Search results for: semantic data profiling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25673

Search results for: semantic data profiling

25193 Interconnections between Chronic Jet Lag and Neurological Disorders

Authors: Suliman Khan, Rabeea Siddique, Mengzhou Xue

Abstract:

Background: Patients with neurological disorders often display altered circadian rhythms. The disrupted circadian rhythms through chronic jetlag or shiftwork are thought to increase the risk and severity of human disease, including cancer, psychiatric, and related brain diseases. In this study, we investigated the impact of shiftwork or chronic jetlag (CJL) like conditions on mice’s brains. Transcriptome profiling based on RNA sequencing revealed that genes associated with serious neurological disorders were differentially expressed in the nucleus accumbens (NAc) and prefrontal cortex (PFC). According to the qPCR analysis, several key regulatory genes associated with neurological disorders were significantly altered in the NAc, PFC, hypothalamus, hippocampus, and striatum. Serotonin levels and the expression levels of serotonin transporters and receptors were significantly altered in mice treated with CJL. Overall, these results indicate that CJL may increase the risk of neurological disorders by disrupting the key regulatory genes, biological functions, serotonin, and corticosterone. These molecular linkages can further be studied to investigate the mechanism underlying CJL or shiftwork-mediated neurological disorders in order to develop treatment strategies.

Keywords: chronic jetlag, molecular profiles, brain disorders, circadian rhythms

Procedia PDF Downloads 121
25192 A Review on Big Data Movement with Different Approaches

Authors: Nay Myo Sandar

Abstract:

With the growth of technologies and applications, a large amount of data has been producing at increasing rate from various resources such as social media networks, sensor devices, and other information serving devices. This large collection of massive, complex and exponential growth of dataset is called big data. The traditional database systems cannot store and process such data due to large and complexity. Consequently, cloud computing is a potential solution for data storage and processing since it can provide a pool of resources for servers and storage. However, moving large amount of data to and from is a challenging issue since it can encounter a high latency due to large data size. With respect to big data movement problem, this paper reviews the literature of previous works, discusses about research issues, finds out approaches for dealing with big data movement problem.

Keywords: Big Data, Cloud Computing, Big Data Movement, Network Techniques

Procedia PDF Downloads 88
25191 Optimized Approach for Secure Data Sharing in Distributed Database

Authors: Ahmed Mateen, Zhu Qingsheng, Ahmad Bilal

Abstract:

In the current age of technology, information is the most precious asset of a company. Today, companies have a large amount of data. As the data become larger, access to data for some particular information is becoming slower day by day. Faster data processing to shape it in the form of information is the biggest issue. The major problems in distributed databases are the efficiency of data distribution and response time of data distribution. The security of data distribution is also a big issue. For these problems, we proposed a strategy that can maximize the efficiency of data distribution and also increase its response time. This technique gives better results for secure data distribution from multiple heterogeneous sources. The newly proposed technique facilitates the companies for secure data sharing efficiently and quickly.

Keywords: ER-schema, electronic record, P2P framework, API, query formulation

Procedia PDF Downloads 333
25190 Cross-Tier Collaboration between Preservice and Inservice Language Teachers in Designing Online Video-Based Pragmatic Assessment

Authors: Mei-Hui Liu

Abstract:

This paper reports the progression of language teachers’ learning to assess students’ speech act performance via online videos in a cross-tier professional growth community. This yearlong research project collected multiple data sources from several stakeholders, including 12 preservice and 4 inservice English as a foreign language (EFL) teachers, 4 English professionals, and 82 high school students. Data sources included surveys, (focus group) interviews, online reflection journals, online video-based assessment items/scores, and artifacts related to teacher professional learning. The major findings depicted the effectiveness of this proposed learning module on language teacher development in pragmatic assessment as well as its impact on student learning experience. All these teachers appreciated this professional learning experience which enhanced their knowledge in assessing students’ pragmalinguistic and sociopragmatic performance in an English speech act (i.e., making refusals). They learned how to design online video-based assessment items by attending to specific linguistic structures, semantic formula, and sociocultural issues. They further became aware of how to sharpen pragmatic instructional skills in the near future after putting theories into online assessment and related classroom practices. Additionally, data analysis revealed students’ achievement in and satisfaction with the designed online assessment. Yet, during the professional learning process most participating teachers encountered challenges in reaching a consensus on selecting appropriate video clips from available sources to present the sociocultural values in English-speaking refusal contexts. Also included was to construct test items which could testify the influence of interlanguage transfer on students’ pragmatic performance in various conversational scenarios. With pedagogical implications and research suggestions, this study adds to the increasing amount of research into integrating preservice and inservice EFL teacher education in pragmatic assessment and relevant instruction. Acknowledgment: This research project is sponsored by the Ministry of Science and Technology in the Republic of China under the grant number of MOST 106-2410-H-029-038.

Keywords: cross-tier professional development, inservice EFL teachers, pragmatic assessment, preservice EFL teachers, student learning experience

Procedia PDF Downloads 259
25189 Seasonal Stirred Variations in Chemical Composition and Antifungal Activity of Medicinal Plants Turraea holstii and Clausena anisata

Authors: Francis Machumi, Ester Innocent, Pius Yanda, Philip C. Stevenson

Abstract:

Curative dependence of traditionally used medicinal plants on season of harvest is an alleged claim by traditional health practitioners. This study intended to verify these claims by investigating antifungal activity and chemical composition of traditionally used medicinal plants Turraea holstii and Clausena anisata harvested in rainy season and dry season. The antifungal activities were determined by broth microdilution method whereas chemical profiling of the extracts from the plant materials was done by gas chromatography (GC). Results indicated that extracts of plant materials harvested in dry season showed enhanced antifungal activity as compared to extracts of plant materials harvested in rainy season. GC chromatograms showed overalls increase in number and amount of chemical species for extracts of plant materials harvested in dry season as compared to extracts of plant materials harvested in rainy season.

Keywords: antifungal activity, chemical composition, medicinal plants, seasonal dependence

Procedia PDF Downloads 425
25188 Data Mining Algorithms Analysis: Case Study of Price Predictions of Lands

Authors: Julio Albuja, David Zaldumbide

Abstract:

Data analysis is an important step before taking a decision about money. The aim of this work is to analyze the factors that influence the final price of the houses through data mining algorithms. To our best knowledge, previous work was researched just to compare results. Furthermore, before using the data of the data set, the Z-Transformation were used to standardize the data in the same range. Hence, the data was classified into two groups to visualize them in a readability format. A decision tree was built, and graphical data is displayed where clearly is easy to see the results and the factors' influence in these graphics. The definitions of these methods are described, as well as the descriptions of the results. Finally, conclusions and recommendations are presented related to the released results that our research showed making it easier to apply these algorithms using a customized data set.

Keywords: algorithms, data, decision tree, transformation

Procedia PDF Downloads 375
25187 Exploring Antimicrobial Resistance in the Lung Microbial Community Using Unsupervised Machine Learning

Authors: Camilo Cerda Sarabia, Fernanda Bravo Cornejo, Diego Santibanez Oyarce, Hugo Osses Prado, Esteban Gómez Terán, Belén Diaz Diaz, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán

Abstract:

Antimicrobial resistance (AMR) represents a significant and rapidly escalating global health threat. Projections estimate that by 2050, AMR infections could claim up to 10 million lives annually. Respiratory infections, in particular, pose a severe risk not only to individual patients but also to the broader public health system. Despite the alarming rise in resistant respiratory infections, AMR within the lung microbiome (microbial community) remains underexplored and poorly characterized. The lungs, as a complex and dynamic microbial environment, host diverse communities of microorganisms whose interactions and resistance mechanisms are not fully understood. Unlike studies that focus on individual genomes, analyzing the entire microbiome provides a comprehensive perspective on microbial interactions, resistance gene transfer, and community dynamics, which are crucial for understanding AMR. However, this holistic approach introduces significant computational challenges and exposes the limitations of traditional analytical methods such as the difficulty of identifying the AMR. Machine learning has emerged as a powerful tool to overcome these challenges, offering the ability to analyze complex genomic data and uncover novel insights into AMR that might be overlooked by conventional approaches. This study investigates microbial resistance within the lung microbiome using unsupervised machine learning approaches to uncover resistance patterns and potential clinical associations. it downloaded and selected lung microbiome data from HumanMetagenomeDB based on metadata characteristics such as relevant clinical information, patient demographics, environmental factors, and sample collection methods. The metadata was further complemented by details on antibiotic usage, disease status, and other relevant descriptions. The sequencing data underwent stringent quality control, followed by a functional profiling focus on identifying resistance genes through specialized databases like Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. Subsequent analyses employed unsupervised machine learning techniques to unravel the structure and diversity of resistomes in the microbial community. Some of the methods employed were clustering methods such as K-Means and Hierarchical Clustering enabled the identification of sample groups based on their resistance gene profiles. The work was implemented in python, leveraging a range of libraries such as biopython for biological sequence manipulation, NumPy for numerical operations, Scikit-learn for machine learning, Matplotlib for data visualization and Pandas for data manipulation. The findings from this study provide insights into the distribution and dynamics of antimicrobial resistance within the lung microbiome. By leveraging unsupervised machine learning, we identified novel resistance patterns and potential drivers within the microbial community.

Keywords: antibiotic resistance, microbial community, unsupervised machine learning., sequences of AMR gene

Procedia PDF Downloads 26
25186 Corporate Social Responsibility and Corporate Reputation: A Bibliometric Analysis

Authors: Songdi Li, Louise Spry, Tony Woodall

Abstract:

Nowadays, Corporate Social responsibility (CSR) is becoming a buzz word, and more and more academics are putting efforts on CSR studies. It is believed that CSR could influence Corporate Reputation (CR), and they hold a favourable view that CSR leads to a positive CR. To be specific, the CSR related activities in the reputational context have been regarded as ways that associate to excellent financial performance, value creation, etc. Also, it is argued that CSR and CR are two sides of one coin; hence, to some extent, doing CSR is equal to establishing a good reputation. Still, there is no consensus of the CSR-CR relationship in the literature; thus, a systematic literature review is highly in need. This research conducts a systematic literature review with both bibliometric and content analysis. Data are selected from English language sources, and academic journal articles only, then, keyword combinations are applied to identify relevant sources. Data from Scopus and WoS are gathered for bibliometric analysis. Scopus search results were saved in RIS and CSV formats, and Web of Science (WoS) data were saved in TXT format and CSV formats in order to process data in the Bibexcel software for further analysis which later will be visualised by the software VOSviewer. Also, content analysis was applied to analyse the data clusters and the key articles. In terms of the topic of CSR-CR, this literature review with bibliometric analysis has made four achievements. First, this paper has developed a systematic study which quantitatively depicts the knowledge structure of CSR and CR by identifying terms closely related to CSR-CR (such as ‘corporate governance’) and clustering subtopics emerged in co-citation analysis. Second, content analysis is performed to acquire insight on the findings of bibliometric analysis in the discussion section. And it highlights some insightful implications for the future research agenda, for example, a psychological link between CSR-CR is identified from the result; also, emerging economies and qualitative research methods are new elements emerged in the CSR-CR big picture. Third, a multidisciplinary perspective presents through the whole bibliometric analysis mapping and co-word and co-citation analysis; hence, this work builds a structure of interdisciplinary perspective which potentially leads to an integrated conceptual framework in the future. Finally, Scopus and WoS are compared and contrasted in this paper; as a result, Scopus which has more depth and comprehensive data is suggested as a tool for future bibliometric analysis studies. Overall, this paper has fulfilled its initial purposes and contributed to the literature. To the author’s best knowledge, this paper conducted the first literature review of CSR-CR researches that applied both bibliometric analysis and content analysis; therefore, this paper achieves its methodological originality. And this dual approach brings advantages of carrying out a comprehensive and semantic exploration in the area of CSR-CR in a scientific and realistic method. Admittedly, its work might exist subjective bias in terms of search terms selection and paper selection; hence triangulation could reduce the subjective bias to some degree.

Keywords: corporate social responsibility, corporate reputation, bibliometric analysis, software program

Procedia PDF Downloads 129
25185 Application of Blockchain Technology in Geological Field

Authors: Mengdi Zhang, Zhenji Gao, Ning Kang, Rongmei Liu

Abstract:

Management and application of geological big data is an important part of China's national big data strategy. With the implementation of a national big data strategy, geological big data management becomes more and more critical. At present, there are still a lot of technology barriers as well as cognition chaos in many aspects of geological big data management and application, such as data sharing, intellectual property protection, and application technology. Therefore, it’s a key task to make better use of new technologies for deeper delving and wider application of geological big data. In this paper, we briefly introduce the basic principle of blockchain technology at the beginning and then make an analysis of the application dilemma of geological data. Based on the current analysis, we bring forward some feasible patterns and scenarios for the blockchain application in geological big data and put forward serval suggestions for future work in geological big data management.

Keywords: blockchain, intellectual property protection, geological data, big data management

Procedia PDF Downloads 92
25184 Cognitive Semantics Study of Conceptual and Metonymical Expressions in Johnson's Speeches about COVID-19

Authors: Hussain Hameed Mayuuf

Abstract:

The study is an attempt to investigate the conceptual metonymies is used in political discourse about COVID-19. Thus, this study tries to analyze and investigate how the conceptual metonymies in Johnson's speech about coronavirus are constructed. This study aims at: Identifying how are metonymies relevant to understand the messages in Boris Johnson speeches and to find out how can conceptual blending theory help people to understand the messages in the political speech about COVID-19. Lastly, it tries to Point out the kinds of integration networks are common in political speech. The study is based on the hypotheses that conceptual blending theory is a powerful tool for investigating the intended messages in Johnson's speech and there are different processes of blending networks and conceptual mapping that enable the listeners to identify the messages in political speech. This study presents a qualitative and quantitative analysis of four speeches about COVID-19; they are said by Boris Johnson. The selected data have been tackled from the cognitive-semantic perspective by adopting Conceptual Blending Theory as a model for the analysis. It concludes that CBT is applicable to the analysis of metonymies in political discourse. Its mechanisms enable listeners to analyze and understand these speeches. Also the listener can identify and understand the hidden messages in Biden and Johnson's discourse about COVID-19 by using different conceptual networks. Finally, it is concluded that the double scope networks are the most common types of blending of metonymies in the political speech.

Keywords: cognitive, semantics, conceptual, metonymical, Covid-19

Procedia PDF Downloads 130
25183 Frequent Item Set Mining for Big Data Using MapReduce Framework

Authors: Tamanna Jethava, Rahul Joshi

Abstract:

Frequent Item sets play an essential role in many data Mining tasks that try to find interesting patterns from the database. Typically it refers to a set of items that frequently appear together in transaction dataset. There are several mining algorithm being used for frequent item set mining, yet most do not scale to the type of data we presented with today, so called “BIG DATA”. Big Data is a collection of large data sets. Our approach is to work on the frequent item set mining over the large dataset with scalable and speedy way. Big Data basically works with Map Reduce along with HDFS is used to find out frequent item sets from Big Data on large cluster. This paper focuses on using pre-processing & mining algorithm as hybrid approach for big data over Hadoop platform.

Keywords: frequent item set mining, big data, Hadoop, MapReduce

Procedia PDF Downloads 437
25182 Machine Learning and Deep Learning Approach for People Recognition and Tracking in Crowd for Safety Monitoring

Authors: A. Degale Desta, Cheng Jian

Abstract:

Deep learning application in computer vision is rapidly advancing, giving it the ability to monitor the public and quickly identify potentially anomalous behaviour from crowd scenes. Therefore, the purpose of the current work is to improve the performance of safety of people in crowd events from panic behaviour through introducing the innovative idea of Aggregation of Ensembles (AOE), which makes use of the pre-trained ConvNets and a pool of classifiers to find anomalies in video data with packed scenes. According to the theory of algorithms that applied K-means, KNN, CNN, SVD, and Faster-CNN, YOLOv5 architectures learn different levels of semantic representation from crowd videos; the proposed approach leverages an ensemble of various fine-tuned convolutional neural networks (CNN), allowing for the extraction of enriched feature sets. In addition to the above algorithms, a long short-term memory neural network to forecast future feature values and a handmade feature that takes into consideration the peculiarities of the crowd to understand human behavior. On well-known datasets of panic situations, experiments are run to assess the effectiveness and precision of the suggested method. Results reveal that, compared to state-of-the-art methodologies, the system produces better and more promising results in terms of accuracy and processing speed.

Keywords: action recognition, computer vision, crowd detecting and tracking, deep learning

Procedia PDF Downloads 165
25181 The Role Of Data Gathering In NGOs

Authors: Hussaini Garba Mohammed

Abstract:

Background/Significance: The lack of data gathering is affecting NGOs world-wide in general to have good data information about educational and health related issues among communities in any country and around the world. For example, HIV/AIDS smoking (Tuberculosis diseases) and COVID-19 virus carriers is becoming a serious public health problem, especially among old men and women. But there is no full details data survey assessment from communities, villages, and rural area in some countries to show the percentage of victims and patients, especial with this world COVID-19 virus among the people. These data are essential to inform programming targets, strategies, and priorities in getting good information about data gathering in any society.

Keywords: reliable information, data assessment, data mining, data communication

Procedia PDF Downloads 180
25180 The Application of Data Mining Technology in Building Energy Consumption Data Analysis

Authors: Liang Zhao, Jili Zhang, Chongquan Zhong

Abstract:

Energy consumption data, in particular those involving public buildings, are impacted by many factors: the building structure, climate/environmental parameters, construction, system operating condition, and user behavior patterns. Traditional methods for data analysis are insufficient. This paper delves into the data mining technology to determine its application in the analysis of building energy consumption data including energy consumption prediction, fault diagnosis, and optimal operation. Recent literature are reviewed and summarized, the problems faced by data mining technology in the area of energy consumption data analysis are enumerated, and research points for future studies are given.

Keywords: data mining, data analysis, prediction, optimization, building operational performance

Procedia PDF Downloads 854
25179 English Pashto Contact: Morphological Adaptation of Bilingual Compound Words in Pashto

Authors: Imran Ullah Imran

Abstract:

Language contact is a familiar concept in the present global world. Across the globe, languages get mixed up at different levels. Borrowing, code-switching are some of the means through which languages interact. This study examines Pashto-English contact at word and syllable levels. By recording the speech of 30 Pashto native speakers, selected via 'social network' sampling, the study located a number of Pashto-English compound words, which is a unique contact of its kind. In data analysis, tokens were categorized on the basis of their pattern and morphological structure. The study shows that Pashto-English Bilingual Compound words (BCWs) are very prevalent in the Pashto language. The study also found that the BCWs in Pashto are completely productive and have their own meanings. It also shows that the dominant pattern of hybrid words in Pashto is the conjugation of an independent English root word followed by a Pashto inflectional morpheme, which contributes to the core semantic content of the construction. The BCWs construction shows that how both the languages are closer to each other. Pashto-English contact results into bilingual compound and hybrid words, which forms a considerable number of tokens in the present-day spoken Pashto. On the basis of these findings, the study assumes that the same phenomenon may increase with the passage of time that would, in turn, result in the formation of more bilingual compound or hybrid words.

Keywords: code-mixing, bilingual compound words, pashto-english contact, hybrid words, inflectional lexical morpheme

Procedia PDF Downloads 249
25178 To Handle Data-Driven Software Development Projects Effectively

Authors: Shahnewaz Khan

Abstract:

Machine learning (ML) techniques are often used in projects for creating data-driven applications. These tasks typically demand additional research and analysis. The proper technique and strategy must be chosen to ensure the success of data-driven projects. Otherwise, even exerting a lot of effort, the necessary development might not always be possible. In this post, an effort to examine the workflow of data-driven software development projects and its implementation process in order to describe how to manage a project successfully. Which will assist in minimizing the added workload.

Keywords: data, data-driven projects, data science, NLP, software project

Procedia PDF Downloads 84
25177 The Relationship Between Artificial Intelligence, Data Science, and Privacy

Authors: M. Naidoo

Abstract:

Artificial intelligence often requires large amounts of good quality data. Within important fields, such as healthcare, the training of AI systems predominately relies on health and personal data; however, the usage of this data is complicated by various layers of law and ethics that seek to protect individuals’ privacy rights. This research seeks to establish the challenges AI and data sciences pose to (i) informational rights, (ii) privacy rights, and (iii) data protection. To solve some of the issues presented, various methods are suggested, such as embedding values in technological development, proper balancing of rights and interests, and others.

Keywords: artificial intelligence, data science, law, policy

Procedia PDF Downloads 106
25176 Simulation Data Summarization Based on Spatial Histograms

Authors: Jing Zhao, Yoshiharu Ishikawa, Chuan Xiao, Kento Sugiura

Abstract:

In order to analyze large-scale scientific data, research on data exploration and visualization has gained popularity. In this paper, we focus on the exploration and visualization of scientific simulation data, and define a spatial V-Optimal histogram for data summarization. We propose histogram construction algorithms based on a general binary hierarchical partitioning as well as a more specific one, the l-grid partitioning. For effective data summarization and efficient data visualization in scientific data analysis, we propose an optimal algorithm as well as a heuristic algorithm for histogram construction. To verify the effectiveness and efficiency of the proposed methods, we conduct experiments on the massive evacuation simulation data.

Keywords: simulation data, data summarization, spatial histograms, exploration, visualization

Procedia PDF Downloads 177
25175 Predicting Open Chromatin Regions in Cell-Free DNA Whole Genome Sequencing Data by Correlation Clustering  

Authors: Fahimeh Palizban, Farshad Noravesh, Amir Hossein Saeidian, Mahya Mehrmohamadi

Abstract:

In the recent decade, the emergence of liquid biopsy has significantly improved cancer monitoring and detection. Dying cells, including those originating from tumors, shed their DNA into the blood and contribute to a pool of circulating fragments called cell-free DNA. Accordingly, identifying the tissue origin of these DNA fragments from the plasma can result in more accurate and fast disease diagnosis and precise treatment protocols. Open chromatin regions are important epigenetic features of DNA that reflect cell types of origin. Profiling these features by DNase-seq, ATAC-seq, and histone ChIP-seq provides insights into tissue-specific and disease-specific regulatory mechanisms. There have been several studies in the area of cancer liquid biopsy that integrate distinct genomic and epigenomic features for early cancer detection along with tissue of origin detection. However, multimodal analysis requires several types of experiments to cover the genomic and epigenomic aspects of a single sample, which will lead to a huge amount of cost and time. To overcome these limitations, the idea of predicting OCRs from WGS is of particular importance. In this regard, we proposed a computational approach to target the prediction of open chromatin regions as an important epigenetic feature from cell-free DNA whole genome sequence data. To fulfill this objective, local sequencing depth will be fed to our proposed algorithm and the prediction of the most probable open chromatin regions from whole genome sequencing data can be carried out. Our method integrates the signal processing method with sequencing depth data and includes count normalization, Discrete Fourie Transform conversion, graph construction, graph cut optimization by linear programming, and clustering. To validate the proposed method, we compared the output of the clustering (open chromatin region+, open chromatin region-) with previously validated open chromatin regions related to human blood samples of the ATAC-DB database. The percentage of overlap between predicted open chromatin regions and the experimentally validated regions obtained by ATAC-seq in ATAC-DB is greater than 67%, which indicates meaningful prediction. As it is evident, OCRs are mostly located in the transcription start sites (TSS) of the genes. In this regard, we compared the concordance between the predicted OCRs and the human genes TSS regions obtained from refTSS and it showed proper accordance around 52.04% and ~78% with all and the housekeeping genes, respectively. Accurately detecting open chromatin regions from plasma cell-free DNA-seq data is a very challenging computational problem due to the existence of several confounding factors, such as technical and biological variations. Although this approach is in its infancy, there has already been an attempt to apply it, which leads to a tool named OCRDetector with some restrictions like the need for highly depth cfDNA WGS data, prior information about OCRs distribution, and considering multiple features. However, we implemented a graph signal clustering based on a single depth feature in an unsupervised learning manner that resulted in faster performance and decent accuracy. Overall, we tried to investigate the epigenomic pattern of a cell-free DNA sample from a new computational perspective that can be used along with other tools to investigate genetic and epigenetic aspects of a single whole genome sequencing data for efficient liquid biopsy-related analysis.

Keywords: open chromatin regions, cancer, cell-free DNA, epigenomics, graph signal processing, correlation clustering

Procedia PDF Downloads 151
25174 Variability of the Speaker's Verbal and Non-Verbal Behaviour in the Process of Changing Social Roles in the English Marketing Discourse

Authors: Yuliia Skrynnik

Abstract:

This research focuses on the interaction of verbal, non-verbal, and super-verbal communicative components used by the speaker changing social roles in the marketing discourse. The changing/performing of social roles is implemented through communicative strategies and tactics, the structural, semantic, and linguo-pragmatic means of which are characterized by specific features and differ for the performance of either a role of a supplier or a customer. Communication within the marketing discourse is characterized by symmetrical roles’ relation between communicative opponents. The strategy of a supplier’s social role realization and the strategy of a customer’s role realization influence the discursive personality's linguistic repertoire in the marketing discourse. This study takes into account that one person can be both a supplier and a customer under different circumstances, thus, exploring the one individual who can be both a supplier and a customer. Cooperative and non-cooperative tactics are the instruments for the implementation of these strategies. In the marketing discourse, verbal and non-verbal behaviour of the speaker performing a customer’s social role is highly informative for speakers who perform the role of a supplier. The research methods include discourse, context-situational, pragmalinguistic, pragmasemantic analyses, the method of non-verbal components analysis. The methodology of the study includes 5 steps: 1) defining the configurations of speakers’ social roles on the selected material; 2) establishing the type of the discourse (marketing discourse); 3) describing the specific features of a discursive personality as a subject of the communication in the process of social roles realization; 4) selecting the strategies and tactics which direct the interaction in different roles configurations; 5) characterizing the structural, semantic and pragmatic features of the strategies and tactics realization, including the analysis of interaction between verbal and non-verbal components of communication. In the marketing discourse, non-verbal behaviour is usually spontaneous but not purposeful. Thus, the adequate decoding of a partner’s non-verbal behavior provides more opportunities both for the supplier and the customer. Super-verbal characteristics in the marketing discourse are crucial in defining the opponent's social status and social role at the initial stage of interaction. The research provides the scenario of stereotypical situations of the play of a supplier and a customer. The performed analysis has perspectives for further research connected with the study of discursive variativity of speakers' verbal and non-verbal behaviour considering the intercultural factor influencing the process of performing the social roles in the marketing discourse; and the formation of the methods for the scenario construction of non-stereotypical situations of social roles realization/change in the marketing discourse.

Keywords: discursive personality, marketing discourse, non-verbal component of communication, social role, strategy, super-verbal component of communication, tactic, verbal component of communication

Procedia PDF Downloads 123
25173 Evaluating 8D Reports Using Text-Mining

Authors: Benjamin Kuester, Bjoern Eilert, Malte Stonis, Ludger Overmeyer

Abstract:

Increasing quality requirements make reliable and effective quality management indispensable. This includes the complaint handling in which the 8D method is widely used. The 8D report as a written documentation of the 8D method is one of the key quality documents as it internally secures the quality standards and acts as a communication medium to the customer. In practice, however, the 8D report is mostly faulty and of poor quality. There is no quality control of 8D reports today. This paper describes the use of natural language processing for the automated evaluation of 8D reports. Based on semantic analysis and text-mining algorithms the presented system is able to uncover content and formal quality deficiencies and thus increases the quality of the complaint processing in the long term.

Keywords: 8D report, complaint management, evaluation system, text-mining

Procedia PDF Downloads 316
25172 OSEME: A Smart Learning Environment for Music Education

Authors: Konstantinos Sofianos, Michael Stefanidakis

Abstract:

Nowadays, advances in information and communication technologies offer a range of opportunities for new approaches, methods, and tools in the field of education and training. Teacher-centered learning has changed to student-centered learning. E-learning has now matured and enables the design and construction of intelligent learning systems. A smart learning system fully adapts to a student's needs and provides them with an education based on their preferences, learning styles, and learning backgrounds. It is a wise friend and available at any time, in any place, and with any digital device. In this paper, we propose an intelligent learning system, which includes an ontology with all elements of the learning process (learning objects, learning activities) and a massive open online course (MOOC) system. This intelligent learning system can be used in music education.

Keywords: intelligent learning systems, e-learning, music education, ontology, semantic web

Procedia PDF Downloads 312
25171 Semantic Analysis of the Change in Awareness of Korean College Admission Policy

Authors: Sujin Hwang, Hyerang Park, Hyunchul Kim

Abstract:

The purpose of this study is to find the effectiveness of the admission simplification policy. The number of online news articles about ‘high school record’ was collected and semantically analyzed to identify and analyze the social awareness during 2014 to 2015. The main results of the study are as follows: First, there was a difference in expectations that the burden of the examinees would decrease as announced by KCUE. Thus, there was still a strain on the university entrance exam after the enforcement of the policy. Second, private tutoring is expanding in different forms, rather than reducing the policy. It is different from the prediction that examinees can prepare for university admissions without the private tutoring. Thus, the college admission rules currently enforced needs to be improved. The reasonable college admission system changes are discussed.

Keywords: education policy, private tutoring, shadow education, education admission policy

Procedia PDF Downloads 227
25170 Algorithms used in Spatial Data Mining GIS

Authors: Vahid Bairami Rad

Abstract:

Extracting knowledge from spatial data like GIS data is important to reduce the data and extract information. Therefore, the development of new techniques and tools that support the human in transforming data into useful knowledge has been the focus of the relatively new and interdisciplinary research area ‘knowledge discovery in databases’. Thus, we introduce a set of database primitives or basic operations for spatial data mining which are sufficient to express most of the spatial data mining algorithms from the literature. This approach has several advantages. Similar to the relational standard language SQL, the use of standard primitives will speed-up the development of new data mining algorithms and will also make them more portable. We introduced a database-oriented framework for spatial data mining which is based on the concepts of neighborhood graphs and paths. A small set of basic operations on these graphs and paths were defined as database primitives for spatial data mining. Furthermore, techniques to efficiently support the database primitives by a commercial DBMS were presented.

Keywords: spatial data base, knowledge discovery database, data mining, spatial relationship, predictive data mining

Procedia PDF Downloads 462
25169 Data Stream Association Rule Mining with Cloud Computing

Authors: B. Suraj Aravind, M. H. M. Krishna Prasad

Abstract:

There exist emerging applications of data streams that require association rule mining, such as network traffic monitoring, web click streams analysis, sensor data, data from satellites etc. Data streams typically arrive continuously in high speed with huge amount and changing data distribution. This raises new issues that need to be considered when developing association rule mining techniques for stream data. This paper proposes to introduce an improved data stream association rule mining algorithm by eliminating the limitation of resources. For this, the concept of cloud computing is used. Inclusion of this may lead to additional unknown problems which needs further research.

Keywords: data stream, association rule mining, cloud computing, frequent itemsets

Procedia PDF Downloads 503
25168 Contextualizing Torture in Closed Institutions

Authors: Erinda Bllaca Ndroqi

Abstract:

The dilemma with which the monitoring professionals are facing in today’s reality is whether to accept that prisons all over the world constitute a place where not all rights are respected (ethical approach), or widen the scope of monitoring by prioritizing the special needs of people deprived of their liberties (human right approach), despite the context and the level of improved prison condition, staff profiling, more services oriented towards rehabilitation instead of punishment. Such dilemma becomes a concern if taking into consideration the fact that prisoners, due to their powerlessness and 'their lives at the hand of the state', are constantly under the threat of abuse of power and neglect, which in the Albanian case, has never been classified as torture. Scientific research in twenty-four (24) Albanian prisons shows that for some rights, prisoners belonging to 'vulnerable groups' such as mental illness, HIV positive status, sexual orientation, and terminal illness remain quite challenged and do not ensure that their basic rights are being met by the current criminal justice system (despite recommendations set forwards to prison authorities by the European Committee for the Prevention of Torture and Inhuman or Degrading Treatment or Punishment (CPT)). The research orients more discussion about policy and strategic recommendations that would need a thorough assessment of the impact of rehabilitation in special categories of prisoners, including recidivists.

Keywords: prisons, rehabilitation, torture, vulnerability

Procedia PDF Downloads 130
25167 A Comprehensive Survey and Improvement to Existing Privacy Preserving Data Mining Techniques

Authors: Tosin Ige

Abstract:

Ethics must be a condition of the world, like logic. (Ludwig Wittgenstein, 1889-1951). As important as data mining is, it possess a significant threat to ethics, privacy, and legality, since data mining makes it difficult for an individual or consumer (in the case of a company) to control the accessibility and usage of his data. This research focuses on Current issues and the latest research and development on Privacy preserving data mining methods as at year 2022. It also discusses some advances in those techniques while at the same time highlighting and providing a new technique as a solution to an existing technique of privacy preserving data mining methods. This paper also bridges the wide gap between Data mining and the Web Application Programing Interface (web API), where research is urgently needed for an added layer of security in data mining while at the same time introducing a seamless and more efficient way of data mining.

Keywords: data, privacy, data mining, association rule, privacy preserving, mining technique

Procedia PDF Downloads 173
25166 Big Data: Concepts, Technologies and Applications in the Public Sector

Authors: A. Alexandru, C. A. Alexandru, D. Coardos, E. Tudora

Abstract:

Big Data (BD) is associated with a new generation of technologies and architectures which can harness the value of extremely large volumes of very varied data through real time processing and analysis. It involves changes in (1) data types, (2) accumulation speed, and (3) data volume. This paper presents the main concepts related to the BD paradigm, and introduces architectures and technologies for BD and BD sets. The integration of BD with the Hadoop Framework is also underlined. BD has attracted a lot of attention in the public sector due to the newly emerging technologies that allow the availability of network access. The volume of different types of data has exponentially increased. Some applications of BD in the public sector in Romania are briefly presented.

Keywords: big data, big data analytics, Hadoop, cloud

Procedia PDF Downloads 312
25165 English Loanwords in Nigerian Languages: Sociolinguistic Survey

Authors: Surajo Ladan

Abstract:

English has been in existence in Nigeria since colonial period. The advent of English in Nigeria has caused a lot of linguistic changes in Nigerian languages especially among the educated elites and to some extent, even the ordinary people were not spared from this phenomenon. This scenario has generated a linguistic situation which culminated into the creation of Nigerian Pidgin that are conglomeration of English and other Nigerian languages. English has infiltrated the Nigerian languages to a point that a typical Nigerian can hardly talk without code-switching or using one English word or the other. The existence of English loanwords in Nigerian languages has taken another dimension in this scientific and technological age. Most of scientific and technological inventions are products of English language which are virtually adopted into the languages with phonological, morphological, and sometimes semantic variations. This paper is of the view that there should be a re-think and agitation from Nigerians to protect their languages from the linguistic genocide of English which are invariably facing extinction.

Keywords: linguistic change, loanword, phenomenon, pidgin

Procedia PDF Downloads 866
25164 Access Control System for Big Data Application

Authors: Winfred Okoe Addy, Jean Jacques Dominique Beraud

Abstract:

Access control systems (ACs) are some of the most important components in safety areas. Inaccuracies of regulatory frameworks make personal policies and remedies more appropriate than standard models or protocols. This problem is exacerbated by the increasing complexity of software, such as integrated Big Data (BD) software for controlling large volumes of encrypted data and resources embedded in a dedicated BD production system. This paper proposes a general access control strategy system for the diffusion of Big Data domains since it is crucial to secure the data provided to data consumers (DC). We presented a general access control circulation strategy for the Big Data domain by describing the benefit of using designated access control for BD units and performance and taking into consideration the need for BD and AC system. We then presented a generic of Big Data access control system to improve the dissemination of Big Data.

Keywords: access control, security, Big Data, domain

Procedia PDF Downloads 134