Search results for: laser powder bed fusion
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2147

Search results for: laser powder bed fusion

1667 Generation of ZnO-Au Nanocomposite in Water Using Pulsed Laser Irradiation

Authors: Elmira Solati, Atousa Mehrani, Davoud Dorranian

Abstract:

Generation of ZnO-Au nanocomposite under laser irradiation of a mixture of the ZnO and Au colloidal suspensions are experimentally investigated. In this work, firstly ZnO and Au nanoparticles are prepared by pulsed laser ablation of the corresponding metals in water using the 1064 nm wavelength of Nd:YAG laser. In a second step, the produced ZnO and Au colloidal suspensions were mixed in different volumetric ratio and irradiated using the second harmonic of a Nd:YAG laser operating at 532 nm wavelength. The changes in the size of the nanostructure and optical properties of the ZnO-Au nanocomposite are studied as a function of the volumetric ratio of ZnO and Au colloidal suspensions. The crystalline structure of the ZnO-Au nanocomposites was analyzed by X-ray diffraction (XRD). The optical properties of the samples were examined at room temperature by a UV-Vis-NIR absorption spectrophotometer. Transmission electron microscopy (TEM) was done by placing a drop of the concentrated suspension on a carbon-coated copper grid. To further confirm the morphology of ZnO-Au nanocomposites, we performed Scanning electron microscopy (SEM) analysis. Room temperature photoluminescence (PL) of the ZnO-Au nanocomposites was measured to characterize the luminescence properties of the ZnO-Au nanocomposites. The ZnO-Au nanocomposites were characterized by Fourier transform infrared (FTIR) spectroscopy. The X-ray diffraction pattern shows that the ZnO-Au nanocomposites had the polycrystalline structure of Au. The behavior observed by images of transmission electron microscope reveals that soldering of Au and ZnO nanoparticles include their adhesion. The plasmon peak in ZnO-Au nanocomposites was red-shifted and broadened in comparison with pure Au nanoparticles. By using the Tauc’s equation, the band gap energy for ZnO-Au nanocomposites is calculated to be 3.15–3.27 eV. In this work, the formation of ZnO-Au nanocomposites shifts the FTIR peak of metal oxide bands to higher wavenumbers. PL spectra of the ZnO-Au nanocomposites show that several weak peaks in the ultraviolet region and several relatively strong peaks in the visible region. SEM image indicates that the morphology of ZnO-Au nanocomposites produced in water was spherical. The TEM images of ZnO-Au nanocomposites demonstrate that with increasing the volumetric ratio of Au colloidal suspension the adhesion increased. According to the size distribution graphs of ZnO-Au nanocomposites with increasing the volumetric ratio of Au colloidal suspension the amount of ZnO-Au nanocomposites with the smaller size is further.

Keywords: Au nanoparticles, pulsed laser ablation, ZnO-Au nanocomposites, ZnO nanoparticles

Procedia PDF Downloads 329
1666 Development of High Fiber Biscuit with Bamboo Shoot Powder

Authors: Beatrix Inah C. Mercado

Abstract:

Bamboo shoots are the immature and edible culms from bamboos which contains high amount of dietary fibers. However, in spite of these functional properties of bamboo shoots it is still underutilized. Objectives: To develop bamboo shoot powder and incorporate it to biscuits as a source of dietary fiber and antioxidant. Materials and Methods: Bamboo shoot powder (BSP) was freeze-drying and grind and was incorporated to biscuits in 20% concentration. BSP and biscuits with BSP were analyzed for its proximate composition, dietary fiber, phytonutrients and antioxidant capacity. Results: BSP has 13.1 % moisture, 18.8% protein and 8% ash, 2.4g/100g total fat and 57.7% carbohydrate. BSP and biscuits with 20% BSP were good sources of dietary fiber containing 27.8g/100g and 7.1 g/100g, respectively. BSP is high in phytonutrient contents in terms of total polyphenols (1052mg gallic/100 g) and flavonoids (4046mg catechin/100g). Biscuits with BSP contained higher source of phytonutrients and antioxidant capacity as compared to biscuits without BSP. Sensory evaluation revealed that biscuits with BSP were more acceptable than biscuits without BSP. Conclusion: Bamboo shoots may be used as a potential functional ingredient in food products for broader application.

Keywords: bamboo shoots, phytonutrients, fiber, biscuit

Procedia PDF Downloads 450
1665 Endoscopic Treatment of Patients with Large Bile Duct Stones

Authors: Yuri Teterin, Lomali Generdukaev, Dmitry Blagovestnov, Peter Yartcev

Abstract:

Introduction: Under the definition "large biliary stones," we referred to stones over 1.5 cm, in which standard transpapillary litho extraction techniques were unsuccessful. Electrohydraulic and laser contact lithotripsy under SpyGlass control have been actively applied for the last decade in order to improve endoscopic treatment results. Aims and Methods: Between January 2019 and July 2022, the N.V. Sklifosovsky Research Institute of Emergency Care treated 706 patients diagnosed with choledocholithiasis who underwent biliary stones removed from the common bile duct. Of them, in 57 (8, 1%) patients, the use of a Dormia basket or Biliary stone extraction balloon was technically unsuccessful due to the size of the stones (more than 15 mm in diameter), which required their destruction. Mechanical lithotripsy was used in 35 patients, and electrohydraulic and laser lithotripsy under SpyGlass direct visualization system - in 26 patients. Results: The efficiency of mechanical lithotripsy was 72%. Complications in this group were observed in 2 patients. In both cases, on day one after lithotripsy, acute pancreatitis developed, which resolved on day three with conservative therapy (Clavin-Dindo type 2). The efficiency of contact lithotripsy was in 100% of patients. Complications were not observed in this group. Bilirubin level in this group normalized on the 3rd-4th day. Conclusion: Our study showed the efficacy and safety of electrohydraulic and laser lithotripsy under SpyGlass control in a well-defined group of patients with large bile duct stones.

Keywords: contact lithotripsy, choledocholithiasis, SpyGlass, cholangioscopy, laser, electrohydraulic system, ERCP

Procedia PDF Downloads 69
1664 Bioactive Compounds and Antioxidant Capacity of Instant Fruit Green Tea Powders

Authors: Akanit Pisalwadcharin, Komate Satayawut, Virachnee Lohachoompol

Abstract:

Green tea, mangosteen and pomegranate contain high levels of bioactive compounds which have antioxidant effects and great potential in food applications. The aim of this study was to produce and determine catechin contents, total phenolic contents, antioxidant activity and phenolic compounds of two instant fruit green tea powders which were green tea fortified with mangosteen juice and green tea fortified with pomegranate juice. Seventy percent of hot water extract of green tea was mixed with 30% of mangosteen juice or pomegranate juice, and then spray-dried using a spray dryer. The results showed that the drying conditions optimized for the highest total phenolic contents, catechin contents and antioxidant activity of both powders were the inlet air temperature of 170°C, outlet air temperatures of 90°C and maltodextrin concentration of 30%. The instant green tea with mangosteen powder had total phenolic contents, catechin contents and antioxidant activity of 19.18 (mg gallic acid/kg), 85.44 (mg/kg) and 4,334 (µmoles TE/100 g), respectively. The instant green tea with pomegranate powder had total phenolic contents, catechin contents and antioxidant activity of 32.72 (mg gallic acid/kg), 156.36 (mg/kg) and 6,283 (µmoles TE/100 g), respectively. The phenolic compounds in instant green tea with mangosteen powder comprised of tannic acid (2,156.87 mg/kg), epigallocatechin-3-gallate (898.23 mg/kg) and rutin (13.74 mg/kg). Also, the phenolic compounds in instant green tea with pomegranate powder comprised of tannic acid (2,275.82 mg/kg), epigallocatechin-3-gallate (981.23 mg/kg), rutin (14.97 mg/kg) and i-quercetin (5.86 mg/kg).

Keywords: green tea, mangosteen, pomegranate, antioxidant activity

Procedia PDF Downloads 355
1663 Polymer Modification of Fine Grained Concretes Used in Textile Reinforced Cementitious Composites

Authors: Esma Gizem Daskiran, Mehmet Mustafa Daskiran, Mustafa Gencoglu

Abstract:

Textile reinforced cementitious composite (TRCC) is a development of a composite material where textile and fine-grained concrete (matrix) materials are used in combination. These matrices offer high performance properties in many aspects. To achieve high performance, polymer modified fine-grained concretes were used as matrix material which have high flexural strength. In this study, ten latex polymers and ten powder polymers were added to fine-grained concrete mixtures. These latex and powder polymers were added to the mixtures at different rates related to binder weight. Mechanical properties such as compressive and flexural strength were studied. Results showed that latex polymer and redispersible polymer modified fine-grained concretes showed different mechanical performance. A wide range of both latex and redispersible powder polymers were studied. As the addition rate increased compressive strength decreased for all mixtures. Flexural strength increased as the addition rate increased but significant enhancement was not observed through all mixtures.

Keywords: textile reinforced composite, cement, fine grained concrete, latex, redispersible powder

Procedia PDF Downloads 244
1662 Flexural Response of Sandwiches with Micro Lattice Cores Manufactured via Selective Laser Sintering

Authors: Emre Kara, Ali Kurşun, Halil Aykul

Abstract:

The lightweight sandwiches obtained with the use of various core materials such as foams, honeycomb, lattice structures etc., which have high energy absorbing capacity and high strength to weight ratio, are suitable for several applications in transport industry (automotive, aerospace, shipbuilding industry) where saving of fuel consumption, load carrying capacity increase, safety of vehicles and decrease of emission of harmful gases are very important aspects. While the sandwich structures with foams and honeycombs have been applied for many years, there is a growing interest on a new generation sandwiches with micro lattice cores. In order to produce these core structures, various production methods were created with the development of the technology. One of these production technologies is an additive manufacturing technique called selective laser sintering/melting (SLS/SLM) which is very popular nowadays because of saving of production time and achieving the production of complex topologies. The static bending and the dynamic low velocity impact tests of the sandwiches with carbon fiber/epoxy skins and the micro lattice cores produced via SLS/SLM were already reported in just a few studies. The goal of this investigation was the analysis of the flexural response of the sandwiches consisting of glass fiber reinforced plastic (GFRP) skins and the micro lattice cores manufactured via SLS under thermo-mechanical loads in order to compare the results in terms of peak load and absorbed energy values respect to the effect of core cell size, temperature and support span length. The micro lattice cores were manufactured using SLS technology that creates the product drawn by a 3D computer aided design (CAD) software. The lattice cores which were designed as body centered cubic (BCC) model having two different cell sizes (d= 2 and 2.5 mm) with the strut diameter of 0.3 mm were produced using titanium alloy (Ti6Al4V) powder. During the production of all the core materials, the same production parameters such as laser power, laser beam diameter, building direction etc. were kept constant. Vacuum Infusion (VI) method was used to produce skin materials, made of [0°/90°] woven S-Glass prepreg laminates. The combination of the core and skins were implemented under VI. Three point bending tests were carried out by a servo-hydraulic test machine with different values of support span distances (L = 30, 45, and 60 mm) under various temperature values (T = 23, 40 and 60 °C) in order to analyze the influences of support span and temperature values. The failure mode of the collapsed sandwiches has been investigated using 3D computed tomography (CT) that allows a three-dimensional reconstruction of the analyzed object. The main results of the bending tests are: load-deflection curves, peak force and absorbed energy values. The results were compared according to the effect of cell size, support span and temperature values. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry, where problems of collision and crash have increased in the last years.

Keywords: light-weight sandwich structures, micro lattice cores, selective laser sintering, transport application

Procedia PDF Downloads 328
1661 Optimization of Temperature for Crystal Violet Dye Adsorption Using Castor Leaf Powder by Response Surface Methodology

Authors: Vipan Kumar Sohpal

Abstract:

Temperature effect on the adsorption of crystal violet dye (CVD) was investigated using a castor leaf powder (CLP) that was prepared from the mature leaves of castor trees, through chemical reaction. The optimum values of pH (8), adsorbent dose (10g/L), initial dye concentration (10g/L), time (2hrs), and stirrer speed (120 rpm) were fixed to investigate the influence of temperature on adsorption capacity, percentage of removal of dye and free energy. A central composite design (CCD) was successfully employed for experimental design and analysis of the results. The combined effect of temperature, absorbance, and concentration on the dye adsorption was studied and optimized using response surface methodology. The optimum values of adsorption capacity, percentage of removal of dye and free energy were found to be 0.965(mg/g), 93.38 %, -8202.7(J/mol) at temperature 55.97 °C having desirability > 90% for removal of crystal violet dye respectively. The experimental values were in good agreement with predicted values.

Keywords: crystal violet dye, CVD, castor leaf powder, CLP, response surface methodology, temperature, optimization

Procedia PDF Downloads 120
1660 Product Design and Development of Wearable Assistant Device

Authors: Hao-Jun Hong, Jung-Tang Huang

Abstract:

The world is gradually becoming an aging society, and with the lack of laboring forces, this phenomenon is affecting the nation’s economy growth. Although nursing centers are booming in recent years, the lack of medical resources are yet to be resolved, thus creating an innovative wearable medical device could be a vital solution. This research is focused on the design and development of a wearable device which obtains a more precise heart failure measurement than products on the market. The method used by the device is based on the sensor fusion and big data algorithm. From the test result, the modified structure of wearable device can significantly decrease the MA (Motion Artifact) and provide users a more cozy and accurate physical monitor experience.

Keywords: big data, heart failure, motion artifact, sensor fusion, wearable medical device

Procedia PDF Downloads 339
1659 The Study of Sintered Wick Structure of Heat Pipes with Excellent Heat Transfer Capabilities

Authors: Im-Nam Jang, Yong-Sik Ahn

Abstract:

In this study sintered wick was formed in a heat pipe through the process of sintering a mixture of copper powder with particle sizes of 100μm and 200μm, mixed with a pore-forming agent. The heat pipe's thermal resistance, which affects its heat transfer efficiency, is determined during manufacturing according to powder type, thickness of the sintered wick, and filling rate of the working fluid. Heat transfer efficiency was then tested at various inclination angles (0°, 45°, 90°) to evaluate the performance of heat pipes. Regardless of the filling amount and test angle, the 200μm copper powder type exhibited superior heat transfer efficiency compared to the 100μm type. After analyzing heat transfer performance at various filling rates between 20% and 50%, it was determined that the heat pipe's optimal heat transfer capability occurred at a working fluid filling rate of 30%. The width of the wick was directly related to the heat transfer performance.

Keywords: heat pipe, heat transfer performance, effective pore size, capillary force, sintered wick

Procedia PDF Downloads 47
1658 Microstructural Study of Mechanically Alloyed Powders and the Thin Films of Cufe Alloys

Authors: Mechri hanane, Azzaz Mohammed

Abstract:

Polycrystalline CuFe thin film was prepared by thermal evaporation process (Physical vapor deposition), using the nanocrystalline CuFe powder obtained by mechanical alloying After 24 h of milling elemental powders. The microscopic study of nanocrystalline powder and the thin film of Cu70Fe30 binary alloy were examined using transmission electron microscopy (TEM) and scanning electron microscope (SEM). The cross-sectional TEM images showed that the obtained CuFe layer was polycrystalline film of about 20 nm thick and composed of grains of different size ranging from 4 nm to 18 nm.

Keywords: nanomaterials, thin films, TEM, SEM

Procedia PDF Downloads 397
1657 Hydrogels Beads of Alginate/Seaweed Powder for Plants Nutrition

Authors: Brenda O. Mazzola, Adriel Larsen, Romina P. Ollier, Leandro N. Ludueña, Vera A. Alvarez, Jimena S. Gonzalez

Abstract:

Seaweed is a natural renewable resource with great potential that is not being used by the domestic industry. Here, it was used a kind of invasive algae U. Pinnatifida that causes serious ecological damage on the Argentinian coasts. Alginate is one of the most widely used materials for encapsulation, and has the advantage that is a natural polysaccharide derived from a marine plant. It can form thermally stable hydrogel in the presence of calcium cation. In addition, the hydrogel can be easily produced into particulate form by using simple and gentle method. The aim of this work was to obtain and to characterize novel compounds (alginate/seaweed powder) for the soil nutrition. Alginate water solutions were prepared by concentrations of 20, 30, 40 and 50 g/L, in those solutions 10g/L of seaweed powder was added. Then the dispersions were transferred from a beaker to the atomizer by a peristaltic pump (with 0.05 to 0.1 L/h flow). A tank was filled with 1 L of calcium chloride solution (4 g/L), and the solution was agitated with a magnetic stirrer. The beads were analyzed by means TGA, FTIR and swelling determinations. In addition, the improvements in the soil were qualitative measured. It was obtained beads with different diameters depend on the initial concentration and the flow used. A better dispersions of seaweed and optimal diameter for the plant nutrition applications were obtained for 40g/L concentration and 0.1 L/h flow. The beads show thermal stability and high swelling degree. It can be successfully obtained alginate beads with seaweed powder with a novelty application as plant nutrient.

Keywords: biodegradable, characterization, hydrogel, plant nutrition, seaweed

Procedia PDF Downloads 271
1656 Spectroscopic and 1.08mm Laser Properties of Nd3+ Doped Oxy-Fluoro Borate Glasses

Authors: Swapna Koneru, Srinivasa Rao Allam, Vijaya Prakash Gaddem

Abstract:

The different concentrations of neodymium-doped (Nd-doped) oxy fluoroborate (OFB) glasses were prepared by melt quenching method and characterized through optical absorption, emission and decay curve measurements to understand the lasing potentialities of these glasses. Optical absorption spectra were recorded and have been analyzed using Judd–Ofelt theory. The dipole strengths are parameterized in terms of three phenomenological Judd–Ofelt intensity parameters Ωλ (λ=2, 4 and 6) to elucidate the glassy matrix around Nd3+ ion as well as to determine the 4F3/2 metastable state radiative properties such as the transition probability (AR), radiative lifetime (τR), branching ratios (βR) and integrated absorption cross-section (σa) have been measured for most of the fluorescent levels of Nd3+. The emission spectra recorded for these glasses exhibit two peaks at 1085 and 1328 nm corresponding to 4F3/2 to 4I11/2 and 4I13/2 transitions have been obtained for all the glasses upon 808 nm diode laser excitation in the near infrared region. The emission intensity of the 4F3/2 to 4I11/2 transition increases with increase of Nd3+ concentration up to 1 mol% and then concentration quenching is observed for 2.0 mol% of Nd3+ concentration. The lifetimes for the 4F3/2 level are found to decrease with increase in Nd2O3 concentration in the glasses due to the concentration quenching. The decay curves of all these glasses show single exponential behavior. The spectroscopy of Nd3+ in these glasses is well understood and laser properties can be accurately determined from measured spectroscopic properties. The results obtained are compared with reports on similar glasses. The results indicate that the present glasses could be useful for 1.08 µm laser applications.

Keywords: glasses, luminescence, optical properties, photoluminescence spectroscopy

Procedia PDF Downloads 278
1655 Mechanical Properties of Powder Metallurgy Processed Biodegradable Zn-Based Alloy for Biomedical Application

Authors: Maruf Yinka Kolawole, Jacob Olayiwola Aweda, Farasat Iqbal, Asif Ali, Sulaiman Abdulkareem

Abstract:

Zinc is a non-ferrous metal with potential application in orthopaedic implant materials. However, its poor mechanical properties were major challenge to its application. Therefore, this paper studies the mechanical properties of biodegradable Zn-based alloy for biomedical application. Pure zinc powder with varying (0, 1, 2, 3 & 6) wt% of magnesium powders were ball milled using ball-to-powder ratio (B:P) of 10:1 at 350 rpm for 4 hours. The resulting milled powders were compacted and sintered at 300 MPa and 350 °C respectively. Microstructural, phase and mechanical properties analyses were performed following American standard of testing and measurement. The results show that magnesium has influence on the mechanical properties of zinc. The compressive strength, hardness and elastic modulus of 210 ± 8.878 MPa, 76 ± 5.707 HV and 45 ± 11.616 GPa respectively as obtained in Zn-2Mg alloy were optimum and meet the minimum requirement of biodegradable metal for orthopaedics application. These results indicate an increase of 111, 93 and 93% in compressive strength, hardness and elastic modulus respectively as compared to pure zinc. The increase in mechanical properties was adduced to effectiveness of compaction pressure and intermetallic phase formation within the matrix resulting in high dislocation density for improving strength. The study concluded that, Zn-2Mg alloy with optimum mechanical properties can therefore be considered a potential candidate for orthopaedic application.

Keywords: Biodegradable metal, Biomedical application, Mechanical properties, Powder Metallurgy, Zinc

Procedia PDF Downloads 130
1654 Investigation Into the Effects of Egg Shells Powder and Groundnut Husk Ash on the Properties of Concrete

Authors: Usman B.M., Basheer O. B., . Ahmed A., Amali N. U., Taufeeq O.

Abstract:

This study presents an investigation into the improvement of strength properties of concrete using egg shell powder (ESP) and groundnut husk ash (GHA) as additives so as to reduce its high cost and find alternative disposal method for agricultural waste. A standard consistency test was carried out on the egg shell powder and groundnut husk ash. A prescribed concrete mix ratio of 1:2:4 concrete cubes (150mm by 150mm) and water-cement ratio of 0.6 were casted. A total of One hundred and forty four (144) cubes were cast and cured for 3, 7 and 28 days and compressive strength subsequently determined in comparison with the relevant specifications. Consistency test on the cement paste at the various concentrations exhibited an increase in the setting time as the concentration increases with the highest value recorded at 5% egg shell powder and groundnut husk ash concentration as 219 minutes for the initial setting time and 275 minutes for the final setting time as against the control specimen of 159 minutes and 234 minutes for both initial and final setting times respectively. The results of the investigations showed that GHA was predominantly of Silicon oxide (56.73%) and a combined SiO₂, Al₂O₃ and Fe₂O₃ content of 66.75%; and the result of the investigations showed that ESP was predominantly of Calcium oxide (52.75%) and a combined SiO₂, Al₂O₃ and Fe₂O₃ content of 3.86%. The addition of GHA and ESP in concrete showed slight different in compressive strength with increase in GHA and ESP additive up to 5% and high decrease in compressive strength with further increase in GHA and ESP content. The 28 days compressive strength of the concrete cubes; compared with that of the control; showed a slight increase. Thus the use of GHA and ESP as partial replacement of cement will provide an economic use of by-product and consequently produce a cheaper concrete construction without comprising its strength

Keywords: additive, concrete, eggshell powder, groundnut husk ash compressive strength

Procedia PDF Downloads 113
1653 Effect of Mixture of Flaxseed and Pumpkin Seeds Powder on Hypercholesterolemia

Authors: Zahra Ashraf

Abstract:

Flax and pumpkin seeds are a rich source of unsaturated fatty acids, antioxidants and fiber, known to have anti-atherogenic properties. Hypercholesterolemia is a state characterized by the elevated level of cholesterol in the blood. This research was designed to study the effect of flax and pumpkin seeds powder mixture on hypercholesterolemia and body weight. Rat’s species were selected as human representative. Thirty male albino rats were divided into three groups: a control group, a CD-chol group (control diet+cholesterol) fed with 1.5% cholesterol and FP-chol group (flaxseed and pumpkin seed powder+ cholesterol) fed with 1.5% cholesterol. Flax and pumpkin seed powder mixed at proportion of (5/1) (omega-3 and omega-6). Blood samples were collected to examine lipid profile and body weight was also measured. Thus the data was subjected to analysis of variance. In CD-chol group, body weight, total cholesterol TC, triacylglycerides TG in plasma, plasma LDL-C, ratio significantly increased with a decrease in plasma HDL (good cholesterol). In FP-chol group lipid parameters and body weights were decreased significantly with an increase in HDL and decrease in LDL (bad cholesterol). The mean values of body weight, total cholesterol, triglycerides, low density lipoprotein and high density lipoproteins in FP-chol group were 240.66±11.35g, 59.60±2.20mg/dl, 50.20±1.79 mg/dl, 36.20±1.62mg/dl, 36.40±2.20 mg/dl, respectively. Flaxseed and pumpkin seeds powder mixture showed reduction in body weight, serum cholesterol, low density lipoprotein and triglycerides. While significant increase was shown in high density lipoproteins when given to hypercholesterolemic rats. Our results suggested that flax and pumpkin seed mixture has hypocholesterolemic effects which were probably mediated by polyunsaturated fatty acids (omega-3 and omega-6) present in seed mixture.

Keywords: hypercolesterolemia, omega 3 and omega 6 fatty acids, cardiovascular diseases

Procedia PDF Downloads 411
1652 Hardness Analysis of Samples of Friction Stir Welded Joints of (Al-Cu)

Authors: Upamanyu Majumder, Angshuman Das

Abstract:

Friction Stir Welding (FSW) is a Solid-State joining process. Unlike fusion welding techniques it does not involve operation above the melting point temperature of metals, but above the re-crystallization temperature. FSW also does not involve fusion of other material. FSW of ALUMINIUM has been commercialized and recent studies on joining dissimilar metals have been studied. Friction stir welding was introduced and patented in 1991 by The Welding Institute. For this paper, a total of nine samples each of copper and ALUMINIUM(Dissimilar metals) were welded using FSW process and Vickers Hardness were conducted on each of the samples.

Keywords: friction stir welding (FSW), recrystallization temperature, dissimilar metals, aluminium-copper, Vickers hardness test

Procedia PDF Downloads 342
1651 A Strategy Therapy for Retinitis Pigmentosa Induced by Argon Laser in Rabbits by High Dose Adult Stem Cells

Authors: Hager E. Amer, Hany El Saftawy, Laila Rashed, Ahmed M. Ata, Fatma Metwally, Hesham Mettawei, Hossam E. Sayed, Tamer Adel, Kareem M. El Sawah

Abstract:

Aim: The purpose of this study is to regenerate the damaged photoreceptor cells as a result of argon laser as a model of Retinitis Pigmentosa in rabbits' retina by using adult stem cells from rabbits' bone marrow. Background: Retinitis pigmentosa (RP) is a group of inherited disorders that primarily affect photoreceptor and pigment epithelium function. RP leads to loss of the rod outer segment and shorten the photoreceptor layer and expose the photoreceptor cell body to high-pressure levels in oxygen (oxidative stress) leads to apoptosis to the rod and cone cells. In particular, there is no specific treatment for retinitis pigmentosa. Materials and Methods: Forty Two Giant (Rex) rabbits were used in this experiment divided into 3 groups: Group 1: Control (6 rabbits), Group 2: Argon laser radiated as a model of retinitis pigmentosa (12 rabbits), Group 3: Laser radiated and treated by 6 million stem cells (12 rabbits). The last two groups are divided each into two subgroups each subgroup contains 6 rabbits, the ophthalmological examination was performed on rabbits, blood samples and retina samples were taken after 25 days and after 36 days from the laser radiation (10 days and 21 days after stem cells insertion in group 3) to perform the biochemical analysis. Results: Compared to control Group, a decrease of ERG wave amplitude and antioxidant substances (Glutathione) in blood and retina in group 2, and an increase of oxidative stress substances (Nitric oxide, Malonaldehyde, and carponyl protein) and apoptotic substances (Advanced glycation end product and M-metalloproteinase) in blood and retina. Compared to group 2, mostly increases of antioxidant substances and ERG wave amplitude in group 3, and mostly decreases in oxidative stress substances and apoptotic substances. Conclusion: Insertion of 6 million stem cells intravitreous gives good results in regeneration of the damaged photoreceptor cells after 21 days.

Keywords: retinitis pigmentosa, stem cells, argon laser, oxidative stress, apoptosis

Procedia PDF Downloads 186
1650 Simulation and Characterization of Compact Magnetic Proton Recoil Spectrometer for Fast Neutron Spectra Measurements

Authors: Xingyu Peng, Qingyuan Hu, Xuebin Zhu, Xi Yuan

Abstract:

Neutron spectrometry has contributed much to the development of nuclear physics since 1932 and has also become an importance tool in several other fields, notably nuclear technology, fusion plasma diagnostics and radiation protection. Compared with neutron fluxes, neutron spectra can provide more detailed information on the internal physical process of neutron sources, such as fast neutron reactors, fusion plasma, fission-fusion hybrid reactors, and so on. However, high performance neutron spectrometer is not so commonly available as it requires the use of large and complex instrumentation. This work describes the development and characterization of a compact magnetic proton recoil (MPR) spectrometer for high-resolution measurements of fast neutron spectra. The compact MPR spectrometer is featured by its large recoil angle, small size permanent analysis magnet, short beam transport line and dual-purpose detector array for both steady state and pulsed neutron spectra measurement. A 3-dimensional electromagnetic particle transport code is developed to simulate the response function of the spectrometer. Simulation results illustrate that the performance of the spectrometer is mainly determined by n-p recoil foil and proton apertures, and an overall energy resolution of 3% is achieved for 14 MeV neutrons. Dedicated experiments using alpha source and mono-energetic neutron beam are employed to verify the simulated response function of the compact MPR spectrometer. These experimental results show a good agreement with the simulated ones, which indicates that the simulation code possesses good accuracy and reliability. The compact MPR spectrometer described in this work is a valuable tool for fast neutron spectra measurements for the fission or fusion devices.

Keywords: neutron spectrometry, magnetic proton recoil spectrometer, neutron spectra, fast neutron

Procedia PDF Downloads 191
1649 Laser Cooling of Internal Degrees of Freedom of Molecules: Cesium Case

Authors: R. Horchani

Abstract:

Optical pumping technique with laser fields combined with photo-association of ultra-cold atoms leads to control on demand the vibrational and/or the rotational population of molecules. Here, we review the basic concepts and main steps should be followed, including the excitation schemes and detection techniques we use to achieve the ro-vibrational cooling of Cs2 molecules. We also discuss the extension of this technique to other molecules. In addition, we present a theoretical model used to support the experiment. These simulations can be widely used for the preparation of various experiments since they allow the optimization of several important experimental parameters.

Keywords: cold molecule, photo-association, optical pumping, vibrational and rotational cooling

Procedia PDF Downloads 288
1648 Flexural Toughness of Fiber Reinforced Reactive Powder Concrete (RPC)

Authors: S. Yousefi Oderji, B. Chen

Abstract:

According to the ASTM C1018 toughness index method, the single and combined toughness effects of copper coated steel fiber and polypropylene (pp) fiber on reactive powder concrete (RPC) were investigated. Through flexural toughness test of RPC with different fiber volume dosages, the corresponding load-deflection curves were also drawn. Test results indicate that the binary combination of fibers provide the best flexural toughness, and improve the post-peak load-deflection characteristics of RPC. However, the single effect of pp fibers was not pronounced on improving the flexural toughness of RPC.

Keywords: RPC, PP, flexural toughness, toughness index

Procedia PDF Downloads 326
1647 Multi-Wavelength Q-Switched Erbium-Doped Fiber Laser with Photonic Crystal Fiber and Multi-Walled Carbon Nanotubes

Authors: Zian Cheak Tiu, Harith Ahmad, Sulaiman Wadi Harun

Abstract:

A simple multi-wavelength passively Q-switched Erbium-doped fiber laser (EDFL) is demonstrated using low cost multi-walled carbon nanotubes (MWCNTs) based saturable absorber (SA), which is prepared using polyvinyl alcohol (PVA) as a host polymer. The multi-wavelength operation is achieved based on nonlinear polarization rotation (NPR) effect by incorporating 50 m long photonic crystal fiber (PCF) in the ring cavity. The EDFL produces a stable multi-wavelength comb spectrum for more than 14 lines with a fixed spacing of 0.48 nm. The laser also demonstrates a stable pulse train with the repetition rate increases from 14.9 kHz to 25.4 kHz as the pump power increases from the threshold power of 69.0 mW to the maximum pump power of 133.8 mW. The minimum pulse width of 4.4 µs was obtained at the maximum pump power of 133.8 mW while the highest energy of 0.74 nJ was obtained at pump power of 69.0 mW.

Keywords: multi-wavelength Q-switched, multi-walled carbon nanotube, photonic crystal fiber

Procedia PDF Downloads 527
1646 Depth Camera Aided Dead-Reckoning Localization of Autonomous Mobile Robots in Unstructured GNSS-Denied Environments

Authors: David L. Olson, Stephen B. H. Bruder, Adam S. Watkins, Cleon E. Davis

Abstract:

In global navigation satellite systems (GNSS), denied settings such as indoor environments, autonomous mobile robots are often limited to dead-reckoning navigation techniques to determine their position, velocity, and attitude (PVA). Localization is typically accomplished by employing an inertial measurement unit (IMU), which, while precise in nature, accumulates errors rapidly and severely degrades the localization solution. Standard sensor fusion methods, such as Kalman filtering, aim to fuse precise IMU measurements with accurate aiding sensors to establish a precise and accurate solution. In indoor environments, where GNSS and no other a priori information is known about the environment, effective sensor fusion is difficult to achieve, as accurate aiding sensor choices are sparse. However, an opportunity arises by employing a depth camera in the indoor environment. A depth camera can capture point clouds of the surrounding floors and walls. Extracting attitude from these surfaces can serve as an accurate aiding source, which directly combats errors that arise due to gyroscope imperfections. This configuration for sensor fusion leads to a dramatic reduction of PVA error compared to traditional aiding sensor configurations. This paper provides the theoretical basis for the depth camera aiding sensor method, initial expectations of performance benefit via simulation, and hardware implementation, thus verifying its veracity. Hardware implementation is performed on the Quanser Qbot 2™ mobile robot, with a Vector-Nav VN-200™ IMU and Kinect™ camera from Microsoft.

Keywords: autonomous mobile robotics, dead reckoning, depth camera, inertial navigation, Kalman filtering, localization, sensor fusion

Procedia PDF Downloads 197
1645 Influence of Laser Excitation on SERS of Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Ben R. Horrocks

Abstract:

Surface enhanced Raman spectroscopy (SERS) of Silicon nano crystals (SiNCs) were obtained using two different laser excitations: 488 nm and 514.5 nm. Silver nano particles were used as plasmonics metal nano particles due to a robust SERS effect that observed when they mixed with SiNCs. SiNCs have been characterized by scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). It is found that the SiNCs are crystalline with an average diameter of 65 nm and FCC lattice. Silver nano particles (AgNPs) of two different sizes were synthesized using photo chemical reduction of AgNO3 with sodium dodecyl sulfate (SDS). The synthesized AgNPs have a polycrystalline structure with an average particle diameter of 100 nm and 30 nm, respectively. A significant enhancement in the SERS intensity was observed for AgNPs100/SiNCs and AgNPs30/SiNCs mixtures increasing up to 9 and 3 times respectively using 488 nm intensity; whereas the intensity of the SERS signal increased up to 7 and 2 times respectively, using 514.5 nm excitation source. The enhancement in SERS intensities occurs as a result of the coupling between the excitation laser light and the plasmon bands of AgNPs; thus this intense field at AgNPs surface couples strongly to SiNCs. The results provide good consensus between the wavelength of the laser excitation source and surface plasmon resonance absorption band of silver nano particles consider to be an important requirement in SERS experiments.

Keywords: silicon nanocrystals (SiNCs), silver nanoparticles (AgNPs), surface enhanced raman spectroscopy (SERS)

Procedia PDF Downloads 324
1644 Performance, Yolk and Serum Cholesterol of Shaver-Brown Layers Fed Moringa Leaf Meal and Sun Dried Garlic Powder

Authors: Anselm Onyimonyi, A. Abaponitus

Abstract:

One hundred and ninety two Shaver-Brown layers aged 40 weeks were used in a 10 weeks feeding trial to investigate the effect of supplementary moringa leaf meal and sun-dried garlic powder (MOGA) on the performance, egg yolk and serum cholesterol profiles of the birds. The birds were randomly assigned to four treatments in a 2 x 2 factorial in a Completely Randomized Design with 48 birds per treatment. Each treatment had 24 replicates with 2 birds, each separately housed in a cell in a battery cage. Birds on treatment 1 received a standard layers mash (16.5% CP and 3000 kcalME/kg) without any MOGA. Treatment 2 birds received the control diet with 5 g moringa leaf meal/kg of feed, treatment 3 received the control diet with 5 g sun-dried garlic powder/kg of feed, treatment 4 had a combination of 5 g each of moringa leaf meal and sun dried garlic powder/kg of feed. Data were kept on daily egg production, egg weight and feed intake. 10 eggs were collected per treatment at the end of the study for yolk cholesterol determination. Blood samples from four birds per treatment were collected and used for the serum cholesterol and triglycerides determination. Results showed that bird on treatment 3 (5% moringa leaf meal/kg of feed) had significantly higher (P < 0.05) Hen Day Egg Production record of 83.3% as against 78.75%, 65.05% and 66.67% recorded for the control, T2 and T4 birds, respectively. Egg weight of 56.39 g recorded for the same birds on treatment 3 was significantly (P< 0.05) lower than the values of 62.61 g, 60.99 g and 59.33 g recorded for birds on T4, T1 and T2, respectively. Yolk and serum cholesterol profiles of the moringa leaf meal fed birds were significantly (P<0.05) lowered when compared to those of the other treatments. Comparatively, the birds on the MOGA diets had significantly reduced yolk and serum cholesterol than the control. It is concluded that supplementation of moringa leaf meal and sun dried garlic powder at the levels used in this study will result in the production of nutritionally healthier eggs with less yolk and serum cholesterol.

Keywords: performance, cholesterol, moringa, garlic

Procedia PDF Downloads 507
1643 Effect of Synthetic L-Lysine and DL-Methionine Amino Acids on Performance of Broiler Chickens

Authors: S. M. Ali, S. I. Mohamed

Abstract:

Reduction of feed cost for broiler production is at most importance in decreasing the cost of production. The objectives of this study were to evaluate the use of synthetic amino acids (L-lysine – DL-methionine) instead of super concentrate and groundnut cake versus meat powder as protein sources. A total of 180 male broiler chicks (Cobb – strain) at 15 day of age (DOA) were selected according to their average body weight (380 g) from a broiler chicks flock at Elbashair Farm. The chicks were randomly divided into six groups of 30 chicks. Each group was further sub divided into three replicates with 10 birds. Six experimental diets were formulated. The first diet contained groundnut cake and super concentrate as the control (GNC + C); in the second diet, meat powder and super concentrate (MP + C) were used. The third diet contained groundnut cake and amino acids (GNC + AA); the forth diet contained meat powder and amino acids (MP + AA). The fifth diet contained groundnut cake, meat powder and super concentrate (GNC + MP + C) and the sixth diet contained groundnut cake, meat powder and amino acids (GNC + MP + AA). The formulated rations were randomly assigned for the different sub groups in a completely randomized design of six treatments and three replicates. Weekly feed intake, body weight and mortality were recorded and body weight gain and feed conversion ratio were calculated. At the end of the experiment (49 DOA), nine birds from each treatment were slaughtered. Live body weight, carcass weight, head, shank, and some internal organs (gizzard, heart, liver, small intestine, and abdominal fat pad) weights were taken. For the overall experimental period the (GNC + C +MP) consumed significantly (P≤0.01) the highest cumulative feed while the (MP + AA) group consumed the lowest amount of feed. The (GNC + C) and the (GNC + AA) groups had the heaviest live body weight while (MP + AA) had the lowest live body weight. The overall FCR was significantly (P≤0.01) the best for (GNC + AA) group while the (MP + AA) reported the worst FCR. However, the (GNC + AA) had significantly (P≤0.01) the lowest AFP. The (GNC + MP + Con) group had the highest dressing % while the (MP + AA) group had the lowest dressing %. It is concluded that amino acids can be used instead of super concentrate in broiler feeding with perfect performance and less cost and that meat powder is not advisable to be used with amino acids.

Keywords: broiler chickens, DL-lysine, methionine, performance

Procedia PDF Downloads 258
1642 Tribological Behaviour of the Degradation Process of Additive Manufactured Stainless Steel 316L

Authors: Yunhan Zhang, Xiaopeng Li, Zhongxiao Peng

Abstract:

Additive manufacturing (AM) possesses several key characteristics, including high design freedom, energy-efficient manufacturing process, reduced material waste, high resolution of finished products, and excellent performance of finished products. These advantages have garnered widespread attention and fueled rapid development in recent decades. AM has significantly broadened the spectrum of available materials in the manufacturing industry and is gradually replacing some traditionally manufactured parts. Similar to components produced via traditional methods, products manufactured through AM are susceptible to degradation caused by wear during their service life. Given the prevalence of 316L stainless steel (SS) parts and the limited research on the tribological behavior of 316L SS samples or products fabricated using AM technology, this study aims to investigate the degradation process and wear mechanisms of 316L SS disks fabricated using AM technology. The wear mechanisms and tribological performance of these AM-manufactured samples are compared with commercial 316L SS samples made using conventional methods. Additionally, methods to enhance the tribological performance of additive-manufactured SS samples are explored. Four disk samples with a diameter of 75 mm and a thickness of 10 mm are prepared. Two of them (Group A) are prepared from a purchased SS bar using a milling method. The other two disks (Group B), with the same dimensions, are made of Gas Atomized 316L Stainless Steel (size range: 15-45 µm) purchased from Carpenter Additive and produced using Laser Powder Bed Fusion (LPBF). Pin-on-disk tests are conducted on these disks, which have similar surface roughness and hardness levels. Multiple tests are carried out under various operating conditions, including varying loads and/or speeds, and the friction coefficients are measured during these tests. In addition, the evolution of the surface degradation processes is monitored by creating moulds of the wear tracks and quantitatively analyzing the surface morphologies of the mould images. This analysis involves quantifying the depth and width of the wear tracks and analyzing the wear debris generated during the wear processes. The wear mechanisms and wear performance of these two groups of SS samples are compared. The effects of load and speed on the friction coefficient and wear rate are investigated. The ultimate goal is to gain a better understanding of the surface degradation of additive-manufactured SS samples. This knowledge is crucial for enhancing their anti-wear performance and extending their service life.

Keywords: degradation process, additive manufacturing, stainless steel, surface features

Procedia PDF Downloads 57
1641 An Investigation into Mechanical Properties of Laser Fabricated 308LSi Stainless Steel Walls by Wire Feedstock

Authors: Taiwo Ebenezer Abioye, Alexis Medrano-Tellez, Peter Kayode Farayibi, Peter Kayode Oke,

Abstract:

Laser metal deposition by wire feedstock has been established as a process which can provide a high material deposition rate with good quality. Sound mechanical properties of the deposited parts are the pre-requisites for the real applications of this process. This paper investigates the laser metal deposition of 308LSi stainless steel wire within a process window. Single tracks and multiple layer thin-walls of 308LSi stainless steel wire were deposited on 304 stainless steel substrate. The grain structures of the built walls were examined using optical microscopy. The mechanical properties of the built walls including the micro-hardness and tensile properties along the transverse and longitudinal directions were investigated using Vickers hardness tester and tensile test machine. Long columnar grains were found growing in the wall building direction (transverse) and nucleation were observed at the boundary between two deposited layers due to remelting of the previously deposited layers. The results showed that the hardness values of the deposited walls (ranging between 194 HV and 167 HV) decreased from the track-substrate interface to the top of the wall. The ultimate tensile strength (UTS) of the wall (518 ± 7 MPa) showed dependence on wall building directions.

Keywords: laser metal deposition, ultimate tensile strength, hardness, wall, microstructure

Procedia PDF Downloads 393
1640 Evaluation of Toxicity of Root-bark Powder of Securidaca Longepedunculata Enhanced with Diatomaceous Earth Fossilshield Against Callosobruchus Maculatus (F.) (Coleoptera-Bruchidea)

Authors: Mala Tankam Carine, Kekeunou Sévilor, Nukenine Elias

Abstract:

Storage and preservation of agricultural products remain the only conditions ensuring the almost permanent availability of foodstuffs. However, infestations due to insects and microorganisms often occur. Callosobruchus maculatus is a pest that causes a lot of damage to cowpea stocks in the tropics. Several methods are adopted to limit their damage, but the use of synthetic chemical insecticides is the most widespread. Biopesticides in sustainable agriculture respond to several environmental, economic and social concerns while offering innovative opportunities that are ecologically and economically viable for producers, workers, consumers and ecosystems. Our main objective is to evaluate the insecticidal efficacy of binary combinations of Fossilshield with root-bark powder of Securidaca longepedunculata against Callosobruchus maculatus in stored cowpea Vigna unguiculata. Laboratory bioassays were conducted in stored grains to evaluate the toxicity of root-bark powder of Securidaca longepedunculata alone or combined with diatomaceous earth Fossil-Shield ® against C. maculatus. Twenty-hour-old adults of C. maculatus were exposed to 50g of cowpea seeds treated with four doses (10, 20, 30, and 40g/kg) of root-bark powder of S. longepedunculata, on the one hand, and (0.5, 1, 1.5, and 2 g/kg) on DE and binary combinations on the other hand. 0g/kg corresponded to untreated control. Adult mortality was recorded up to 7 days (d) post-treatment, whereas the number of F1 progeny was assessed after 30 d. Weight loss and germinative ability were conducted after 120 d. All treatments were arranged according to a completely randomized block with four replicates. The combined mixture of S. longepedunculata and DE controlled the beetle faster compared to the root-bark powder of S. longepedunculata alone. According to the Co-toxicity coefficient, additive effect of binary combinations was recorded at 3-day post-exposure time with the mixture 25% FossilShield + 75% S. longepedunculata. A synergistic action was observed after 3-d post-exposure at mixture 50% FossilShield + 50% S. longepedunculata and at 1-d and 3-d post-exposure periods at mixture 75% FossilShield + 25% S. longepedunculata. The mixture 25% FossilShield + 75% S. longepedunculata induced a decreased progeny of 6 times fewer individuals for 4.5 times less weight loss and 2, 9 times more sprouted grains than with root-bark powder of S. longepedunculata. The combination of FossilShield + S. longepedunculata was more potent than root-bark powder of S. longepedunculata alone, although the root-bark powder of S. longepedunculata caused significant reduction of F1 adults compared to the control. Combined action of botanical insecticides with FossilShield as a grain protectant in an integrated pest management approach is discussed.

Keywords: diatomaceous earth, cowpea, callosobruchus maculatus, securidaca longepedunculata, combined action, co-toxicity coefficient

Procedia PDF Downloads 62
1639 End to End Monitoring in Oracle Fusion Middleware for Data Verification

Authors: Syed Kashif Ali, Usman Javaid, Abdullah Chohan

Abstract:

In large enterprises multiple departments use different sort of information systems and databases according to their needs. These systems are independent and heterogeneous in nature and sharing information/data between these systems is not an easy task. The usage of middleware technologies have made data sharing between systems very easy. However, monitoring the exchange of data/information for verification purposes between target and source systems is often complex or impossible for maintenance department due to security/access privileges on target and source systems. In this paper, we are intended to present our experience of an end to end data monitoring approach at middle ware level implemented in Oracle BPEL for data verification without any help of monitoring tool.

Keywords: service level agreement, SOA, BPEL, oracle fusion middleware, web service monitoring

Procedia PDF Downloads 468
1638 Effects of Temperature Dryer on Allicin and Pirvic Acid Measurments Garlic Powder after Drying Process

Authors: Rezvani Aghdam Ali, Aleemrani Nejad Seyed Mohammad Hossein

Abstract:

Introduction: Dryed Garlic has plentiful health and medicinal value and is used in industrial food the forms of flakes or powders. Many health and medicinal properties of Garlic are attributed to allicin. This substance is produced enzymatically after crushing. Since temperature affected on enzymatic action, then is important factor on pirovic acid and allicin retention. Materials and Methods: This study investigated the effects of temperature on qualitative characteristics such as color of powder and pirovic acid and alicin retention in a convective hot-air dryer. For this reason, half cloves of Shushtar Garlics (Allium sativum L.) were dried at air temperatures of 50 and 70°C. Results: Results showed that increasing temperature was resulted changing color. Pirovic acid increased when half cloves Garlic were dried at 70°C. Allicin of half cloves also increased with increasing temperature. Conclusions: According to findings of this research, half cloves which dried in 70 degree centigrade can be introduced the best conditions for producing Garlic powder.

Keywords: garlic, drying, pirovic acid, allicin

Procedia PDF Downloads 322