Search results for: mixed integer problem
4580 Approximation of Convex Set by Compactly Semidefinite Representable Set
Authors: Anusuya Ghosh, Vishnu Narayanan
Abstract:
The approximation of convex set by semidefinite representable set plays an important role in semidefinite programming, especially in modern convex optimization. To optimize a linear function over a convex set is a hard problem. But optimizing the linear function over the semidefinite representable set which approximates the convex set is easy to solve as there exists numerous efficient algorithms to solve semidefinite programming problems. So, our approximation technique is significant in optimization. We develop a technique to approximate any closed convex set, say K by compactly semidefinite representable set. Further we prove that there exists a sequence of compactly semidefinite representable sets which give tighter approximation of the closed convex set, K gradually. We discuss about the convergence of the sequence of compactly semidefinite representable sets to closed convex set K. The recession cone of K and the recession cone of the compactly semidefinite representable set are equal. So, we say that the sequence of compactly semidefinite representable sets converge strongly to the closed convex set. Thus, this approximation technique is very useful development in semidefinite programming.Keywords: semidefinite programming, semidefinite representable set, compactly semidefinite representable set, approximation
Procedia PDF Downloads 3874579 A Hybrid Derivative-Free Optimization Method for Pass Schedule Calculation in Cold Rolling Mill
Authors: Mohammadhadi Mirmohammadi, Reza Safian, Hossein Haddad
Abstract:
This paper presents an innovative solution for complex multi-objective optimization problem which is a part of efforts toward maximizing rolling mill throughput and minimizing processing costs in tandem cold rolling. This computational intelligence based optimization has been applied to the rolling schedules of tandem cold rolling mill. This method involves the combination of two derivative-free optimization procedures in the form of nested loops. The first optimization loop is based on Improving Hit and Run method which focus on balance of power, force and reduction distribution in rolling schedules. The second loop is a real-coded genetic algorithm based optimization procedure which optimizes energy consumption and productivity. An experimental result of application to five stand tandem cold rolling mill is presented.Keywords: derivative-free optimization, Improving Hit and Run method, real-coded genetic algorithm, rolling schedules of tandem cold rolling mill
Procedia PDF Downloads 6964578 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza
Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue
Abstract:
Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.Keywords: COVID-19, Fastai, influenza, transfer network
Procedia PDF Downloads 1424577 Association Between Renewable Energy and Community Forest User Group: A Case of Siranchowk Rural Municipality, Nepal
Authors: Prem Bahadur Giri, MathineeYucharoen
Abstract:
Community forest user groups (CFUGs) have been the core stone of forest management efforts in Nepal. Due to the lack of a smooth transition into the local governance structure in 2017, policy instruments have not been effectively cascaded to the local level, creating ambiguity and inconsistency in forest governance. Descriptive mixed-method research was performed with community users and stakeholders of the Tarpakha community forest, Siranchowk Rural Municipality, to understand the role of the political economy in CFUG management. The household survey was conducted among 100 households (who also are existing members of the Tarpakha CFUG) to understand and document their energy consumption preferences and practices. Likewise, ten key informant interviews and five focus group discussions with the municipality and forest management officials were also conducted to have a wider overview of the factors and political, socio-economic, and religious contexts behind the utilization of renewable energy for sustainable development. Findings from our study suggest that only 3% of households use biogas as their main source of energy. The rest of the households mention liquid petroleum gas (LPG), electricity, and firewood as major sources of energy for domestic purposes. Community members highlighted the difficulty in accessing firewood due to strict regulations from the CFUG, lack of cattle and manpower to rear cattle to produce cow dung (for biogas), and lack of technical expertise at the community level for the operation and maintenance of solar energy, among others as challenges of the resource. Likewise, key informants have mentioned policy loopholes at both the federal and local levels, especially with regard to the promotion of alternative or renewable energy, as there are no clear mandates and provisions to regulate the renewable energy industry. The study recommends doing an in-depth study on the feasibility of renewable energy sources, especially in the context of CFUGs, where biodiversity conservation aspects need to be equally taken into consideration while thinking of the promotion and expansion of renewable energy sources.Keywords: community forest, renewable energy, sustainable development, Nepal
Procedia PDF Downloads 144576 Innovations in Teaching
Authors: Dilek Turan Eroğlu
Abstract:
Educators have been searching the more effective and appalling methods of teaching for ages. It has always been an issue among the teachers and scientists to improve the quality of education and to ensure that all students have equal opportunities to learn. However, when it comes to the effective ways of learning,the learners are exposed to the ways which are chosen and approved to be effective by their teachers not by the learners themselves. This is the main problem of this study as the learners are not always happy to be in their classes being treated with their teachers’ favourite styles. This paper is telling the results of a study which has been conducted with the university students in Turkey. The students have been interviewed and asked to respond some questions related to best practices to find out their favourite styles, medium, techniques and strategies. The study has been conducted using qualitative research methods i.e one to one interviews and group discussions. The results show that the learners have significantly different views than the educators when it comes to modern teaching styles. Their definition of the term “modern teaching styles” is different than the general understanding. The university students expect their teachers to be “early adopter”. of ICT tools and or the other electronic devices, but a modern teacher must have many other characteristics for them.Keywords: effective, innovation, teaching, modern teaching styles
Procedia PDF Downloads 3444575 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models
Authors: V. Mantey, N. Findlay, I. Maddox
Abstract:
The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.Keywords: building detection, disaster relief, mask-RCNN, satellite mapping
Procedia PDF Downloads 1694574 The Exact Specification for Consumption of Blood-Pressure Regulating Drugs with a Numerical Model of Pulsatile Micropolar Fluid Flow in Elastic Vessel
Authors: Soroush Maddah, Houra Asgarian, Mahdi Navidbakhsh
Abstract:
In the present paper, the problem of pulsatile micropolar blood flow through an elastic artery has been studied. An arbitrary Lagrangian-Eulerian (ALE) formulation for the governing equations has been produced to model the fully-coupled fluid-structure interaction (FSI) and has been solved numerically using finite difference scheme by exploiting a mesh generation technique which leads to a uniformly spaced grid in the computational plane. Effect of the variations of cardiac output and wall artery module of elasticity on blood pressure with blood-pressure regulating drugs like Atenolol has been determined. Also, a numerical model has been produced to define precisely the effects of various dosages of a drug on blood flow in arteries without the numerous experiments that have many mistakes and expenses.Keywords: arbitrary Lagrangian-Eulerian, Atenolol, fluid structure interaction, micropolar fluid, pulsatile blood flow
Procedia PDF Downloads 4214573 Application of Artificial Neural Network in Initiating Cleaning Of Photovoltaic Solar Panels
Authors: Mohamed Mokhtar, Mostafa F. Shaaban
Abstract:
Among the challenges facing solar photovoltaic (PV) systems in the United Arab Emirates (UAE), dust accumulation on solar panels is considered the most severe problem that faces the growth of solar power plants. The accumulation of dust on the solar panels significantly degrades output from these panels. Hence, solar PV panels have to be cleaned manually or using costly automated cleaning methods. This paper focuses on initiating cleaning actions when required to reduce maintenance costs. The cleaning actions are triggered only when the dust level exceeds a threshold value. The amount of dust accumulated on the PV panels is estimated using an artificial neural network (ANN). Experiments are conducted to collect the required data, which are used in the training of the ANN model. Then, this ANN model will be fed by the output power from solar panels, ambient temperature, and solar irradiance, and thus, it will be able to estimate the amount of dust accumulated on solar panels at these conditions. The model was tested on different case studies to confirm the accuracy of the developed model.Keywords: machine learning, dust, PV panels, renewable energy
Procedia PDF Downloads 1444572 Robust Attitude Control for Agile Satellites with Vibration Compensation
Authors: Jair Servín-Aguilar, Yu Tang
Abstract:
We address the problem of robust attitude tracking for agile satellites under unknown bounded torque disturbances using a double-gimbal variable-speed control-moment gyro (DGVSCMG) driven by a cluster of three permanent magnet synchronous motors (PMSMs). Uniform practical asymptotic stability is achieved at the torque control level first. The desired speed of gimbals and the acceleration of the spin wheel to produce the required torque are then calculated by a velocity-based steering law and tracked at the PMSM speed-control level by designing a speed-tracking controller with compensation for the vibration caused by eccentricity and imbalance due to mechanical imperfection in the DGVSCMG. Uniform practical asymptotic stability of the overall system is ensured by loan relying on the analysis of the resulting cascaded system. Numerical simulations are included to show the performance improvement of the proposed controller.Keywords: agile satellites, vibration compensation, internal model, stability
Procedia PDF Downloads 1144571 Thermal Perception by Older People in Open Spaces in Madrid: Relationships between Weather Parameters and Personal Characteristics
Authors: María Teresa Baquero, Ester Higueras
Abstract:
One of the challenges facing 21st century cities, is their adaptation to the phenomenon of an ageing population. International policies have been developed, such as the "Global Network for Age-friendly Cities and Communities". These cities must recognize the diversity of the elderly population, and facilitate an active, healthy, satisfied aging and promote inclusion. In order to promote active and healthy aging, older people should be encouraged to engage in physical activity, sunbathe, socialize and enjoy the public open spaces in the city. Some studies recognize thermal comfort as one of the factors that most influence the use of public open spaces. However, although some studies have shown vulnerability to thermal extremes and environmental conditions in older people, there is little research on thermal comfort for older adults, because it is usually analyzed based on the characteristics of the ¨average young person¨ without considering the physiological, physical and psychological differences that characterize the elderly. This study analyzes the relationship between the microclimate parameters as air temperature, relative humidity, wind speed and sky view factor (SVF) with the personal thermal perception of older adults in three public spaces in Madrid, through a mixed methodology that combines weather measurements with interviews, made during the year 2018. Statistical test like Chi-square, Spearman, and analysis of variance were used to analyze the relationship between preference votes and thermal sensation votes with environmental and personal parameters. The results show that there is a significant correlation between thermal sensation and thermal preference with the measured air temperature, age, level of clothing, the color of clothing, season, time of the day and kind of space while no influence of gender or other environmental variables was detected. These data would contribute to the design of comfortable public spaces that improve the welfare of the elderly contributing to "active and healthy aging" as one of the 21st century challenges cities face.Keywords: healthy ageing, older adults, outdoor public space, thermal perception
Procedia PDF Downloads 1344570 Effect Mechanisms of Aromatic Plants: Effects on Intestinal Health and Broiler Feeding
Authors: Ozlem Durna Aydin, Gultekin Yildiz
Abstract:
Antibiotics are microbial metabolites with low molecular weight produced by fungi and algae, inhibiting the development of other microorganisms even in low growth. Antibiotics have been used as growth factors in animal feeds for many years. They prohibited; because of increased residue problem and increased resistance to antibiotics in bacteria due to prolonged use. Aromatic plants and extracts have attracted the attention of scientists nowadays due to positive reasons such as confidence of the community to the products those are coming from nature, desire to consume, and no residue problems. Plant extracts are obtained from aromatic plants, and they come forward with antifungal, antibacterial, antiviral, antioxidant and antilipidemic properties. It has been stated that intestinal histomorphology and microbiosis are positively affected by the use of plant extract in feeds. In the present day, aromatic plants and extracts are a remarkable research field with intriguing unknowns in the field of animal nutrition, and they continue to exist in the journal in vitro and in vivo studies.Keywords: aromatic plant, broilers, extract mechanism of action, intestinal health
Procedia PDF Downloads 1664569 UPPAAL-based Design and Analysis of Intelligent Parking System
Authors: Abobaker Mohammed Qasem Farhan, Olof M. A. Saif
Abstract:
The demand for parking spaces in urban areas, particularly in developing countries, has led to a significant issue in the absence of sufficient parking spaces in crowded areas, which results in daily traffic congestion as drivers search for parking. This not only affects the appearance of the city but also has indirect impacts on the economy, society, and environment. In response to these challenges, researchers from various countries have sought technical and intelligent solutions to mitigate the problem through the development of smart parking systems. This paper aims to analyze and design three models of parking lots, with a focus on parking time and security. The study used computer software and Uppaal tools to simulate the models and determine the best among them. The results and suggestions provided in the paper aim to reduce the parking problems and improve the overall efficiency and safety of the parking process. The conclusion of the study highlights the importance of utilizing advanced technology to address the pressing issue of insufficient parking spaces in urban areas.Keywords: preliminaries, system requirements, timed Au- tomata, Uppaal
Procedia PDF Downloads 1474568 Efficacy and Safety of Electrical Vestibular Stimulation on Adults with Symptoms of Insomnia: A Double-Blind, Randomized, Sham-Controlled Trial
Authors: Teris Cheung, Joyce Yuen Ting Lam, Kwan Hin Fong, Calvin Pak-Wing Cheng, Julie Sittlington, Yu-Tao Xiang, Tim Man Ho Li
Abstract:
Insomnia is one of the most common health problems in the general population. Insomnia can be acute, intermittent, and become chronic, often due to comorbidity with other physical and mental health conditions. Although there are conventional pharmaceutical and psychotherapeutic treatments to treat symptoms of insomnia, however; there is no robust and novel randomized controlled trial (RCT) using transdermal neurostimulation on individuals with insomnia symptoms. This gives us the impetus to execute the first nationwide RCT. Aim: To evaluate the efficacy of Electrical Vestibular Stimulation (VeNS) on individuals with insomnia in Hong Kong. Design: This study was a two-armed, double blinded, randomized, sham-controlled trial. Sampling: 60 community-dwelling adults aged 18 and 60 years with moderate insomnia symptoms or above (Insomnia Severity Index > 14) were recruited. All subjects were computerized randomized into either the active VeNS group or the sham VeNS group on a 1:1 ratio. Intervention: All participants received a home-use VeNS device and used 30-min VeNS sessions during five consecutive days across a 4-week period (total treatment hours: 10). Baseline measurements and post-VeNS evaluation of the psychological outcomes, including 1) insomnia severity, 2) sleep quality, and 3) quality of life were investigated. The short-and long-term sustainability of the VeNS intervention was assessed immediately after poststim and at a 1-month and 3-month follow-up period. Data analysis: A mixed GEE model was used to analyze the repeated measures data. Missing data were managed by multiple imputations. The level of significance was set to p < 0.05. Significance of the study: This is the first trial to examine the efficacy and safety of VeNS among adults with insomnia symptoms in Hong Kong. Findings that emerged were used to determine whether this VeNS device can be considered a self-help technological device to reduce the severity of insomnia in the community setting and to reduce the global disease burden. Clinical Trial Registration: ClinicalTrials.gov, identifier: NCT04452981.Keywords: adults, insomnia, neuromodulation, rct, vestibular stimulation
Procedia PDF Downloads 834567 Using Machine Learning to Predict Answers to Big-Five Personality Questions
Authors: Aadityaa Singla
Abstract:
The big five personality traits are as follows: openness, conscientiousness, extraversion, agreeableness, and neuroticism. In order to get an insight into their personality, many flocks to these categories, which each have different meanings/characteristics. This information is important not only to individuals but also to career professionals and psychologists who can use this information for candidate assessment or job recruitment. The links between AI and psychology have been well studied in cognitive science, but it is still a rather novel development. It is possible for various AI classification models to accurately predict a personality question via ten input questions. This would contrast with the hundred questions that normal humans have to answer to gain a complete picture of their five personality traits. In order to approach this problem, various AI classification models were used on a dataset to predict what a user may answer. From there, the model's prediction was compared to its actual response. Normally, there are five answer choices (a 20% chance of correct guess), and the models exceed that value to different degrees, proving their significance. By utilizing an MLP classifier, decision tree, linear model, and K-nearest neighbors, they were able to obtain a test accuracy of 86.643, 54.625, 47.875, and 52.125, respectively. These approaches display that there is potential in the future for more nuanced predictions to be made regarding personality.Keywords: machine learning, personally, big five personality traits, cognitive science
Procedia PDF Downloads 1464566 Availability Analysis of Milling System in a Rice Milling Plant
Authors: P. C. Tewari, Parveen Kumar
Abstract:
The paper describes the availability analysis of milling system of a rice milling plant using probabilistic approach. The subsystems under study are special purpose machines. The availability analysis of the system is carried out to determine the effect of failure and repair rates of each subsystem on overall performance (i.e. steady state availability) of system concerned. Further, on the basis of effect of repair rates on the system availability, maintenance repair priorities have been suggested. The problem is formulated using Markov Birth-Death process taking exponential distribution for probable failures and repair rates. The first order differential equations associated with transition diagram are developed by using mnemonic rule. These equations are solved using normalizing conditions and recursive method to drive out the steady state availability expression of the system. The findings of the paper are presented and discussed with the plant personnel to adopt a suitable maintenance policy to increase the productivity of the rice milling plant.Keywords: availability modeling, Markov process, milling system, rice milling plant
Procedia PDF Downloads 2354565 The Role of Organizational Culture, Work Discipline, and Employee Motivation towards Employees Performance at Personal Care and Cosmetic Department Flammable PT XYZ Cosmetics
Authors: Novawiguna Kemalasari, Ahmad Badawi Saluy
Abstract:
This research is a planned activity to find an objective answer to PT XYZ problem through scientific procedure. In this study, It was used quantitative research methods by using samples taken from a department selected by researchers. This study aims to analyze the influence of organizational culture, work discipline and work motivation on employee performance of Personal Care & Cosmetic Department (PCC) Flammable PT XYZ. This research was conducted at PT XYZ Personal Care & Cosmetic Department (PCC) Flammable involving 82 employees as respondents, the data were obtained by using questionnaires filled in self-rating by respondents. The data were analyzed by multiple linear regression model processed by using SPSS version 22. The result of research showed that organizational culture variable, work discipline and work motivation had significant effect to employee performance.Keywords: organizational culture, work discipline, employee motivation, employees performance
Procedia PDF Downloads 2524564 Geophysical Methods and Machine Learning Algorithms for Stuck Pipe Prediction and Avoidance
Authors: Ammar Alali, Mahmoud Abughaban
Abstract:
Cost reduction and drilling optimization is the goal of many drilling operators. Historically, stuck pipe incidents were a major segment of non-productive time (NPT) associated costs. Traditionally, stuck pipe problems are part of the operations and solved post-sticking. However, the real key to savings and success is in predicting the stuck pipe incidents and avoiding the conditions leading to its occurrences. Previous attempts in stuck-pipe predictions have neglected the local geology of the problem. The proposed predictive tool utilizes geophysical data processing techniques and Machine Learning (ML) algorithms to predict drilling activities events in real-time using surface drilling data with minimum computational power. The method combines two types of analysis: (1) real-time prediction, and (2) cause analysis. Real-time prediction aggregates the input data, including historical drilling surface data, geological formation tops, and petrophysical data, from wells within the same field. The input data are then flattened per the geological formation and stacked per stuck-pipe incidents. The algorithm uses two physical methods (stacking and flattening) to filter any noise in the signature and create a robust pre-determined pilot that adheres to the local geology. Once the drilling operation starts, the Wellsite Information Transfer Standard Markup Language (WITSML) live surface data are fed into a matrix and aggregated in a similar frequency as the pre-determined signature. Then, the matrix is correlated with the pre-determined stuck-pipe signature for this field, in real-time. The correlation used is a machine learning Correlation-based Feature Selection (CFS) algorithm, which selects relevant features from the class and identifying redundant features. The correlation output is interpreted as a probability curve of stuck pipe incidents prediction in real-time. Once this probability passes a fixed-threshold defined by the user, the other component, cause analysis, alerts the user of the expected incident based on set pre-determined signatures. A set of recommendations will be provided to reduce the associated risk. The validation process involved feeding of historical drilling data as live-stream, mimicking actual drilling conditions, of an onshore oil field. Pre-determined signatures were created for three problematic geological formations in this field prior. Three wells were processed as case studies, and the stuck-pipe incidents were predicted successfully, with an accuracy of 76%. This accuracy of detection could have resulted in around 50% reduction in NPT, equivalent to 9% cost saving in comparison with offset wells. The prediction of stuck pipe problem requires a method to capture geological, geophysical and drilling data, and recognize the indicators of this issue at a field and geological formation level. This paper illustrates the efficiency and the robustness of the proposed cross-disciplinary approach in its ability to produce such signatures and predicting this NPT event.Keywords: drilling optimization, hazard prediction, machine learning, stuck pipe
Procedia PDF Downloads 2294563 Development of Biodegradable Wound Healing Patch of Curcumin
Authors: Abhay Asthana, Shally Toshkhani, Gyati Shilakari
Abstract:
The objective of the present research work is to develop a topical biodegradable dermal patch based formulation to aid accelerated wound healing. It is always better for patient compliance to be able to reduce the frequency of dressings with improved drug delivery and overall therapeutic efficacy. In present study optimized formulation using biodegradable components was obtained evaluating polymers and excipients (HPMC K4M, Ethylcellulose, Povidone, Polyethylene glycol and Gelatin) to impart significant folding endurance, elasticity, and strength. Molten gelatin was used to get a mixture using ethylene glycol. Chitosan dissolved in acidic medium was mixed with stirring to Gelatin mixture. With continued stirring to the mixture Curcumin was added with the aid of DCM and Methanol in an optimized ratio of 60:40 to get homogenous dispersion. Polymers were dispersed with stirring in the final formulation. The mixture was sonicated casted to get the film form. All steps were carried out under strict aseptic conditions. The final formulation was a thin uniformly smooth textured film with dark brown-yellow color. The film was found to have folding endurance was around 20 to 21 times without a crack in an optimized formulation at RT (23°C). The drug content was in range 96 to 102% and it passed the content uniform test. The final moisture content of the optimized formulation film was NMT 9.0%. The films passed stability study conducted at refrigerated conditions (4±0.2°C) and at room temperature (23 ± 2°C) for 30 days. Further, the drug content and texture remained undisturbed with stability study conducted at RT 23±2°C for 45 and 90 days. Percentage cumulative drug release was found to be 80% in 12h and matched the biodegradation rate as tested in vivo with correlation factor R2>0.9. In in vivo study administration of one dose in equivalent quantity per 2 days was applied topically. The data demonstrated a significant improvement with percentage wound contraction in contrast to control and plain drug respectively in given period. The film based formulation developed shows promising results in terms of stability and in vivo performance.Keywords: wound healing, biodegradable, polymers, patch
Procedia PDF Downloads 4814562 Anti-Colitic and Anti-Inflammatory Effects of Lactobacillus sakei K040706 in Mice with Ulcerative Colitis
Authors: Seunghwan Seo, Woo-Seok Lee, Ji-Sun Shin, Young Kyoung Rhee, Chang-Won Cho, Hee-Do Hong, Kyung-Tae Lee
Abstract:
Doenjang, known as traditional Korean food, is product of a natural mixed fermentation process carried out by lactic acid bacteria (LAB). Lactobacillus sakei K040706 (K040706) has been accepted as the most populous LAB in over ripened doenjang. Recently, we reported the immunostimulatory effects of K040706 in RAW 264.7 macrophages and in a cyclophosphamide-induced mouse model. In this study, we investigated the ameliorative effects of K040706 in a dextran sulfate sodium (DSS)-induced colitis mouse model. We induced colitis using DSS in 5-week-ICR mice over 14 days with or without 0.1, 1 g/kg/day K040706 orally. The body weight, stool consistency, and gross bleeding were recorded for determination of the disease activity index (DAI). At the end of treatment, animals were sacrificed and colonic tissues were collected and subjected to histological experiments and myeloperoxidase (MPO) accumulation, cytokine determination, qRT-PCR and Western blot analysis. Results showed that K040706 significantly attenuated DSS-induced DAI score, shortening of colon length, enlargement of spleen and immune cell infiltrations into colonic tissues. Histological examinations indicated that K040706 suppressed edema, mucosal damage, and the loss of crypts induced by DSS. These results were correlated with the restoration of tight junction protein expression, such as, ZO-1 and occludin in K040706-treated mice. Moreover, K040706 reduced the abnormal secretions and mRNA expressions of pro-inflammatory mediators, such as nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6). DSS-induced mRNA expression of intercellular adhesion molecule (ICAM) and vascular cell adhesion molecule (VCAM) in colonic tissues was also downregulated by K040706 treatment. Furthermore, K040706 suppressed the protein and mRNA expression of toll-like receptor 4 (TLR4) and phosphorylation of NF-κB and signal transducer and activator of transcription 3 (STAT3). These results suggest that K040706 has an anti-colitic effect by inhibition of intestinal inflammatory responses in DSS-induced colitic mice.Keywords: Lactobacillus sakei, NF-κB, STAT3, ulcerative colitis
Procedia PDF Downloads 3254561 Alternative Approaches to Community Involvement in Resettlement Schemes to Prevent Potential Conflicts: Case Study in Chibuto District, Mozambique
Authors: Constâncio Augusto Machanguana
Abstract:
The world over, resettling communities, for whatever purpose (mining, dams, forestry and wildlife management, roads, or facilitating services delivery), often leads to tensions between those resettled, the investors, and the local and national governments involved in the process. Causes include unclear government legislation and regulations, confusing Corporate Social Responsibility policies and guidelines, and other social-economic policies leading to unrealistic expectations among those being resettled, causing frustrations within the community, shifting them to any imminent conflict against the investors (company). The exploitation of heavy mineral sands along Mozambique’s long coastline and hinterland has not been providing a benefit for the affected communities. A case in point is the exploration, since 2018, of heavy sands in Chibuto District in the Southern Province of Gaza. A likely contributing factor is the standard type of socio-economic surveys and community involvement processes that could smooth the relationship among the parties. This research aims to investigate alternative processes to plan, initiate and guide resettlement processes in such a way that tensions and conflicts are avoided. Based on the process already finished, compared to similar cases along with the country, mixed methods to collect primary data were adopted: three focus groups of 125 people, representing 324 resettled householders; five semi-structured interviews with relevant stakeholders such as the local government, NGO’s and local leaders to understand their role in all stages of the process. The preliminary results show that the community has limited or no understanding of the potential impacts of these large-scale explorations, and the apparent harmony between the parties (community and company) may hide the dissatisfaction of those resettled. So, rather than focusing on negative mining impacts, the research contributes to science by identifying the best resettlement approach that can be replicated in other contexts along with the country in the actual context of the new discovery of mineral resources.Keywords: conflict mitigation, resettlement, mining, Mozambique
Procedia PDF Downloads 1134560 Experimental Evaluation of Succinct Ternary Tree
Authors: Dmitriy Kuptsov
Abstract:
Tree data structures, such as binary or in general k-ary trees, are essential in computer science. The applications of these data structures can range from data search and retrieval to sorting and ranking algorithms. Naive implementations of these data structures can consume prohibitively large volumes of random access memory limiting their applicability in certain solutions. Thus, in these cases, more advanced representation of these data structures is essential. In this paper we present the design of the compact version of ternary tree data structure and demonstrate the results for the experimental evaluation using static dictionary problem. We compare these results with the results for binary and regular ternary trees. The conducted evaluation study shows that our design, in the best case, consumes up to 12 times less memory (for the dictionary used in our experimental evaluation) than a regular ternary tree and in certain configuration shows performance comparable to regular ternary trees. We have evaluated the performance of the algorithms using both 32 and 64 bit operating systems.Keywords: algorithms, data structures, succinct ternary tree, per- formance evaluation
Procedia PDF Downloads 1604559 Change through Stillness: Mindfulness Meditation as an Intervention for Men with Self-Perceived Problematic Pornography Use
Authors: Luke Sniewski, Pante Farvid, Phil Carter, Rita Csako
Abstract:
Background and Aims: Self-Perceived Problematic Porn Use (SPPPU) refers to individuals who identify as or perceive themselves to be addicted to porn. These individuals feel they are unable to regulate their porn consumption and experience adverse consequences as a result of their use in everyday life. To the author’s best knowledge, this research represents the first study to intervene with pornography use with mindfulness meditation, and aims to investigate the experiences and challenges of men with SPPPU as they engage in a mindfulness meditation intervention. As meditation is commonly characterized by sitting and observing one’s internal experience with non-reaction and acceptance, the study’s principal hypothesis was that consistent practice of meditation would develop the participant’s capacity to respond to cravings, urges, and unwanted thoughts in less reactive, more productive ways. Method: This 12-mixed method research utilised Single Case Experimental Design (SCED) methodology, with a standard AB design. Each participant was randomly assigned to an initial baseline time period between 2 to 5 weeks before learning the meditation technique and practicing it for the remainder of the 12-week study. The pilot study included 3 participants, while the intervention study included 12. The meditation technique used for the study involved a 15-minute guided breathing exercise in the morning, along with a 15-minute guided concentration meditation in the evening. Results: At the time of submission, only pilot study results were available. Results from the pilot study indicate an improved capacity for self-awareness of the uncomfortable mental and emotional states that drove their participants’ pornography use. Statistically significant reductions were also observed in daily porn use, total weekly time spent viewing porn, as well as lowered Pornography Craving Questionnaire (PCQ) and Problematic Pornography Use Scale (PPUS) scores. Conclusion: Pilot study results suggest that meditation could serve as a complementary tool for health professionals to provide clients in conjunction with therapeutic interventions. Study limitations, directions for future research, and clinical implications to be discussed as well.Keywords: meditation, behavioural change, pornography, mindfulness
Procedia PDF Downloads 1504558 Determination of Water Pollution and Water Quality with Decision Trees
Authors: Çiğdem Bakır, Mecit Yüzkat
Abstract:
With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.Keywords: decision tree, water quality, water pollution, machine learning
Procedia PDF Downloads 834557 Service Strategy And Innovation In The Food Service Industry: Basis For Designing A Competitive Advantage Model
Authors: Ma. Dina Datiles Jimenez
Abstract:
Service strategy and service Innovation has something to do with the success of the foodservice business. The foodservice business nowadays has become more competitive, and technology driven. This study aimed to determine and investigate the service innovation and strategies of the food service industry and the challenges during the pandemic to serve as the basis for a competitive advantage model. The study used mixed methods, including descriptive quantitative and qualitative methods. The Metro Manila foodservice managers were the target population of the study, which consisted of an estimated 1500 respondents from the selected cities. The assessment of service innovation for the following dimensions: product-related dimension; market-related dimension; process-related dimension; and organization-related dimension, when classified according to profile, was very large for age, gender, and educational attainment. When respondents are classified according to profile, the service strategy in terms of customer service strategy, after-sales service strategy, maintenance service strategy, research and development-oriented service strategy, and operational services strategy were all assessed with a very large extent of implementation. There was a significant difference in all four aspects of service innovation when classified based on age. However, for gender, only the market and process dimensions showed significant differences, while the product and organization conveyed no significant differences. Consequently, the evidence was not enough to prove that educational attainment differs from one another on the four aspects of service innovation. There was sufficient evidence to prove that the ages differ from one another in all aspects of service strategies. While gender and educational attainment showed no significant difference in the assessment of service strategies, Training on the trends in the foodservice industry during the pandemic is offered; technical maintenance is evident; the company allotted budget for outsourcing training; the quality control system; and online customer feedback were revealed as major indicators for service strategy. Fear of viruses, limited customers, a minimal work force, and low revenues were identified as challenges faced by the foodservice industry.Keywords: foodservice industry, service innovation, service strategy, competitive advantage, sustainability, technology
Procedia PDF Downloads 794556 Evaluation of Surface Water and Groundwater Quality in Parts of Umunneochi Southeast, Nigeria
Authors: Joshua Chima Chizoba, Wisdom Izuchukwu Uzoma, Elizabeth Ifeyiwa Okoyeh
Abstract:
Water cannot be optimally used and sustained unless the quality is periodically assessed. The study area Umunneochi and environs are located in south eastern part of Nigeria. It stretches geographically from latitudes 50501N to 60000N and longitudes 70201E to 70301. The major geologic formations in the area include the Asu River group, Nkporo Shale, and Ajali Sandstone. The aim of this study is to evaluate the hydrochemical characteristics of surface and ground water sources in parts of Umunneochi and environs in order to establish portability of the water sources for drinking, domestic and irrigation purposes. A total of 15 samples were collected randomly from streams, springs and wells. The samples were analyzed for physicochemical parameters and heavy metals using handheld digital kits, photometer, titration method and Atomic Absorption Spectrophotometer (AAS) following acceptable standards. The obtained analytical data were interpreted, and results were compared with World Health Organization (WHO) standard. The concentration of pH, SO42-and Cl- range from 5.81 mg/l – 6.07 mg/l, 41.93 mg/l – 142.95 mg/l and 20.00 mg/l – 111 mg/l respectively, while Pb and Zn revealed a relative low mean concentration of 0.14 mg/l and 0.40 mg/l, which are all within (WHO) permissible limits except pH. About 27% of the samples are moderately hard. This is attributed to the mining activities in the areas. The abundance of cations and anions in the area are in the order of K+>Na+>Mg2+>Ca2+ and SO4->Cl->HCO3->NO3-, respectively. Chloride, bicarbonate, and nitrate are all within the permissible limits. 13.33% of the total samples contain Sulphate above the standard permissible limits. The values of calculated Water Quality Index (WQI) are less than 50 indicating excellent water. The predominant water-type in the study area is Na-Cl water type and mixed Ca-Mg-Cl water type based on the sample plots on the Piper diagram. The Sodium Absorption Ratio (SAR) calculations showed excellent water for consumption and also good water for irrigation purpose with low sodium and alkalinity ratio respectively. Government water projects are recommended in the area for sustainable domestic and agricultural water supply to ease the stress of water supply problems.Keywords: groundwater, hydrochemical, physichochemical, water-type, sodium adsorption ratio
Procedia PDF Downloads 1304555 Female Dis-Empowerment in Contemporary Zimbabwe: A Re-Look at Shona Writers’ Vision of the Factors and Solutions
Authors: Godwin Makaudze
Abstract:
The majority of women in contemporary Zimbabwe continue to hold marginalised and insignificant positions in society and to be accorded negative and stereotyped images in literature. In light of this, government and civic organisations and even writers channel many resources, time, and efforts towards the emancipation of the female gender. Using the Africana womanist and socio-historical literary theories and focussing on two post-colonial novels, this paper re-engages the dis-empowerment of women in contemporary Zimbabwe, examining the believed causes and suggested solutions. The paper observes that the writers whip the already whipped by blaming patriarchy, African men and cultural practices as the underlying causes of such a sorry state of affairs while at the same time celebrating war against all these, as well as education, unity among women, Christianity and single motherhood as panaceas to the problem. The paper concludes that the writers’ anger is misdirected as they have fallen trap to the very popular yet mythical victim-blame motif espoused by many writers who focus on Shona people’s problems.Keywords: cultural practices, female dis-empowerment, patriarchy, Shona novel, solutions, Zimbabwe
Procedia PDF Downloads 3344554 A Dynamic Software Product Line Approach to Self-Adaptive Genetic Algorithms
Authors: Abdelghani Alidra, Mohamed Tahar Kimour
Abstract:
Genetic algorithm must adapt themselves at design time to cope with the search problem specific requirements and at runtime to balance exploration and convergence objectives. In a previous article, we have shown that modeling and implementing Genetic Algorithms (GA) using the software product line (SPL) paradigm is very appreciable because they constitute a product family sharing a common base of code. In the present article we propose to extend the use of the feature model of the genetic algorithms family to model the potential states of the GA in what is called a Dynamic Software Product Line. The objective of this paper is the systematic generation of a reconfigurable architecture that supports the dynamic of the GA and which is easily deduced from the feature model. The resultant GA is able to perform dynamic reconfiguration autonomously to fasten the convergence process while producing better solutions. Another important advantage of our approach is the exploitation of recent advances in the domain of dynamic SPLs to enhance the performance of the GAs.Keywords: self-adaptive genetic algorithms, software engineering, dynamic software product lines, reconfigurable architecture
Procedia PDF Downloads 2854553 Diagnostic Contribution of the MMSE-2:EV in the Detection and Monitoring of the Cognitive Impairment: Case Studies
Authors: Cornelia-Eugenia Munteanu
Abstract:
The goal of this paper is to present the diagnostic contribution that the screening instrument, Mini-Mental State Examination-2: Expanded Version (MMSE-2:EV), brings in detecting the cognitive impairment or in monitoring the progress of degenerative disorders. The diagnostic signification is underlined by the interpretation of the MMSE-2:EV scores, resulted from the test application to patients with mild and major neurocognitive disorders. The original MMSE is one of the most widely used screening tools for detecting the cognitive impairment, in clinical settings, but also in the field of neurocognitive research. Now, the practitioners and researchers are turning their attention to the MMSE-2. To enhance its clinical utility, the new instrument was enriched and reorganized in three versions (MMSE-2:BV, MMSE-2:SV and MMSE-2:EV), each with two forms: blue and red. The MMSE-2 was adapted and used successfully in Romania since 2013. The cases were selected from current practice, in order to cover vast and significant neurocognitive pathology: mild cognitive impairment, Alzheimer’s disease, vascular dementia, mixed dementia, Parkinson’s disease, conversion of the mild cognitive impairment into Alzheimer’s disease. The MMSE-2:EV version was used: it was applied one month after the initial assessment, three months after the first reevaluation and then every six months, alternating the blue and red forms. Correlated with age and educational level, the raw scores were converted in T scores and then, with the mean and the standard deviation, the z scores were calculated. The differences of raw scores between the evaluations were analyzed from the point of view of statistic signification, in order to establish the progression in time of the disease. The results indicated that the psycho-diagnostic approach for the evaluation of the cognitive impairment with MMSE-2:EV is safe and the application interval is optimal. The alternation of the forms prevents the learning phenomenon. The diagnostic accuracy and efficient therapeutic conduct derive from the usage of the national test norms. In clinical settings with a large flux of patients, the application of the MMSE-2:EV is a safe and fast psycho-diagnostic solution. The clinicians can draw objective decisions and for the patients: it doesn’t take too much time and energy, it doesn’t bother them and it doesn’t force them to travel frequently.Keywords: MMSE-2, dementia, cognitive impairment, neuropsychology
Procedia PDF Downloads 5154552 Gestalt in Music and Brain: A Non-Linear Chaos Based Study with Detrended/Adaptive Fractal Analysis
Authors: Shankha Sanyal, Archi Banerjee, Sayan Biswas, Sourya Sengupta, Sayan Nag, Ranjan Sengupta, Dipak Ghosh
Abstract:
The term ‘gestalt’ has been widely used in the field of psychology which defined the perception of human mind to group any object not in part but as a 'unified' whole. Music, in general, is polyphonic - i.e. a combination of a number of pure tones (frequencies) mixed together in a manner that sounds harmonious. The study of human brain response due to different frequency groups of the acoustic signal can give us an excellent insight regarding the neural and functional architecture of brain functions. Hence, the study of music cognition using neuro-biosensors is becoming a rapidly emerging field of research. In this work, we have tried to analyze the effect of different frequency bands of music on the various frequency rhythms of human brain obtained from EEG data. Four widely popular Rabindrasangeet clips were subjected to Wavelet Transform method for extracting five resonant frequency bands from the original music signal. These frequency bands were initially analyzed with Detrended/Adaptive Fractal analysis (DFA/AFA) methods. A listening test was conducted on a pool of 100 respondents to assess the frequency band in which the music becomes non-recognizable. Next, these resonant frequency bands were presented to 20 subjects as auditory stimulus and EEG signals recorded simultaneously in 19 different locations of the brain. The recorded EEG signals were noise cleaned and subjected again to DFA/AFA technique on the alpha, theta and gamma frequency range. Thus, we obtained the scaling exponents from the two methods in alpha, theta and gamma EEG rhythms corresponding to different frequency bands of music. From the analysis of music signal, it is seen that loss of recognition is proportional to the loss of long range correlation in the signal. From the EEG signal analysis, we obtain frequency specific arousal based response in different lobes of brain as well as in specific EEG bands corresponding to musical stimuli. In this way, we look to identify a specific frequency band beyond which the music becomes non-recognizable and below which in spite of the absence of other bands the music is perceivable to the audience. This revelation can be of immense importance when it comes to the field of cognitive music therapy and researchers of creativity.Keywords: AFA, DFA, EEG, gestalt in music, Hurst exponent
Procedia PDF Downloads 3324551 The Impact of Migrants’ Remittances on Household Poverty and Inequality: A Case Study of Mazar-i-Sharif, Balkh Province, Afghanistan
Authors: Baqir Khawari
Abstract:
This study has been undertaken to investigate the impact of remittances on household poverty and inequality using OLS and Logit Models with a strictly multi-random sampling method. The result of the OLS model reveals that if the per capita international remittances increase by 1%, then it is estimated that the per capita income will increase by 0.071% and 0.059% during 2019/20 and 2020/21, respectively. In addition, a 1% increase in external remittances results in a 0.0272% and 0.025% reduction in per capita depth of poverty and a 0.0149% and 0.0145% decrease in severity of poverty during 2019/20 and 2020/21, respectively. It is also shown that the effect of external remittances on poverty is greater than internal remittances. In terms of inequality, the result represents that remittances reduced the Gini coefficient by 2% and 7% during 2019/20 and 2020/21, respectively. Further, it is bold that COVID-19 negatively impacts the amount of received remittances by households, thus resulting in a reduction in the size of the effect of remittances. Therefore, a concerted effort of effective policies and governance and international assistance is imperative to address this prolonged problem.Keywords: migration, remittances, poverty, inequality, COVID-19, Afghanistan
Procedia PDF Downloads 68