Search results for: perovskite catalyst
431 High Piezoelectric and Magnetic Performance Achieved in the Lead-free BiFeO3-BaTiO3 Cceramics by Defect Engineering
Authors: Muhammad Habib, Xuefan Zhou, Lin Tang, Guoliang Xue, Fazli Akram, Dou Zhang
Abstract:
Defect engineering approach is a well-established approach for the customization of functional properties of perovskite ceramics. In modern technology, the high multiferroic properties for elevated temperature applications are greatly demanding. In this work, the Bi-nonstoichiometric lead-free 0.67Biy-xSmxFeO3-0.33BaTiO3 ceramics (Sm-doped BF-BT for Bi-excess; y = 1.03 and Bi-deficient; y = 0.975 with x = 0.00, 0.04 and 0.08) were design for the high-temperature multiferroic property. Enhanced piezoelectric (d33 250 pC/N and d33* 350 pm/V) and magnetic properties (Mr 0.25 emu/g) with a high Curie temperature (TC 465 ℃) were obtained in the Bi-deficient pure BF-BT ceramics. With Sm-doping (x = 0.04), the TC decrease to 350 ℃ a significant improvement occurred in the d33* to 504 pm/V and 450 pm/V for Bi-excess and Bi-deficient compositions, respectively. The structural origin of the enhanced piezoelectric strain performance is related to the soft ferroelectric effect by Sm-doping and reversible phase transition from the short-range relaxor ferroelectric state to the long-range order under the applied electric field. However, a slight change occurs in the Mr 0.28 emu/g value with Sm-doping for Bi-deficient ceramics, whereas the Bi-excess ceramics shows completely paramagnetic behavior. Hence, the origin of high magnetic properties in the Bi-deficient BF-BT ceramics is mainly attributed to the proposed double exchange mechanism. We believe that this strategy will provide a new perspective for the development of lead-free multiferroic ceramics for high-temperature applications.Keywords: BiFeO3-BaTiO3, lead-free piezoceramics, magnetic properties, defect engineering
Procedia PDF Downloads 133430 Antioxidant Activity Studies of Novel Schiff and Mannich Bases
Authors: D. J. Madhu Kumar, D. Jagadeesh Prasad, Sana Sheik, E. P. Rejeesh
Abstract:
A series of Mannich bases derived from 1,2,4-triazole(3a-k and 4a-k) are synthesized by treating a Schiff base with various substituted primary/secondary amines and formaldehyde. The Schiff base is prepared by treating 3-methyl-4-amino-5-mercapto-1,2,4-triazole with 3,4-dimethoxybenzaldehyde in the presence of acid catalyst. The triazole is prepared by treating acetic acid with thiocarbohydrazide at reflux temperature. All the synthesized samples are characterised by FT-IR, 1H-NMR, and LC-MASS spectral studies and screened for their anti-oxidant activity.Keywords: mannich bases, anti-oxidant activity, schiff base, triazole
Procedia PDF Downloads 516429 Reaction Kinetics of Biodiesel Production from Refined Cottonseed Oil Using Calcium Oxide
Authors: Ude N. Callistus, Amulu F. Ndidi, Onukwuli D. Okechukwu, Amulu E. Patrick
Abstract:
Power law approximation was used in this study to evaluate the reaction orders of calcium oxide, CaO catalyzed transesterification of refined cottonseed oil and methanol. The kinetics study was carried out at temperatures of 45, 55 and 65 oC. The kinetic parameters such as reaction order 2.02 and rate constant 2.8 hr-1g-1cat, obtained at the temperature of 65 oC best fitted the kinetic model. The activation energy, Ea obtained was 127.744 KJ/mol. The results indicate that the transesterification reaction of the refined cottonseed oil using calcium oxide catalyst is approximately second order reaction.Keywords: refined cottonseed oil, transesterification, CaO, heterogeneous catalysts, kinetic model
Procedia PDF Downloads 543428 Catalytic Conversion of Biomass Derived Intermediates into Gasoline
Authors: Sandeep K. Saxena, N. Viswanadham, Ala’a H. Al-Muhtaseb
Abstract:
In an attempt to facilitate effective conversion of biomass derived products into gasoline rich in aromatics and iso-paraffins, various zeolite catalysts with special features such as nano crystallite size and acidity has been synthesized and evaluated. The catalyst (NZ) exhibits highest gasoline yield of about 74wt% with aromatics and iso-paraffins as major components. The product measures Research Octane Number (RON) of about 95, which is desirable for the gasoline specifications. Moreover, considerable amount of the Liquefied Petroleum Gas (LPG) (15wt%) and light olefins (14wt%) are also formed as bi-product that adds value to the process. The study reveals the effective conversion of bio- ethanol to high-octane gasoline.Keywords: biomass, ethanol, acetone, gasoline, zeolite
Procedia PDF Downloads 447427 Kinetics and Mechanism of Oxidation of Some Amino Acids by Peroxodisulphate
Authors: Abdelmahmod Saad
Abstract:
In this study two amino acids were chosen (DL.alanine,DL.serine) to determine their effect on dissociation of S2O8-2 ino. As the reaction was very slow, Ag+ ino was used as a catalyst. The kinetics measurement showed that the reactions in both cases were found in the first order with respect to S2O8-2, half order with respect to Ag+ and zero order with respect to substrates. Mechanisms were proposed for these reactions according to the determined orders. The energy of activation (AE) was determined for each reaction, and was found to by 30.50 k JmoI-1 in case of DL. Serine and 24.40 k JmoI-1 in case of DL.alanine.Keywords: mechanism, oxidation, amino acids, peroxodisulphate
Procedia PDF Downloads 512426 Advancements in Dielectric Materials: A Comprehensive Study on Properties, Synthesis, and Applications
Authors: M. Mesrar, T. Lamcharfi, Nor-S. Echatoui, F. Abdi
Abstract:
The solid-state reaction method was used to synthesize ferroelectric systems with lead-free properties, specifically (1-x-y)(Na₀.₅Bi₀.₅)TiO₃-xBaTiO₃-y(K₀.₅ Bi₀.₅)TiO₃. To achieve a pure perovskite phase, the optimal calcination temperature was determined to be 1000°C for 4 hours. X-ray diffraction (XRD) analysis identified the presence of the morphotropic phase boundary (MPB) in the (1-x-y)NBT xBT-yKBT ceramics for specific molar compositions, namely (0.95NBT-0.05BT, 0.84NBT-0.16KBT, and 0.79NBT-0.05BT-0.16KBT). To enhance densification, the sintering temperature was set at 1100°C for 4 hours. Scanning electron microscopy (SEM) images exhibited homogeneous distribution and dense packing of the grains in the ceramics, indicating a uniform microstructure. These materials exhibited favorable characteristics, including high dielectric permittivity, low dielectric loss, and diffused phase transition behavior. The ceramics composed of 0.79NBT-0.05BT-0.16KBT exhibited the highest piezoelectric constant (d33=148 pC/N) and electromechanical coupling factor (kp = 0.292) among all compositions studied. This enhancement in piezoelectric properties can be attributed to the presence of the morphotropic phase boundary (MPB) in the material. This study presents a comprehensive approach to improving the performance of lead-free ferroelectric systems of composition 0.79(Na₀.₅Bi₀.₅)Ti O₃-0.05BaTiO₃-0.16(K₀.₅Bi₀.₅)TiO₃.Keywords: solid-state method, (1-x-y)NBT-xBT-yKBT, morphotropic phase boundary, Raman spectroscopy, dielectric properties
Procedia PDF Downloads 52425 Effect of Manganese Doping on Ferrroelectric Properties of (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 Lead-Free Piezoceramic
Authors: Chongtham Jiten, Radhapiyari Laishram, K. Chandramani Singh
Abstract:
Alkaline niobate (Na0.5K0.5)NbO3 ceramic system has attracted major attention in view of its potential for replacing the highly toxic but superior lead zirconate titanate (PZT) system for piezoelectric applications. Recently, a more detailed study of this system reveals that the ferroelectric and piezoelectric properties are optimized in the Li- and V-modified system having the composition (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3. In the present work, we further study the pyroelectric behaviour of this composition along with another doped with Mn4+. So, (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 + x MnO2 (x = 0, and 0.01 wt. %) ceramic compositions were synthesized by conventional ceramic processing route. X-ray diffraction study reveals that both the undoped and Mn4+-doped ceramic samples prepared crystallize into a perovskite structure having orthorhombic symmetry. Dielectric study indicates that Mn4+ doping has little effect on both the Curie temperature (Tc) and tetragonal-orthorhombic phase transition temperature (Tot). The bulk density, room-temperature dielectric constant (εRT), and room-c The room-temperature coercive field (Ec) is observed to be lower in Mn4+ doped sample. The detailed analysis of the P-E hysteresis loops over the range of temperature from about room temperature to Tot points out that enhanced ferroelectric properties exist in this temperature range with better thermal stability for the Mn4+ doped ceramic. The study reveals that small traces of Mn4+ can modify (K0.485Na0.5Li0.015)(Nb0.98V0.02)O3 system so as to improve its ferroelectric properties with good thermal stability over a wide range of temperature.Keywords: ceramics, dielectric properties, ferroelectric properties, lead-free, sintering, thermal stability
Procedia PDF Downloads 238424 Characterization of Carbon Dioxide-Rich Flue Gas Sources for Conversion to Chemicals and Fuels
Authors: Adesola Orimoloye, Edward Gobina
Abstract:
Flue gas is the most prevalent source of carbon dioxide off-gas from numerous processes globally. Among the lion's share of this flue gas is the ever - present electric power plant, primarily fuelled by coal, and then secondly, natural gas. The carbon dioxide found in coal fired power plant off gas is among the dirtiest forms of carbon dioxide, even with many of the improvements in the plants; still this will yield sulphur and nitrogen compounds; among other rather nasty compounds and elements; all let to the atmosphere. This presentation will focus on the characterization of carbon dioxide-rich flue gas sources with a view of eventual conversion to chemicals and fuels using novel membrane reactors.Keywords: Flue gas, carbon dioxide, membrane, catalyst, syngas
Procedia PDF Downloads 674423 Eco-Benign and Highly Efficient Procedures for the Synthesis of Amides Catalyzed by Heteropolyanion-Based Ionic Liquids under Solvent-Free Conditions
Authors: Zhikai Chena, Renzhong Fu, Wen Chaib, Rongxin Yuanb
Abstract:
Two eco-benign and highly efficient routes for the synthesis of amides have been developed by treating amines with corresponding carboxylic acids or carboxamides in the presence of heteropolyanion-based ionic liquids (HPAILs) as catalysts. These practical reactions can tolerate a wide range of substrates. Thus, various amides were obtained in good to excellent yields under solvent-free conditions at heating. Moreover, recycling studies revealed that HPAILs are easily reusable for this two procedures. These methods provide green and much improved protocols over the existing methods.Keywords: synthesis, amide, ıonic liquid, catalyst
Procedia PDF Downloads 259422 Copper Oxide Doped Carbon Catalyst for Anodic Half-Cell of Vanadium Redox Flow Battery
Authors: Irshad U. Khan, Tanmay Paul, Murali Mohan Seepana
Abstract:
This paper presents a study on synthesizing and characterizing a Copper oxide doped Carbon (CuO-C) electrocatalyst for the negative half-cell reactions of Vanadium Redox Flow Battery (VRFB). The CuO was synthesized using a microreactor. The electrocatalyst was characterized using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Field Emission Scanning Electron Microscopy (SEM). The electrochemical performance was assessed by linear sweep voltammetry (LSV). The findings suggest that the synthesized CuO exhibited favorable crystallinity, morphology, and surface area, which reflects improved cell performance.Keywords: ECSA, electrocatalyst, energy storage, Tafel
Procedia PDF Downloads 90421 Coupling of Microfluidic Droplet Systems with ESI-MS Detection for Reaction Optimization
Authors: Julia R. Beulig, Stefan Ohla, Detlev Belder
Abstract:
In contrast to off-line analytical methods, lab-on-a-chip technology delivers direct information about the observed reaction. Therefore, microfluidic devices make an important scientific contribution, e.g. in the field of synthetic chemistry. Herein, the rapid generation of analytical data can be applied for the optimization of chemical reactions. These microfluidic devices enable a fast change of reaction conditions as well as a resource saving method of operation. In the presented work, we focus on the investigation of multiphase regimes, more specifically on a biphasic microfluidic droplet systems. Here, every single droplet is a reaction container with customized conditions. The biggest challenge is the rapid qualitative and quantitative readout of information as most detection techniques for droplet systems are non-specific, time-consuming or too slow. An exception is the electrospray mass spectrometry (ESI-MS). The combination of a reaction screening platform with a rapid and specific detection method is an important step in droplet-based microfluidics. In this work, we present a novel approach for synthesis optimization on the nanoliter scale with direct ESI-MS detection. The development of a droplet-based microfluidic device, which enables the modification of different parameters while simultaneously monitoring the effect on the reaction within a single run, is shown. By common soft- and photolithographic techniques a polydimethylsiloxane (PDMS) microfluidic chip with different functionalities is developed. As an interface for the MS detection, we use a steel capillary for ESI and improve the spray stability with a Teflon siphon tubing, which is inserted underneath the steel capillary. By optimizing the flow rates, it is possible to screen parameters of various reactions, this is exemplarity shown by a Domino Knoevenagel Hetero-Diels-Alder reaction. Different starting materials, catalyst concentrations and solvent compositions are investigated. Due to the high repetition rate of the droplet production, each set of reaction condition is examined hundreds of times. As a result, of the investigation, we receive possible reagents, the ideal water-methanol ratio of the solvent and the most effective catalyst concentration. The developed system can help to determine important information about the optimal parameters of a reaction within a short time. With this novel tool, we make an important step on the field of combining droplet-based microfluidics with organic reaction screening.Keywords: droplet, mass spectrometry, microfluidics, organic reaction, screening
Procedia PDF Downloads 301420 Catalytic Cracking of Hydrocarbon over Zeolite Based Catalysts
Authors: Debdut Roy, Vidyasagar Guggilla
Abstract:
In this research, we highlight our exploratory work on modified zeolite based catalysts for catalytic cracking of hydrocarbons for production of light olefin i.e. ethylene and propylene. The work is focused on understanding the catalyst structure and activity correlation. Catalysts are characterized by surface area and pore size distribution analysis, inductively coupled plasma optical emission spectrometry (ICP-OES), Temperature Programmed Desorption (TPD) of ammonia, pyridine Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Thermo-gravimetric Analysis (TGA) and correlated with the catalytic activity. It is observed that the yield of lighter olefins increases with increase of Bronsted acid strength.Keywords: catalytic cracking, zeolite, propylene, structure-activity correlation
Procedia PDF Downloads 218419 Comparative Studies and Optimization of Biodiesel Production from Oils of Selected Seeds of Nigerian Origin
Authors: Ndana Mohammed, Abdullahi Musa Sabo
Abstract:
The oils used in this work were extracted from seeds of Ricinuscommunis, Heaveabrasiliensis, Gossypiumhirsutum, Azadirachtaindica, Glycin max and Jatrophacurcasby solvent extraction method using n-hexane, and gave the yield of 48.00±0.00%, 44.30±0.52%, 45.50±0.64%, 47.60±0.51%, 41.50±0.32% and 46.50±0.71% respectively. However these feed stocks are highly challenging to trans-esterification reaction because they were found to contain high amount of free fatty acids (FFA) (6.37±0.18, 17.20±0.00, 6.14±0.05, 8.60±0.14, 5.35±0.07, 4.24±0.02mgKOH/g) in order of the above. As a result, two-stage trans-esterification reactions process was used to produce biodiesel; Acid esterification was used to reduce high FFA to 1% or less, and the second stage involve the alkaline trans-esterification/optimization of process condition to obtain high yield quality biodiesel. The salient features of this study include; characterization of oils using AOAC, AOCS standard methods to reveal some properties that may determine the viability of sample seeds as potential feed stocks for biodiesel production, such as acid value, saponification value, Peroxide value, Iodine value, Specific gravity, Kinematic viscosity, and free fatty acid profile. The optimization of process parameters in biodiesel production was investigated. Different concentrations of alkaline catalyst (KOH) (0.25, 0.5, 0.75, 1.0 and 1.50w/v, methanol/oil molar ratio (3:1, 6:1, 9:1, 12:1, and 15:1), reaction temperature (500 C, 550 C, 600 C, 650 C, 700 C), and the rate of stirring (150 rpm,225 rpm,300 rpm and 375 rpm) were used for the determination of optimal condition at which maximum yield of biodiesel would be obtained. However, while optimizing one parameter other parameters were kept fixed. The result shows the optimal biodiesel yield at a catalyst concentration of 1%, methanol/oil molar ratio of 6:1, except oil from ricinuscommunis which was obtained at 9:1, the reaction temperature of 650 C was observed for all samples, similarly the stirring rate of 300 rpm was also observed for all samples except oil from ricinuscommunis which was observed at 375 rpm. The properties of biodiesel fuel were evaluated and the result obtained conformed favorably to ASTM and EN standard specifications for fossil diesel and biodiesel. Therefore biodiesel fuel produced can be used as substitute for fossil diesel. The work also reports the result of the study on the evaluation of the effect of the biodiesel storage on its physicochemical properties to ascertain the level of deterioration with time. The values obtained for the entire samples are completely out of standard specification for biodiesel before the end of the twelve months test period, and are clearly degraded. This suggests the biodiesels from oils of Ricinuscommunis, Heaveabrasiliensis, Gossypiumhirsutum, Azadirachtaindica, Glycin max and Jatrophacurcascannot be stored beyond twelve months.Keywords: biodiesel, characterization, esterification, optimization, transesterification
Procedia PDF Downloads 421418 Butene Catalytic Cracking to Propylene over Iron and Phosphorus Modified HZSM-5
Authors: Jianwen Li, Hongfang Ma, Haitao Zhang, Qiwen Sun, Weiyong Ying
Abstract:
HZSM-5 zeolites modified by iron and phosphorus were applied in catalytic cracking of butene. N2 adsorption and NH3-TPD were employed to measure the structure and acidity of catalysts. The results indicate that increasing phosphorus loading decreased surface area, pore volume and strong acidity of catalysts. The introduction of phosphorus significantly decreased butene conversion and promoted propylene selectivity. The catalytic performance of catalyst was strongly dependent on the reaction conditions. Appropriate reaction conditions could suppress side reactions and enhance propylene selectivity.Keywords: butene catalytic cracking, HZSM-5, modification, reaction conditions
Procedia PDF Downloads 462417 Characteristics of Technology Infrastructure in Small Firms
Authors: Davinder Singh, Jaimal Singh Khamba, Tarun Nanda
Abstract:
Growth of the Indian economy has accelerated to 8% and efforts are on to further propel it to 10%. Undoubtedly, all the segments of the economy, viz. agriculture, industry and services have to improve their contribution to the economy. Growth of Micro-small and medium enterprises (MSMEs) is a sine qua non for the growth of industry, exports and other segments of the economy. Furthermore, promotion of entrepreneurship is also vital for sustenance and upward movement of the current growth trajectory of the economy. The MSME sector acts as a catalyst in upholding and encouraging the creation of the innovative spirit and entrepreneurship in the economy, thereby helping in laying the foundation for rapid industrial development. In this competitive world, they need to be able to confront the increasing competition from developed and emerging economies and to plug into the new market opportunities.Keywords: characteristics, management, MSMEs, technology infrastructure
Procedia PDF Downloads 642416 Influence of La0.1Sr0.9Co1-xFexO3-δ Catalysts on Oxygen Permeation Using Mixed Conductor
Authors: Y. Muto, S. Araki, H. Yamamoto
Abstract:
The separation of oxygen is one key technology to improve the efficiency and to reduce the cost for the processed of the partial oxidation of the methane and the condensation of the carbon dioxide. Particularly, carbon dioxide at high concentration would be obtained by the combustion using pure oxygen separated from air. However, the oxygen separation process occupied the large part of energy consumption. Therefore, it is considered that the membrane technologies enable to separation at lower cost and lower energy consumption than conventional methods. In this study, it is examined that the separation of oxygen using membranes of mixed conductors. Oxygen permeation through the membrane is occurred by the following three processes. At first, the oxygen molecules dissociate into oxygen ion at feed side of the membrane, subsequently, oxygen ions diffuse in the membrane. Finally, oxygen ions recombine to form the oxygen molecule. Therefore, it is expected that the membrane of thickness and material, or catalysts of the dissociation and recombination affect the membrane performance. However, there is little article about catalysts for the dissociation and recombination. We confirmed the performance of La0.6Sr0.4Co1.0O3-δ (LSC) based catalyst which was commonly used as the dissociation and recombination. It is known that the adsorbed amount of oxygen increase with the increase of doped Fe content in B site of LSC. We prepared the catalysts of La0.1Sr0.9Co0.9Fe0.1O3-δ(C9F1), La0.1Sr0.9Co0.5Fe0.5O3-δ(C5F5) and La0.1Sr0.9Co0.3Fe0.7O3-δ(C7F3). Also, we used Pr2NiO4 type mixed conductor as a membrane material. (Pr0.9La0.1)2(Ni0.74Cu0.21Ga0.05)O4+δ(PLNCG) shows the high oxygen permeability and the stability against carbon dioxide. Oxygen permeation experiments were carried out using a homemade apparatus at 850 -975 °C. The membrane was sealed with Pyrex glass at both end of the outside dense alumina tubes. To measure the oxygen permeation rate, air was fed to the film side at 50 ml min-1, helium as the sweep gas and reference gas was fed at 20 ml min-1. The flow rates of the sweep gas and the gas permeated through the membrane were measured using flow meter and the gas concentrations were determined using a gas chromatograph. Then, the permeance of the oxygen was determined using the flow rate and the concentration of the gas on the permeate side of the membrane. The increase of oxygen permeation was observed with increasing temperature. It is considered that this is due to the catalytic activities are increased with increasing temperature. Another reason is the increase of oxygen diffusivity in the bulk of membrane. The oxygen permeation rate is improved by using catalyst of LSC or LSCF. The oxygen permeation rate of membrane with LSCF showed higher than that of membrane with LSC. Furthermore, in LSCF catalysts, oxygen permeation rate increased with the increase of the doped amount of Fe. It is considered that this is caused by the increased of adsorbed amount of oxygen.Keywords: membrane separation, oxygen permeation, K2NiF4-type structure, mixed conductor
Procedia PDF Downloads 519415 Islamic Social Security: A Discourse
Authors: Safiyya A. Abba, Shehu U. R. Aliyu
Abstract:
This paper deals with Islamic social security: a discourse explores the meaning and nature of Islamic social security system. The paper reviews the social security framework and operations during the early period. The paper further identifies the instruments of Islamic social security discusses its principles and objectives. The paper discovers that Islamic social security is a personification of a comprehensive welfare approach in view of its varied instruments that are deeply rooted in the Islamic law, unique principles and realistic and achievable objectives. Furthermore, the Islamic social security system has far reaching socioeconomic implications; social justice, cohesion, equity, a catalyst for poverty eradication, income redistribution, economic growth and development.Keywords: Islamic social security, basic needs, zakat, socioeconomic justice, equity
Procedia PDF Downloads 440414 The Integration of Fintech Technologies in Crowdfunding: A Catalyst for Financial Inclusion and Responsible Finance
Authors: Badrane Hasnaa, Bouzahir Brahim
Abstract:
This article examines the impact of fintech technologies on crowdfunding, particularly their potential to enhance financial inclusion and promote responsible finance. It explores how the adoption of blockchain, artificial intelligence, and other fintech innovations is transforming crowdfunding by making it more accessible, transparent, and ethical. By analyzing case studies and recent data, the article illustrates how these technologies help overcome traditional barriers to financing while promoting sustainable financial practices. The findings suggest that integrating fintech into crowdfunding can not only broaden access to funding for marginalized populations but also encourage more responsible management of financial resources, contributing to a fairer and more resilient economy.Keywords: crowdfunding, fintech, inclusion financière, finance responsible, blockchain, resilience financière
Procedia PDF Downloads 22413 Removal of Metals from Heavy Oil
Authors: Ali Noorian
Abstract:
Crude oil contains various compounds of hydrocarbons but low concentrations of inorganic compounds or metals. Vanadium and Nickel are the most common metals in crude oil. These metals usually exist in solution in the oil and residual fuel oil in the refining process is condensed. Deleterious effects of metals in petroleum have been known for some time. These metals do not only contaminate the product but also cause intoxication and loss of catalyst and corrosion to equipment. In this study, removal of heavy metals and petroleum residues were investigated. These methods include physical, chemical and biological treatment processes. For example, processes such as solvent extraction and hydro-catalytic and catalytic methods are effective and practical methods, but typically often have high costs and cause environmental pollution. Furthermore, biological methods that do not cause environmental pollution have been discussed in recent years, but these methods have not yet been industrialized.Keywords: removal, metal, heavy oil, nickel, vanadium
Procedia PDF Downloads 376412 Effect of High-Energy Ball Milling on the Electrical and Piezoelectric Properties of (K0.5Na0.5)(Nb0.9Ta0.1)O3 Lead-Free Piezoceramics
Authors: Chongtham Jiten, K. Chandramani Singh, Radhapiyari Laishram
Abstract:
Nanocrystalline powders of the lead-free piezoelectric material, tantalum-substituted potassium sodium niobate (K0.5Na0.5)(Nb0.9Ta0.1)O3 (KNNT), were produced using a Retsch PM100 planetary ball mill by setting the milling time to 15h, 20h, 25h, 30h, 35h and 40h, at a fixed speed of 250rpm. The average particle size of the milled powders was found to decrease from 12nm to 3nm as the milling time increases from 15h to 25h, which is in agreement with the existing theoretical model. An anomalous increase to 98nm and then a drop to 3nm in the particle size were observed as the milling time further increases to 30h and 40h respectively. Various sizes of these starting KNNT powders were used to investigate the effect of milling time on the microstructure, dielectric properties, phase transitions and piezoelectric properties of the resulting KNNT ceramics. The particle size of starting KNNT was somewhat proportional to the grain size. As the milling time increases from 15h to 25h, the resulting ceramics exhibit enhancement in the values of relative density from 94.8% to 95.8%, room temperature dielectric constant (εRT) from 878 to 1213, and piezoelectric charge coefficient (d33) from 108pC/N to 128pC/N. For this range of ceramic samples, grain size refinement suppresses the maximum dielectric constant (εmax), shifts the Curie temperature (Tc) to a lower temperature and the orthorhombic-tetragonal phase transition (Tot) to a higher temperature. Further increase of milling time from 25h to 40h produces a gradual degradation in the values of relative density, εRT, and d33 of the resulting ceramics.Keywords: perovskite, dielectric, ceramics, high-energy milling
Procedia PDF Downloads 324411 Re-Invent Corporate Governance - Ethical Way
Authors: Talha Sareshwala
Abstract:
The purpose of this research paper is to help entrepreneurs build an environment of trust, transparency and accountability necessary for fostering long term investment, financial stability and business integrity and to guide future Entrepreneurs into a promising future. The study presents a broader review on Corporate Governance, starting from its definition and antecedents. This is the most important aspect of ethical business. In fact, the 3 main pillars of corporate governance are: Transparency; Accountability; Security. The combination of these 3 pillars in running a company successfully and forming solid professional relationships among its stakeholders, which includes key managerial employees and, most important, the shareholders This paper is sharing an experience how an entrepreneur can act as a catalyst while ensuring them that ethics and transparency do pay in business when followed in true spirit and action.Keywords: business, entrepreneur, ethics, governance, transparency.
Procedia PDF Downloads 74410 Designing Metal Organic Frameworks for Sustainable CO₂ Utilization
Authors: Matthew E. Potter, Daniel J. Stewart, Lindsay M. Armstrong, Pier J. A. Sazio, Robert R. Raja
Abstract:
Rising CO₂ levels in the atmosphere means that CO₂ is a highly desirable feedstock. This requires specific catalysts to be designed to activate this inert molecule, combining a catalytic site tailored for CO₂ transformations with a support that can readily adsorb CO₂. Metal organic frameworks (MOFs) are regularly used as CO₂ sorbents. The organic nature of the linker molecules, connecting the metal nodes, offers many post-synthesis modifications to introduce catalytic active sites into the frameworks. However, the metal nodes may be coordinatively unsaturated, allowing them to bind to organic moieties. Imidazoles have shown promise catalyzing the formation of cyclic carbonates from epoxides with CO₂. Typically, this synthesis route employs toxic reagents such as phosgene, liberating HCl. Therefore an alternative route with CO₂ is highly appealing. In this work we design active sites for CO₂ activation, by tethering substituted-imidazole organocatalytic species to the available Cr3+ metal nodes of a Cr-MIL-101 MOF, for the first time, to create a tailored species for carbon capture utilization applications. Our tailored design strategy combining a CO₂ sorbent, Cr-MIL-101, with an anchored imidazole results in a highly active and selective multifunctional catalyst, achieving turnover frequencies of over 750 hr-1. These findings demonstrate the synergy between the MOF framework and imidazoles for CO₂ utilization applications. Further, the effect of substrate variation has been explored yielding mechanistic insights into this process. Through characterization, we show that the structural and compositional integrity of the Cr-MIL-101 has been preserved on functionalizing the imidazoles. Further, we show the binding of the imidazoles to the Cr3+ metal nodes. This can be seen through our EPR study, where the distortion of the Cr3+ on binding to the imidazole shows the CO₂ binding site is close to the active imidazole. This has a synergistic effect, improving catalytic performance. We believe the combination of MOF support and organocatalyst allows many possibilities to generate new multifunctional catalysts for CO₂ utilisation. In conclusion, we have validated our design procedure, combining a known CO₂ sorbent, with an active imidazole species to create a unique tailored multifunctional catalyst for CO₂ utilization. This species achieves high activity and selectivity for the formation of cyclic carbonates and offers a sustainable alternative to traditional synthesis methods. This work represents a unique design strategy for CO₂ utilization while offering exciting possibilities for further work in characterization, computational modelling, and post-synthesis modification.Keywords: carbonate, catalysis, MOF, utilisation
Procedia PDF Downloads 180409 Renewable Natural Gas Production from Biomass and Applications in Industry
Authors: Sarah Alamolhoda, Kevin J. Smith, Xiaotao Bi, Naoko Ellis
Abstract:
For millennials, biomass has been the most important source of fuel used to produce energy. Energy derived from biomass is renewable by re-growth of biomass. Various technologies are used to convert biomass to potential renewable products including combustion, gasification, pyrolysis and fermentation. Gasification is the incomplete combustion of biomass in a controlled environment that results in valuable products such as syngas, biooil and biochar. Syngas is a combustible gas consisting of hydrogen (H₂), carbon monoxide (CO), carbon dioxide (CO₂), and traces of methane (CH₄) and nitrogen (N₂). Cleaned syngas can be used as a turbine fuel to generate electricity, raw material for hydrogen and synthetic natural gas production, or as the anode gas of solid oxide fuel cells. In this work, syngas as a product of woody biomass gasification in British Columbia, Canada, was introduced to two consecutive fixed bed reactors to perform a catalytic water gas shift reaction followed by a catalytic methanation reaction. The water gas shift reaction is a well-established industrial process and used to increase the hydrogen content of the syngas before the methanation process. Catalysts were used in the process since both reactions are reversible exothermic, and thermodynamically preferred at lower temperatures while kinetically favored at elevated temperatures. The water gas shift reactor and the methanation reactor were packed with Cu-based catalyst and Ni-based catalyst, respectively. Simulated syngas with different percentages of CO, H₂, CH₄, and CO₂ were fed to the reactors to investigate the effect of operating conditions in the unit. The water gas shift reaction experiments were done in the temperature of 150 ˚C to 200 ˚C, and the pressure of 550 kPa to 830 kPa. Similarly, methanation experiments were run in the temperature of 300 ˚C to 400 ˚C, and the pressure of 2340 kPa to 3450 kPa. The Methanation reaction reached 98% of CO conversion at 340 ˚C and 3450 kPa, in which more than half of CO was converted to CH₄. Increasing the reaction temperature caused reduction in the CO conversion and increase in the CH₄ selectivity. The process was designed to be renewable and release low greenhouse gas emissions. Syngas is a clean burning fuel, however by going through water gas shift reaction, toxic CO was removed, and hydrogen as a green fuel was produced. Moreover, in the methanation process, the syngas energy was transformed to a fuel with higher energy density (per volume) leading to reduction in the amount of required fuel that flows through the equipment and improvement in the process efficiency. Natural gas is about 3.5 times more efficient (energy/ volume) than hydrogen and easier to store and transport. When modification of existing infrastructure is not practical, the partial conversion of renewable hydrogen to natural gas (with up to 15% hydrogen content), the efficiency would be preserved while greenhouse gas emission footprint is eliminated.Keywords: renewable natural gas, methane, hydrogen, gasification, syngas, catalysis, fuel
Procedia PDF Downloads 118408 Photocatalytic Degradation of Produced Water Hydrocarbon of an Oil Field by Using Ag-Doped TiO₂ Nanoparticles
Authors: Hamed Bazrafshan, Saeideh Dabirnia, Zahra Alipour Tesieh, Samaneh Alavi, Bahram Dabir
Abstract:
In this study, the removal of pollutants of a real produced water sample from an oil reservoir (a light oil reservoir), using a photocatalytic degradation process in a cylindrical glass reactor, was investigated. Using TiO₂ and Ag-TiO₂ in slurry form, the photocatalytic degradation was studied by measuring the COD parameter, qualitative analysis, and GC-MS. At first, optimization of the parameters on photocatalytic degradation of hydrocarbon pollutants in real produced water, using TiO₂ nanoparticles as photocatalysts under UV light, was carried out applying response surface methodology. The results of the design of the experiment showed that the optimum conditions were at a catalyst concentration of 1.14 g/lit and pH of 2.67, and the percentage of COD removal was 72.65%.Keywords: photocatalyst, Ag-doped, TiO₂, produced water, nanoparticles
Procedia PDF Downloads 130407 Synthesis of La0.8Sr0.05Ca0.15Fe0.8Co0.2O3-δ -Ce0.9Gd0.1O1.95 Composite Cathode Material for Solid Oxide Fuel Cell with Lanthanum and Cerium Recycled from Wasted Glass Polishing Powder
Authors: Jun-Lun Jiang, Bing-Sheng Yu
Abstract:
Processing of flat-panel displays generates huge amount of wasted glass polishing powder, with high concentration of cerium and other elements such as lanthanum. According to the current statistics, consumption of polishing powder was approximately ten thousand tons per year in the world. Nevertheless, wasted polishing powder was usually buried or burned. If the lanthanum and cerium compounds in the wasted polishing powder could be recycled, that will greatly reduce enterprise cost and implement waste circulation. Cathodes of SOFCs are the principal consisting of rare earth elements such as lanthanum and cerium. In this study, we recycled the lanthanum and cerium from wasted glass polishing powder by acid-solution method, and synthesized La0.8Sr0.05Ca0.15Fe0.8Co0.8O3-δ and Gd0.1Ce0.9O2 (LSCCF-GDC) composite cathode material for SOFCs by glycinenitrate combustion (GNP) method. The results show that the recovery rates of lanthanum and cerium could accomplish up to 80% and 100% under 10N nitric acid solution within one hour. Comparing with the XRD data of the commercial LSCCF-GDC powder and the LSCCF-GDC product synthesized with chemicals, we find that the LSCCF-GDC was successfully synthesized with the recycled La & Ce solution by GNP method. The effect of adding ammonia to the product was also discussed, the grain size is finer and recovery rate of the product is higher without the addition of ammonia to the solution.Keywords: glass polishing powder, acid solution, recycling, composite cathodes of solid oxide fuel, cell (SOFC), perovskite, glycine-nitrate combustion(GNP) method
Procedia PDF Downloads 272406 Community Development and Preservation of Heritage in Igbo Area of Nigeria
Authors: Elochukwu A. Nwankwo, Matthias U. Agboeze
Abstract:
Many heritage sites abound in the shores of Nigeria with enormous tourism potentials. Heritage sites do not only depict the cultural and historical transmutation of people but also functions in the image design and promotion of a locality. This reveals the unique role of heritage sites to structural development of an area. Heritage sites have of recent been a victim of degradation and social abuse arising from seasonal ignorance; hence minimizing its potentials to the socio-economic development of an area. This paper is emphasizing on the adoption of community development approaches in heritage preservation in Igbo area. Its modalities, applications, challenges and prospect were discussed. Such understanding will serve as a catalyst in aiding general restoration and preservation of heritage sites in Nigeria and other African states.Keywords: heritage resources, community development, preservation, sustainable development, approaches
Procedia PDF Downloads 310405 Synthesis of Crosslinked Konjac Glucomannan and Kappa Carrageenan Film with Glutaraldehyde
Authors: Sperisa Distantina, Fadilah, Mujtahid Kaavessina
Abstract:
Crosslinked konjac glucomannan and kappa carrageenan film were prepared by chemical crosslinking using glutaraldehyde (GA) as the crosslinking agent. The effect crosslinking on the swelling degree was investigated. Konjac glucomanan and its mixture with kappa carragenan film was immersed in GA solution and then thermally cured. The obtained crosslinked film was washed and soaked in the ethanol to remove the unreacted GA. The obtained film was air dried at room temperature to a constant weight. The infrared spectra and the value of swelling degree of obtained crosslinked film showed that glucomannan and kappa carrageenan was able to be crosslinked using glutaraldehyde by film immersion and curing method without catalyst. The crosslinked films were found to be pH sensitive, indicating a potential to be used in drug delivery polymer system.Keywords: crosslinking, glucomannan, carrageenan, swelling
Procedia PDF Downloads 279404 Photocatalytic Activity of Pure and Doped CeO2 Nanoparticles
Authors: Mohamed Khedr, Ahmed Farghali, Waleed El Rouby, Abdelrhman Hamdeldeen
Abstract:
Pure CeO2, Sm and Gd doped CeO2 were successfully prepared via hydrothermal method. The effect of hydrothermal temperature, reaction time and precursors were investigated. The prepared nanoparticles were characterized using X-ray diffraction (XRD), FT-Raman Spectroscopy, transmission electron microscope (TEM) and field emission scanning electron microscope (FESEM). The prepared pure and doped CeO2 nanoparticles were used as photo-catalyst for the degradation of Methylene blue (MB) dye under UV light irradiation. The results showed that Gd doped CeO2 nano-particles have the best catalytic degradation effect for MB under UV irradiation. The degradation pathways of MB were followed using liquid chromatography (LC/MS) and it was found that Gd doped CeO2 was able to oxidize MB dye with a complete mineralization of carbon, nitrogen and sulfur heteroatoms into CO2, NH4+, NO3- and SO42-.Keywords: CeO2, doped CeO2, photocatalysis, methylene blue
Procedia PDF Downloads 328403 Experimental Assessment of Artificial Flavors Production
Authors: M. Unis, S. Turky, A. Elalem, A. Meshrghi
Abstract:
The Esterification kinetics of acetic acid with isopropnol in the presence of sulfuric acid as a homogenous catalyst was studied with isothermal batch experiments at 60,70 and 80°C and at a different molar ratio of isopropnol to acetic acid. Investigation of kinetics of the reaction indicated that the low of molar ratio is favored for esterification reaction, this is due to the reaction is catalyzed by acid. The maximum conversion, approximately 60.6% was obtained at 80°C for molar ratio of 1:3 acid : alcohol. It was found that increasing temperature of the reaction, increases the rate constant and conversion at a certain mole ratio, that is due to the esterification is exothermic. The homogenous reaction has been described with simple power-law model. The chemical equilibrium combustion calculated from the kinetic model in agreement with the measured chemical equilibrium.Keywords: artificial flavors, esterification, chemical equilibria, isothermal
Procedia PDF Downloads 334402 Nanohybride Porphyrin and Silver as an Efficient Catalyst for Oxidation of Alcohols by Tetrabutylammonium Peroxomonosulfate
Authors: Atena Naeimi, Asghar Amiri, Zahra Ghasemi
Abstract:
A stable suspension of nanocomposite simple manganese(III) meso-tetraphenylporphyrin nanoaggregates and Ag was prepared by a host–guest procedure, in which ethanol and water are used as ‘green’ solvents. The oxidation of alcohols by tetrabutylammonium Peroxomonosulfate(TP) were efficiently enhanced with excellent selectivity under the influence of simple Mn(TPP)OAc (TPP = meso-tetraphenylporphyrin) nanoparticles. Enhanced stabilities and activities were achieved with nanostructured Mn catalysts compared to those of the individual counterparts in solution according to turnover numbers and UV/Vis studies. The title nanocatalyst facilitates a greener reaction because the reaction solvent is water and TP is safe to use. The efficiency of the oxidation system depends critically upon the steric hindrances and electronic structures of both nitrogen donor ligand sand porphyrin nanoparticles.Keywords: oxidation, nanoaggregates, porphyrinoids, silver
Procedia PDF Downloads 295