trial sites, especially prior the conduct of larger confirmatory clinical trials.

Keywords: clinical research, clinical trials, clinical research professionals

Procedia PDF Downloads 435
1408 Exploring the Efficacy of Context-Based Instructional Strategy in Fostering Students Achievement in Chemistry

Authors: Charles U. Eze, Joy Johnbest Egbo

Abstract:

The study investigated the effect of Context-Based Instructional Strategy (CBIS) on students’ achievement in chemistry. CBIS was used as an experimental group and expository method (EM) as a control group, sources showed that students poor achievement in chemistry is from teaching strategy adopted by the chemistry teachers. Two research questions were answered, and two null hypotheses were formulated and tested. This strategy recognizes the need for student-centered, relevance of tasks and students’ voice; it also helps students develop creative and critical learning skills. A quasi-experimental (non-equivalent, pretest, posttest control group) design was adopted for the study. The population for the study comprised all senior secondary class one (SSI) students who were offering chemistry in co-education schools in Agbani Education zone. The instrument for data collection was a self-developed Basic Chemistry Achievement Test (BCAT). Relevant data were collected from a sample of SSI chemistry students using purposive random sampling techniques from two co-education schools in Agbani Education Zone of Enugu State, Nigeria. A reliability co-efficient was obtained for the instrument using Kuder-Richardson formula 20. Mean and standard deviation scores were used to answer the research questions while two-way analysis of covariance (ANCOVA) was used to test the hypotheses. The findings showed that the experimental group taught with context-based instructional strategy (CBIS) obtained a higher mean achievement score than the control group in the post BCAT; male students had higher mean achievement scores than their female counterparts. The difference was significant. It was recommended, among others, that CBIS should be given more emphasis in the training and re-training program of secondary school chemistry teachers.

Keywords: context-based instructional strategy, expository strategy, student-centered

Procedia PDF Downloads 208
1407 Seed Priming Winter Wheat (Triticum aestivum L.) for Germination and Emergence

Authors: Pakize Ozlem Kurt Polat, Gizem Metin, Koksal Yagdi

Abstract:

In order to evaluate the effect of the different sources of salt on germination and early growth of five wheat cultivars (Katea, Bezostaja, Koksal-2000, Golia, Pehlivan) an experiment was conducted at the seed laboratory of the Uludag University, Agricultural Faculty, Department of Field Crops in Bursa/Turkey. Seeds were applied in five different resources media (KCl % 2, KCl %4, KNO₃ %0,5, KH₂PO₄ %0,5, PEG %10) and distilled water as the control). The seed was fully immersed in priming media at a temperature of 24ᵒC for durations of 12 and 24hours. Six different agronomic characters (seed germination, stem length, stem weight, radicle length, fresh weight, dry weight) were measured in 7th days and 14th days. Maximum seed germination percentage of seven days are Pehlivan was observed when the seeds were applied by KH₂PO₄ and Katea by distilled water as a control. The most stem length and stem weight were obtained for seeds were applied by KH₂PO₄ %0,5 with Katea and Bezostja immersed in priming media at 12h intervals beginning 7d after planting. Seeds were applied KH₂PO₄ %0,5 media produced maximum radicle length by Koksal and dry weight by Katea. The freshest weight obtains in Katea by KNO₃ %0,5 immersed in priming media at 24h. The most germination percent, dry weight, stem length of fourteen days was observed in Katea which subjected to KH₂PO₄ %0,5 solution. The most radicle length was observed Katea and Koksal in media of KH₂PO₄ %0,5. The most stem length was obtained for seeds were applied by KH₂PO₄ %0,5 and KNO₃ with Katea and Bezostaja. When the applied chemicals and all days examined KH₂PO₄ %0,5 treatment in fourteen days and immersed for the duration of 24 hours had better effects than other medias, seven days treatments and 12hours immersed. As a result of this research, the best response of media for the wheat germination can be said that the KH₂PO₄ %0,5 immersed in priming media at 24h intervals beginning 14 days after planting.

Keywords: germination, priming, seedling growth, wheat

Procedia PDF Downloads 159
1406 Optimizing The Residential Design Process Using Automated Technologies

Authors: Martin Georgiev, Milena Nanova, Damyan Damov

Abstract:

Architects, engineers, and developers need to analyse and implement a wide spectrum of data in different formats, if they want to produce viable residential developments. Usually, this data comes from a number of different sources and is not well structured. The main objective of this research project is to provide parametric tools working with real geodesic data that can generate residential solutions. Various codes, regulations and design constraints are described by variables and prioritized. In this way, we establish a common workflow for architects, geodesists, and other professionals involved in the building and investment process. This collaborative medium ensures that the generated design variants conform to various requirements, contributing to a more streamlined and informed decision-making process. The quantification of distinctive characteristics inherent to typical residential structures allows a systematic evaluation of the generated variants, focusing on factors crucial to designers, such as daylight simulation, circulation analysis, space utilization, view orientation, etc. Integrating real geodesic data offers a holistic view of the built environment, enhancing the accuracy and relevance of the design solutions. The use of generative algorithms and parametric models offers high productivity and flexibility of the design variants. It can be implemented in more conventional CAD and BIM workflow. Experts from different specialties can join their efforts, sharing a common digital workspace. In conclusion, our research demonstrates that a generative parametric approach based on real geodesic data and collaborative decision-making could be introduced in the early phases of the design process. This gives the designers powerful tools to explore diverse design possibilities, significantly improving the qualities of the building investment during its entire lifecycle.

Keywords: architectural design, residential buildings, urban development, geodesic data, generative design, parametric models, workflow optimization

Procedia PDF Downloads 30
1405 A Study on Effect of Almahdi Aluminium Factory of Bandar Abbas on Environment Status of the Region with an Emphasis on Measuring of Some Scarce Metals Existing in the Air (Atmosphere)

Authors: Maryam Ehsanpour, Maryam Malekpour, Rastin Afkhami

Abstract:

Today, industry is one of the indices of growth and development of countries and is a suitable applicable criterion to compare the countries. Bandar Abbas has a high industrial centralization in term of geographical redundancy of industries in comparison with other rural and urban places of Hormozgan province. Most important and major industries of the province are located in Bandar abbas eighth refinery, power plant, zinc melting company, Almahdi Aluminium, Hormozgan steel, south steel, which are the most important of these industries. So, it is necessary to study pollution from these industries and their destructive effects on environment of region. In respect of these things, general purpose of this research is codling and presenting managing solution of Almahdi Aluminium factory in them of measuring of air (atmosphere) parameters. For gaining this purpose it is necessary to determine measure of heavy metals suspension in the air (atmosphere) in the neighborhood of industries and also in residential regions close to them as partial purposes. So, for achieving the purposes above, operation of sampling from the air in two hot and cold seasons of the year (2010-2011) was performed, after field reviews to recognize the sources of effluence and to choose place of sampling stations. Sampling and preparation way to read was based on EPA and NIOSH. Also, decreasing process was included Fe>Al>Cd>Pb>Ni respectively, in term of results gaining from sampling of ingredients existing in the air (atmosphere). Also Ni and Fe elements in samples of air were higher than permissive measure in both of cold and hot season. Average of these two metals was 34% and 33% in cold season and 44% and 34% micrograms/m3 in hot season. Finally, suitable managing solutions to improve existing situation is presented in term for all results.

Keywords: Almahdi aluminium factory, Bandar Abbas, scarce metals, atmosphere

Procedia PDF Downloads 568
1404 Application of Multivariate Statistics and Hydro-Chemical Approach for Groundwater Quality Assessment: A Study on Birbhum District, West Bengal, India

Authors: N. C. Ghosh, Niladri Das, Prolay Mondal, Ranajit Ghosh

Abstract:

Groundwater quality deterioration due to human activities has become a prime factor of modern life. The major concern of the study is to access spatial variation of groundwater quality and to identify the sources of groundwater chemicals and its impact on human health of the concerned area. Multivariate statistical techniques, cluster, principal component analysis, and hydrochemical fancies are been applied to measure groundwater quality data on 14 parameters from 107 sites distributed randomly throughout the Birbhum district. Five factors have been extracted using Varimax rotation with Kaiser Normalization. The first factor explains 27.61% of the total variance where high positive loading have been concentrated in TH, Ca, Mg, Cl and F (Fluoride). In the studied region, due to the presence of basaltic Rajmahal trap fluoride contamination is highly concentrated and that has an adverse impact on human health such as fluorosis. The second factor explains 24.41% of the total variance which includes Na, HCO₃, EC, and SO₄. The last factor or the fifth factor explains 8.85% of the total variance, and it includes pH which maintains the acidic and alkaline character of the groundwater. Hierarchical cluster analysis (HCA) grouped the 107 sampling station into two clusters. One cluster having high pollution and another cluster having less pollution. Moreover hydromorphological facies viz. Wilcox diagram, Doneen’s chart, and USSL diagram reveal the quality of the groundwater like the suitability of the groundwater for irrigation or water used for drinking purpose like permeability index of the groundwater, quality assessment of groundwater for irrigation. Gibb’s diagram depicts that the major portion of the groundwater of this region is rock dominated origin, as the western part of the region characterized by the Jharkhand plateau fringe comprises basalt, gneiss, granite rocks.

Keywords: correlation, factor analysis, hydrological facies, hydrochemistry

Procedia PDF Downloads 190
1403 Investigations on Utilization of Chrome Sludge, Chemical Industry Waste, in Cement Manufacturing and Its Effect on Clinker Mineralogy

Authors: Suresh Vanguri, Suresh Palla, Prasad G., Ramaswamy V., Kalyani K. V., Chaturvedi S. K., Mohapatra B. N., Sunder Rao TBVN

Abstract:

The utilization of industrial waste materials and by-products in the cement industry helps in the conservation of natural resources besides avoiding the problems arising due to waste dumping. The use of non-carbonated materials as raw mix components in clinker manufacturing is identified as one of the key areas to reduce Green House Gas (GHG) emissions. Chrome sludge is a waste material generated from the manufacturing process of sodium dichromate. This paper aims to present studies on the use of chrome sludge in clinker manufacturing, its impact on the development of clinker mineral phases and on the cement properties. Chrome sludge was found to contain substantial amounts of CaO, Fe2O3 and Al2O3 and therefore was used to replace some conventional sources of alumina and iron in the raw mix. Different mixes were prepared by varying the chrome sludge content from 0 to 5 % and the mixes were evaluated for burnability. Laboratory prepared clinker samples were evaluated for qualitative and quantitative mineralogy using X-ray Diffraction Studies (XRD). Optical microscopy was employed to study the distribution of clinker phases, their granulometry and mineralogy. Since chrome sludge also contains considerable amounts of chromium, studies were conducted on the leachability of heavy elements in the chrome sludge as well as in the resultant cement samples. Estimation of heavy elements, including chromium was carried out using ICP-OES. Further, the state of chromium valence, Cr (III) & Cr (VI), was studied using conventional chemical analysis methods coupled with UV-VIS spectroscopy. Assimilation of chromium in the clinker phases was investigated using SEM-EDXA studies. Bulk cement was prepared from the clinker to study the effect of chromium sludge on the cement properties such as setting time, soundness, strength development against the control cement. Studies indicated that chrome sludge can be successfully utilized and its content needs to be optimized based on raw material characteristics.

Keywords: chrome sludge, leaching, mineralogy, non-carbonate materials

Procedia PDF Downloads 188
1402 Evaluation of Simulated Noise Levels through the Analysis of Temperature and Rainfall: A Case Study of Nairobi Central Business District

Authors: Emmanuel Yussuf, John Muthama, John Ng'ang'A

Abstract:

There has been increasing noise levels all over the world in the last decade. Many factors contribute to this increase, which is causing health related effects to humans. Developing countries are not left out of the whole picture as they are still growing and advancing their development. Motor vehicles are increasing on urban roads; there is an increase in infrastructure due to the rising population, increasing number of industries to provide goods and so many other activities. All this activities lead to the high noise levels in cities. This study was conducted in Nairobi’s Central Business District (CBD) with the main objective of simulating noise levels in order to understand the noise exposed to the people within the urban area, in relation to weather parameters namely temperature, rainfall and wind field. The study was achieved using the Neighbourhood Proximity Model and Time Series Analysis, with data obtained from proxies/remotely-sensed from satellites, in order to establish the levels of noise exposed to which people of Nairobi CBD are exposed to. The findings showed that there is an increase in temperature (0.1°C per year) and a decrease in precipitation (40 mm per year), which in comparison to the noise levels in the area, are increasing. The study also found out that noise levels exposed to people in Nairobi CBD were roughly between 61 and 63 decibels and has been increasing, a level which is high and likely to cause adverse physical and psychological effects on the human body in which air temperature, precipitation and wind contribute so much in the spread of noise. As a noise reduction measure, the use of sound proof materials in buildings close to busy roads, implementation of strict laws to most emitting sources as well as further research on the study was recommended. The data used for this study ranged from the year 2000 to 2015, rainfall being in millimeters (mm), temperature in degrees Celsius (°C) and the urban form characteristics being in meters (m).

Keywords: simulation, noise exposure, weather, proxy

Procedia PDF Downloads 354
1401 Manganese Imidazole Complexes: Electrocatalytic Hydrogen Production

Authors: Vishakha Kaim, Mookan Natarajan, Sandeep Kaur-Ghumaan

Abstract:

Hydrogen is one of the most abundant elements present on earth’s crust and considered to be the simplest element in existence. It is not found naturally as a gas on earth and thus has to be manufactured. Hydrogen can be produced from a variety of sources, i.e., water, fossil fuels, or biomass and it is a byproduct of many chemical processes. It is also considered as a secondary source of energy commonly referred to as an energy carrier. Though hydrogen is not widely used as a fuel, it still has the potential for greater use in the future as a clean and renewable source of energy. Electrocatalysis is one of the important source for the production of hydrogen which could contribute to this prominent challenge. Metals such as platinum and palladium are considered efficient for hydrogen production but with limited applications. As a result, a wide variety of metal complexes with earth abundant elements and varied ligand environments have been explored for the electrochemical production of hydrogen. In nature, [FeFe] hydrogenase enzyme present in DesulfoVibrio desulfuricans and Clostridium pasteurianum catalyses the reversible interconversion of protons and electrons into dihydrogen. Since the first structure for the enzyme was reported in 1990s, a range of iron complexes has been synthesized as structural and functional mimics of the enzyme active site. Mn is one of the most desirable element for sustainable catalytic transformations, immediately behind Fe and Ti. Only limited number manganese complexes have been reported in the last two decades as catalysts for proton reduction. Furthermore, redox reactions could be carried out in a facile manner, due to the capability of manganese complexes to be stable at different oxidation states. Herein are reported, four µ2-thiolate bridged manganese complexes [Mn₂(CO)₆(μ-S₂N₄C₁₄H₁₀)] 1, [Mn₂(CO)7(μ- S₂N₄C₁₄H₁₀)] 2, Mn₂(CO)₆(μ-S₄N₂C₁₄H₁₀)] 3 and [Mn₂(CO)(μ- S₄N₂C₁₄H₁₀)] 4 have been synthesized and characterized. The cyclic voltammograms of the complexes displayed irreversible reduction peaks in the range - 0.9 to -1.3 V (vs. Fc⁺/Fc in acetonitrile at 0.1 Vs⁻¹). The complexes were catalytically active towards proton reduction in the presence of trifluoroacetic acid as seen from electrochemical investigations.

Keywords: earth abundant, electrocatalytic, hydrogen, manganese

Procedia PDF Downloads 146
1400 Ending Wars Over Water: Evaluating the Extent to Which Artificial Intelligence Can Be Used to Predict and Prevent Transboundary Water Conflicts

Authors: Akhila Potluru

Abstract:

Worldwide, more than 250 bodies of water are transboundary, meaning they cross the political boundaries of multiple countries. This creates a system of hydrological, economic, and social interdependence between communities reliant on these water sources. Transboundary water conflicts can occur as a result of this intense interdependence. Many factors contribute to the sparking of transboundary water conflicts, ranging from natural hydrological factors to hydro-political interactions. Previous attempts to predict transboundary water conflicts by analysing changes or trends in the contributing factors have typically failed because patterns in the data are hard to identify. However, there is potential for artificial intelligence and machine learning to fill this gap and identify future ‘hotspots’ up to a year in advance by identifying patterns in data where humans can’t. This research determines the extent to which AI can be used to predict and prevent transboundary water conflicts. This is done via a critical literature review of previous case studies and datasets where AI was deployed to predict water conflict. This research not only delivered a more nuanced understanding of previously undervalued factors that contribute toward transboundary water conflicts (in particular, culture and disinformation) but also by detecting conflict early, governance bodies can engage in processes to de-escalate conflict by providing pre-emptive solutions. Looking forward, this gives rise to significant policy implications and water-sharing agreements, which may be able to prevent water conflicts from developing into wide-scale disasters. Additionally, AI can be used to gain a fuller picture of water-based conflicts in areas where security concerns mean it is not possible to have staff on the ground. Therefore, AI enhances not only the depth of our knowledge about transboundary water conflicts but also the breadth of our knowledge. With demand for water constantly growing, competition between countries over shared water will increasingly lead to water conflict. There has never been a more significant time for us to be able to accurately predict and take precautions to prevent global water conflicts.

Keywords: artificial intelligence, machine learning, transboundary water conflict, water management

Procedia PDF Downloads 81
1399 Is Class Struggle Still Useful for the Street Children Who Are Working and Committing Crimes in the Urban City of Bangladesh?

Authors: Shidratul Moontaha Suha

Abstract:

Violence is organized and utilized differently in various communities across the globe. The capacity to employ violence in numerous societies is largely limited to the apparatus of the state, like law enforcement officers, and in a small share of contexts, it is controlled within the state institutions as per the rule of law. Contrastingly, in many other societies, a broad array of players, mainly organized criminal gangs, are using violence on a substantial scale to agitate against social ills or attain personal interests. The present paper examined the role of social injustice in driving children living off and on the streets of Dhaka, Bangladesh, into joining organized criminal gangs and committing crimes. The study entailed a comprehensive review of existing literature with theoretical analyses based on three theories: the Marxist’s theory of capitalism and class struggle, the Weberian model of social stratification theory, and the social disorganization theory. The analysis revealed that, in Dhaka, Bangladesh, criminal gangs emerged from social disorganization of communities characterized by absolute poverty, residential mobility, and population heterogeneity, which promote deviance among the youth, and subsequently, led to the rise of organized gangs and delinquency. Although the latter was formed as a response to class struggle, they have been employed by the state and police as the tools of exploitation and oppression to rule the working class. The criminal gangs exploit the vulnerability of street children by using them as sources of cheap labor to peddle drugs, extort, or kill specific individuals who are against their ideals. In retrospect, the street children receive individual, group, and social protection. Therefore, social class struggle plays a central role in the proliferation of organized criminal gangs and the engagement of street children in criminal activities in Dhaka, Bangladesh.

Keywords: cheap labor, organized crimes, poverty, social stratification, social children

Procedia PDF Downloads 122
1398 Selective Recovery and Molecular Identification of Laccase-Producing Bacteria from Selected Terrestrial and Aquatic Milieu in the Eastern Cape, South Africa: Toward the Production of Environmentally Relevant Biocatalysts

Authors: John Onolame Unuofin, Uchechukuw U. Nwodo, Anthony I. Okoh

Abstract:

Laccase is constantly gaining status as important biocatalyst in biotechnology. The illimitable potential of its industrial applications and the corresponding aggressive need for phenomenal volumes of extracellularly secreted laccases have called for its interminable production from sources which are able to meet this demand within a relatively short period of time, preferably bacteria. In response to this call, this study was designed to source for laccase-producing bacteria from different environmental matrices. Three sampling environments were chosen such as wastewater treatment plants, University of Fort Hare vicinity and the Hogback woodland, all within the Eastern Cape, South Africa. Samples such as effluents, sediments, leaf litters, degrading wood and rock scrapings were selectively enriched with some model aromatic compounds and were further screened qualitatively and quantitatively on five phenolic substrates ABTS (2,2’-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid), Guaiacol, 1-Naphthol, Potassium Ferric Cyanide and Syringaldazine). Basis for selection was their ability to elicit a colour change on at least three of the above mentioned agar based assay substrates. The choice isolates were further identified based on 16S rRNA molecular identification techniques. 33 isolates were screened out of the 40 representative distinct colonies during the qualitative plate screens, while quantitative screens selected out 11 bacterial isolates. They were, based on molecular identification, desginated as members of the genera Pseudomonas, Stenotrophomonas and Citrobacter of the gammaproteobacteria and Bordetalla and Achromobacter of the betaproteobacteria respectively. We therefore conclude based on our outcomes that we may have isolated efficient laccase-producing bacteria, which might be of beneficial significance in catalysis and biotechnology.

Keywords: beta proteobacteria, catalysis, gammaproteobacteria, laccase

Procedia PDF Downloads 153