Search results for: chemical and mineral composition and amorphousness
1993 A Fast Method for Graphene-Supported Pd-Co Nanostructures as Catalyst toward Ethanol Oxidation in Alkaline Media
Authors: Amir Shafiee Kisomi, Mehrdad Mofidi
Abstract:
Nowadays, fuel cells as a promising alternative for power source have been widely studied owing to their security, high energy density, low operation temperatures, renewable capability and low environmental pollutant emission. The nanoparticles of core-shell type could be widely described in a combination of a shell (outer layer material) and a core (inner material), and their characteristics are greatly conditional on dimensions and composition of the core and shell. In addition, the change in the constituting materials or the ratio of core to the shell can create their special noble characteristics. In this study, a fast technique for the fabrication of a Pd-Co/G/GCE modified electrode is offered. Thermal decomposition reaction of cobalt (II) formate salt over the surface of graphene/glassy carbon electrode (G/GCE) is utilized for the synthesis of Co nanoparticles. The nanoparticles of Pd-Co decorated on the graphene are created based on the following method: (1) Thermal decomposition reaction of cobalt (II) formate salt and (2) the galvanic replacement process Co by Pd2+. The physical and electrochemical performances of the as-prepared Pd-Co/G electrocatalyst are studied by Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Cyclic Voltammetry (CV), and Chronoamperometry (CHA). Galvanic replacement method is utilized as a facile and spontaneous approach for growth of Pd nanostructures. The Pd-Co/G is used as an anode catalyst for ethanol oxidation in alkaline media. The Pd-Co/G not only delivered much higher current density (262.3 mAcm-2) compared to the Pd/C (32.1 mAcm-2) catalyst, but also demonstrated a negative shift of the onset oxidation potential (-0.480 vs -0.460 mV) in the forward sweep. Moreover, the novel Pd-Co/G electrocatalyst represents large electrochemically active surface area (ECSA), lower apparent activation energy (Ea), higher levels of durability and poisoning tolerance compared to the Pd/C catalyst. The paper demonstrates that the catalytic activity and stability of Pd-Co/G electrocatalyst are higher than those of the Pd/C electrocatalyst toward ethanol oxidation in alkaline media.Keywords: thermal decomposition, nanostructures, galvanic replacement, electrocatalyst, ethanol oxidation, alkaline media
Procedia PDF Downloads 1531992 Application of Harris Hawks Optimization Metaheuristic Algorithm and Random Forest Machine Learning Method for Long-Term Production Scheduling Problem under Uncertainty in Open-Pit Mines
Authors: Kamyar Tolouei, Ehsan Moosavi
Abstract:
In open-pit mines, the long-term production scheduling optimization problem (LTPSOP) is a complicated problem that contains constraints, large datasets, and uncertainties. Uncertainty in the output is caused by several geological, economic, or technical factors. Due to its dimensions and NP-hard nature, it is usually difficult to find an ideal solution to the LTPSOP. The optimal schedule generally restricts the ore, metal, and waste tonnages, average grades, and cash flows of each period. Past decades have witnessed important measurements of long-term production scheduling and optimal algorithms since researchers have become highly cognizant of the issue. In fact, it is not possible to consider LTPSOP as a well-solved problem. Traditional production scheduling methods in open-pit mines apply an estimated orebody model to produce optimal schedules. The smoothing result of some geostatistical estimation procedures causes most of the mine schedules and production predictions to be unrealistic and imperfect. With the expansion of simulation procedures, the risks from grade uncertainty in ore reserves can be evaluated and organized through a set of equally probable orebody realizations. In this paper, to synthesize grade uncertainty into the strategic mine schedule, a stochastic integer programming framework is presented to LTPSOP. The objective function of the model is to maximize the net present value and minimize the risk of deviation from the production targets considering grade uncertainty simultaneously while satisfying all technical constraints and operational requirements. Instead of applying one estimated orebody model as input to optimize the production schedule, a set of equally probable orebody realizations are applied to synthesize grade uncertainty in the strategic mine schedule and to produce a more profitable and risk-based production schedule. A mixture of metaheuristic procedures and mathematical methods paves the way to achieve an appropriate solution. This paper introduced a hybrid model between the augmented Lagrangian relaxation (ALR) method and the metaheuristic algorithm, the Harris Hawks optimization (HHO), to solve the LTPSOP under grade uncertainty conditions. In this study, the HHO is experienced to update Lagrange coefficients. Besides, a machine learning method called Random Forest is applied to estimate gold grade in a mineral deposit. The Monte Carlo method is used as the simulation method with 20 realizations. The results specify that the progressive versions have been considerably developed in comparison with the traditional methods. The outcomes were also compared with the ALR-genetic algorithm and ALR-sub-gradient. To indicate the applicability of the model, a case study on an open-pit gold mining operation is implemented. The framework displays the capability to minimize risk and improvement in the expected net present value and financial profitability for LTPSOP. The framework could control geological risk more effectively than the traditional procedure considering grade uncertainty in the hybrid model framework.Keywords: grade uncertainty, metaheuristic algorithms, open-pit mine, production scheduling optimization
Procedia PDF Downloads 1051991 Application of Box-Behnken Response Surface Design for Optimization of Essential Oil Based Disinfectant on Mixed Species Biofilm
Authors: Anita Vidacs, Robert Rajko, Csaba Vagvolgyi, Judit Krisch
Abstract:
With the optimization of a new disinfectant the number of tests could be decreased and the cost of processing too. Good sanitizers are eco-friendly and allow no resistance evolvement of bacteria. The essential oils (EOs) are natural antimicrobials, and most of them have the Generally Recognized As Safe (GRAS) status. In our study, the effect of the EOs cinnamon, marjoram, and thyme was investigated against mixed species bacterial biofilms of Escherichia coli, Listeria monocytogenes, Pseudomonas putida, and Staphylococcus aureus. The optimal concentration of EOs, disinfection time and level of pH were evaluated with the aid of Response Surface Box-Behnken Design (RSD) on 1 day and 7 days old biofilms on metal, plastic, and wood surfaces. The variable factors were in the range of 1-3 times of minimum bactericide concentration (MBC); 10-110 minutes acting time and 4.5- 7.5 pH. The optimized EO disinfectant was compared to industrial used chemicals (HC-DPE, Hypo). The natural based disinfectants were applicable; the acting time was below 30 minutes. EOs were able to eliminate the biofilm from the used surfaces except from wood. The disinfection effect of the EO based natural solutions was in most cases equivalent or better compared to chemical sanitizers used in food industry.Keywords: biofilm, Box-Behnken design, disinfectant, essential oil
Procedia PDF Downloads 2201990 Comparative Study in Evaluating the Antioxidation Efficiency for Native Types Antioxidants Extracted from Crude Oil with the Synthesized Class
Authors: Mohammad Jamil Abd AlGhani
Abstract:
The natural native antioxidants N,N-P-methyl phenyl acetone and N,N-phenyl acetone were isolated from the Iraqi crude oil region of Kirkuk by ion exchange and their structure was characterized by spectral and chemical analysis methods. Tetraline was used as a liquid hydrocarbon to detect the efficiency of isolated molecules at elevated temperature (393 K) that it has physicochemical specifications and structure closed to hydrocarbons fractionated from crude oil. The synthesized universal antioxidant 2,6-ditertiaryisobutyl-p-methyl phenol (Unol) with known stochiometric coefficient of inhibition equal to (2) was used as a model for comparative evaluation at the same conditions. Modified chemiluminescence method was used to find the amount of absorbed oxygen and the induction periods in and without the existence of isolated antioxidants molecules. The results of induction periods and quantity of absorbed oxygen during the oxidation process were measured by manometric installation. It was seen that at specific equal concentrations of N,N-phenyl acetone and N, N-P-methyl phenyl acetone in comparison with Unol at 393 K were with (2) and (2.5) times efficient than do Unol. It means that they had the ability to inhibit the formation of new free radicals and prevent the chain reaction to pass from the propagation to the termination step rather than decomposition of formed hydroperoxides.Keywords: antioxidants, chemiluminescence, inhibition, Unol
Procedia PDF Downloads 2011989 Comparison of White Sauce Prepared from Native and Chemically Modified Corn and Pearl Millet Starches
Authors: Marium Shaikh, Tahira M. Ali, Abid Hasnain
Abstract:
Physical and sensory properties of white sauces prepared from native and chemically modified corn and pearl millet starches were compared. Interestingly, no syneresis was observed in hydroxypropylated corn and pearl millet starch containing white sauce even after nine days of cold storage (4 °C), while other modifications also reduced the syneresis significantly in comparison to their native counterparts. White sauce containing succinylated corn starch showed least oil separation due to its greater emulsion stability. Light microscopy was used to visualize the size and shape of fat globules, and it was found that they were most homogenously distributed in succinylated and hydroxypropylated samples. Sensory results revealed that chemical modification of corn and pearl millet starch improved the consistency, thickness and overall acceptability of white sauces. Viscosity profiles showed that pasting parameters of native pearl millet starch are almost similar to native corn starch suggesting pearl millet starch as an alternative of corn starch. Also, white sauce prepared from modified pearl millet starch showed better cold storage stability in terms of various textural attributes like hardness, cohesiveness, chewiness, and springiness.Keywords: corn starch, pearl millet, hydroxypropylation, succinylation, white sauce
Procedia PDF Downloads 2851988 Genome-Wide Analysis Identifies Locus Associated with Parathyroid Hormone Levels
Authors: Antonela Matana, Dubravka Brdar, Vesela Torlak, Marijana Popovic, Ivana Gunjaca, Ozren Polasek, Vesna Boraska Perica, Maja Barbalic, Ante Punda, Caroline Hayward, Tatijana Zemunik
Abstract:
Parathyroid hormone (PTH) plays a critical role in the regulation of bone mineral metabolism and calcium homeostasis. Higher PTH levels are associated with heart failure, hypertension, coronary artery disease, cardiovascular mortality and poorer bone health. A twin study estimated that 60% of the variation in PTH concentrations is genetically determined. Only one GWAS of PTH concentration has been reported to date. Identified loci explained 4.5% of the variance in circulating PTH, suggesting that additional genetic variants remain undiscovered. Therefore, the aim of this study was to identify novel genetic variants associated with PTH levels in a general population. We have performed a GWAS meta-analysis on 2596 individuals originating from three Croatian cohorts: City of Split and the Islands of Korčula and Vis, within a large-scale project of “10,001 Dalmatians”. A total of 7 411 206 variants, imputed using the 1000 Genomes reference panel, with minor allele frequency ≥ 1% and Rsq ≥ 0.5 were analyzed for the association. GWAS within each data set was performed under an additive model, controlling for age, gender and relatedness. Meta-analysis was conducted using the inverse-variance fixed-effects method. Furthermore, to identify sex-specific effects, we have conducted GWAS meta-analyses analyzing males and females separately. In addition, we have performed biological pathway analysis. Four SNPs, representing one locus, reached genome-wide significance. The most significant SNP was rs11099476 on chromosome 4 (P=1.15x10-8), which explained 1.14 % of the variance in PTH. The SNP is located near the protein-coding gene RASGEF1B. Additionally, we detected suggestive association with SNPs, rs77178854 located on chromosome 2 in the DPP10 gene (P=2.46x10-7) and rs481121 located on chromosome 1 (P=3.58x10-7) near the GRIK1 gene. One of the top hits detected in the main meta-analysis, intron variant rs77178854 located within DPP10 gene, reached genome-wide significance in females (P=2.21x10-9). No single locus was identified in the meta-analysis in males. Fifteen biological pathways were functionally enriched at a P<0.01, including muscle contraction, ion homeostasis and cardiac conduction as the most significant pathways. RASGEF1B is the guanine nucleotide exchange factor, known to be associated with height, bone density, and hip. DPP10 encodes a membrane protein that is a member of the serine proteases family, which binds specific voltage-gated potassium channels and alters their expression and biophysical properties. In conclusion, we identified 2 novel loci associated with PTH levels in a general population, providing us with further insights into the genetics of this complex trait.Keywords: general population, genome-wide association analysis, parathyroid hormone, single nucleotide polymorphisms.
Procedia PDF Downloads 2251987 The Photocatalytic Approach for the Conversion of Polluted Seawater CO₂ into Renewable Source of Energy
Authors: Yasar N. Kavil, Yasser A. Shaban, Radwan K. Al Farawati, Mohamed I. Orif, Shahed U. M. Khanc
Abstract:
Photocatalytic way of reduction of CO₂ in polluted seawater into chemical fuel, methanol, was successfully gained over Cu/C-co-doped TiO₂ nanoparticles under UV and natural sunlight. A homemade stirred batch annular reactor was used to carry out the photocatalytic reduction experiments. Photocatalysts with various Cu loadings (0, 0.5, 1, 3, 5 and 7 wt.%) were synthesized by the sol-gel procedure and were characterized by XRD, SEM, UV–Vis, FTIR, and XPS. The photocatalytic production of methanol was promoted by the co-doping with C and Cu into TiO₂. This improvement was attributed to the modification of bandgap energy and the hindrance of the charges recombination. The polluted seawater showing the yield depended on its background hydrographic parameters. We assessed two types of polluted seawater system, the observed yield was 2910 and 990 µmol g⁻¹ after 5 h of illumination under UV and natural sunlight respectively in system 1 and the corresponding yield in system 2 was 2250 and 910 µmol g⁻¹ after 5 h of illumination. The production of methanol in the case of oxygen-depleted water was low, this is mainly attributed to the competition of methanogenic bacteria over methanol production. The results indicated that the methanol yield produced by Cu-C/TiO₂ was much higher than those of carbon-modified titanium oxide (C/TiO₂) and Degussa (P25-TiO₂). Under the current experimental condition, the optimum loading was achieved by the doping of 3 wt % of Cu. The highest methanol yield was obtained over 1 g L-1 of 3wt% Cu/C-TiO₂.Keywords: CO₂ photoreduction, copper, Cu/C-co-doped TiO₂, methanol, seawater
Procedia PDF Downloads 2781986 Comparative Analysis of Polish Traditional Bread and Teff Injera: Culinary Heritage and Nutritional Perspectives
Authors: Temesgen Minase Woldegebriel
Abstract:
This study undertakes a comparative analysis of two distinct staples from diverse culinary heritages: Polish traditional bread and Teff Injera. Despite originating from disparate cultural contexts, both these foods hold significant roles in their respective societies, serving as dietary staples rich in cultural symbolism and nutritional value. Our investigation delves into the historical, cultural, and nutritional dimensions of Polish bread and Teff Injera, shedding light on their ingredients, preparation methods, and consumption patterns. Firstly, we explore the rich history and cultural significance embedded within Polish traditional bread, tracing its evolution through centuries of tradition and craftsmanship. From the ubiquitous Polish Rye bread to the intricate regional variations, we unravel the socio-cultural narratives intertwined with each loaf, reflecting Polish identity and culinary heritage. In contrast, our analysis extends to Teff Injera, a staple of Ethiopian and Eritrean cuisine known for its spongy texture and tangy flavor. We delve into the ancient origins of Teff cultivation, highlighting its pivotal role in Ethiopian culture and its symbolic significance in communal dining practices, such as the traditional Ethiopian coffee ceremony. Furthermore, we undertake a comparative examination of the nutritional profiles of Polish bread and Teff Injera, assessing their respective contributions to dietary health and well-being. Through comprehensive nutritional analysis, we elucidate the unique attributes of each staple, considering factors such as gluten content, fiber composition, and micronutrient density. Moreover, our study investigates the contemporary relevance of these traditional staples in the context of shifting dietary preferences and global culinary trends. We analyze consumer perceptions and market dynamics surrounding Polish bread and Teff Injera, discerning patterns of consumption and avenues for innovation in a rapidly evolving food landscape. In conclusion, our comparative analysis illuminates the multifaceted dimensions of Polish traditional bread and Teff Injera, transcending mere culinary discourse to encompass broader themes of cultural heritage, nutrition, and gastronomic diversity.Keywords: bread, culinary, injera, teff
Procedia PDF Downloads 181985 Analysis of Genic Expression of Honey Bees Exposed to Sublethal Pesticides Doses Using the Transcriptome Technique
Authors: Ricardo de Oliveira Orsi, Aline Astolfi, Daniel Diego Mendes, Isabella Cristina de Castro Lippi, Jaine da Luz Scheffer, Yan Souza Lima, Juliana Lunardi, Giovanna do Padro Ribeiro, Samir Moura Kadri
Abstract:
NECTAR Brazilian group (Center of Education, Science, and Technology in Rational Beekeeping) conducted studies on the pesticides honey bees effects using the transcriptome sequencing (RNA-Seq) analyzes for gene expression studies. In this way, we analyzed the effects of Pyraclostrobin and Fipronil on the honey bees with 21 old-days (forager) in laboratory conditions. For this, frames containing sealed brood were removed from the beehives and maintenance on the stove (32°C and 75% humidity) until the bees were born. So, newly emerged workers were marked on the pronotum with a non-toxic pen and reintroduced into their original hives. After 21 days, 120 marked bees were collected with an entomological forces and immediately stored in Petri dishes, perforated to ensure ventilation, and kept fasted for 3 hours. These honeybees were exposed to food contaminated or not with the sublethal dose of Pyraclostrobin (850 ppb/bee) or Fipronil (2.5 ppb/bee). After four hours of exposure, 15 bees from each treatment were referred to transcriptome analysis. Total RNA analysis was extracted from the brain pools (03 brains per pool) using the TRIzol® reagent protocol according to the manufacturer's instructions. cDNA libraries were constructed, and the FASTQC program was used to check adapter content and assess the quality of raw reads. Differential expression analysis was performed with the DESeq2 package. Genes that had an adjusted value of less than 0.05 were considered to be significantly up-regulated. Regarding the Pyraclostrobin, alterations were observed in the pattern of 17 gene related to of antioxidant system, cellular respiration, glucose metabolism, and regulation of juvenile hormone and the hormone insulin. Glyphosate altered the 10 gene related to the digestive system, exoskeleton composition, vitamin E transport, and antioxidant system. The results indicate that the necessity of studies using the sublethal doses to evaluate the pesticides uses and risks on crops and its effects on the honey bees.Keywords: beekeeping, honey bees, pesticides, transcriptome
Procedia PDF Downloads 1251984 Ground Water Contamination by Tannery Effluents and Its Impact on Human Health in Peshawar, Pakistan
Authors: Fawad Ali, Muhammad Ateeq, Ikhtiar Khan
Abstract:
Ground water, a major source of drinking water supply in Peshawar has been severely contaminated by leather tanning industry. Effluents from the tanneries contain high concentration of chromium besides several other chemical species. Release of untreated effluents from the tanning industry has severely damaged surface and ground water, agriculture soil as well as vegetables and crops. Chromium is a well-known carcinogenic and mutagenic agent. Once in the human food chain, it causes multiple problems to the exposed population including various types of cancer, skin dermatitis, and DNA damage. In order to assess the extent of chromium and other heavy metals contamination, water samples were analyzed for heavy metals using Graphite Furnace Atomic Absorption Spectrometer (GFAAS, Analyst 700, Perkin Elmer). Total concentration of chromium was above the permissible limit (0.048 mg/l) in 85% of the groundwater (drinking water) samples. The concentration of cobalt, manganese, cadmium, nickel, lead, zinc and iron was also determined in the ground water, surface water, agriculture soil, and vegetables samples from the affected area.Keywords: heavy metals, soil, groundwater, tannery effluents, food chain
Procedia PDF Downloads 3471983 Comparison of Existing Predictor and Development of Computational Method for S- Palmitoylation Site Identification in Arabidopsis Thaliana
Authors: Ayesha Sanjana Kawser Parsha
Abstract:
S-acylation is an irreversible bond in which cysteine residues are linked to fatty acids palmitate (74%) or stearate (22%), either at the COOH or NH2 terminal, via a thioester linkage. There are several experimental methods that can be used to identify the S-palmitoylation site; however, since they require a lot of time, computational methods are becoming increasingly necessary. There aren't many predictors, however, that can locate S- palmitoylation sites in Arabidopsis Thaliana with sufficient accuracy. This research is based on the importance of building a better prediction tool. To identify the type of machine learning algorithm that predicts this site more accurately for the experimental dataset, several prediction tools were examined in this research, including the GPS PALM 6.0, pCysMod, GPS LIPID 1.0, CSS PALM 4.0, and NBA PALM. These analyses were conducted by constructing the receiver operating characteristics plot and the area under the curve score. An AI-driven deep learning-based prediction tool has been developed utilizing the analysis and three sequence-based input data, such as the amino acid composition, binary encoding profile, and autocorrelation features. The model was developed using five layers, two activation functions, associated parameters, and hyperparameters. The model was built using various combinations of features, and after training and validation, it performed better when all the features were present while using the experimental dataset for 8 and 10-fold cross-validations. While testing the model with unseen and new data, such as the GPS PALM 6.0 plant and pCysMod mouse, the model performed better, and the area under the curve score was near 1. It can be demonstrated that this model outperforms the prior tools in predicting the S- palmitoylation site in the experimental data set by comparing the area under curve score of 10-fold cross-validation of the new model with the established tools' area under curve score with their respective training sets. The objective of this study is to develop a prediction tool for Arabidopsis Thaliana that is more accurate than current tools, as measured by the area under the curve score. Plant food production and immunological treatment targets can both be managed by utilizing this method to forecast S- palmitoylation sites.Keywords: S- palmitoylation, ROC PLOT, area under the curve, cross- validation score
Procedia PDF Downloads 771982 Al2O3-Dielectric AlGaN/GaN Enhancement-Mode MOS-HEMTs by Using Ozone Water Oxidization Technique
Authors: Ching-Sung Lee, Wei-Chou Hsu, Han-Yin Liu, Hung-Hsi Huang, Si-Fu Chen, Yun-Jung Yang, Bo-Chun Chiang, Yu-Chuang Chen, Shen-Tin Yang
Abstract:
AlGaN/GaN high electron mobility transistors (HEMTs) have been intensively studied due to their intrinsic advantages of high breakdown electric field, high electron saturation velocity, and excellent chemical stability. They are also suitable for ultra-violet (UV) photodetection due to the corresponding wavelengths of GaN bandgap. To improve the optical responsivity by decreasing the dark current due to gate leakage problems and limited Schottky barrier heights in GaN-based HEMT devices, various metal-oxide-semiconductor HEMTs (MOS-HEMTs) have been devised by using atomic layer deposition (ALD), molecular beam epitaxy (MBE), metal-organic chemical vapor deposition (MOCVD), liquid phase deposition (LPD), and RF sputtering. The gate dielectrics include MgO, HfO2, Al2O3, La2O3, and TiO2. In order to provide complementary circuit operation, enhancement-mode (E-mode) devices have been lately studied using techniques of fluorine treatment, p-type capper, piezoneutralization layer, and MOS-gate structure. This work reports an Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMT design by using a cost-effective ozone water oxidization technique. The present ozone oxidization method advantages of low cost processing facility, processing simplicity, compatibility to device fabrication, and room-temperature operation under atmospheric pressure. It can further reduce the gate-to-channel distance and improve the transocnductance (gm) gain for a specific oxide thickness, since the formation of the Al2O3 will consume part of the AlGaN barrier at the same time. The epitaxial structure of the studied devices was grown by using the MOCVD technique. On a Si substrate, the layer structures include a 3.9 m C-doped GaN buffer, a 300 nm GaN channel layer, and a 5 nm Al0.25Ga0.75N barrier layer. Mesa etching was performed to provide electrical isolation by using an inductively coupled-plasma reactive ion etcher (ICP-RIE). Ti/Al/Au were thermally evaporated and annealed to form the source and drain ohmic contacts. The device was immersed into the H2O2 solution pumped with ozone gas generated by using an OW-K2 ozone generator. Ni/Au were deposited as the gate electrode to complete device fabrication of MOS-HEMT. The formed Al2O3 oxide thickness 7 nm and the remained AlGaN barrier thickness is 2 nm. A reference HEMT device has also been fabricated in comparison on the same epitaxial structure. The gate dimensions are 1.2 × 100 µm 2 with a source-to-drain spacing of 5 μm for both devices. The dielectric constant (k) of Al2O3 was characterized to be 9.2 by using C-V measurement. Reduced interface state density after oxidization has been verified by the low-frequency noise spectra, Hooge coefficients, and pulse I-V measurement. Improved device characteristics at temperatures of 300 K-450 K have been achieved for the present MOS-HEMT design. Consequently, Al2O3-dielectric Al0.25Ga0.75N/GaN E-mode MOS-HEMTs by using the ozone water oxidization method are reported. In comparison with a conventional Schottky-gate HEMT, the MOS-HEMT design has demonstrated excellent enhancements of 138% (176%) in gm, max, 118% (139%) in IDS, max, 53% (62%) in BVGD, 3 (2)-order reduction in IG leakage at VGD = -60 V at 300 (450) K. This work is promising for millimeter-wave integrated circuit (MMIC) and three-terminal active UV photodetector applications.Keywords: MOS-HEMT, enhancement mode, AlGaN/GaN, passivation, ozone water oxidation, gate leakage
Procedia PDF Downloads 2631981 Theoretical and Experimental Electrostatic Parameters Determination of 4-Methyl-N-[(5- Nitrothiophen-2-Ylmethylidene)] Aniline Compound
Authors: N. Boukabcha, Y. Megrouss, N. Benhalima, S. Yahiaoui, A. Chouaih, F. Hamzaoui
Abstract:
We present the electron density analysis of organic compound 4-methyl-N-[(5- nitrothiophen-2-ylmethylidene)] aniline with chemical formula C12H10N2O2S. Indeed, determining the electrostatic properties of nonlinear optical organic compounds requires knowledge of the distribution of the electron density with high precision. On the other hand, a structural analysis is performed. Two methods are used to obtain the structure, X-ray diffraction and theoretical calculation with density functional theory (DFT). The electron density study is performed using the Mopro program1503 based on the multipolar model of Hansen and Coppens. Electron density analysis allows determination of the value and orientation of the dipole moment. The net atomic charges, electrostatic potential and the molecular dipole moment have been determined in order to understand the nature of inter- and intramolecular charge transfer. The study reveals the nature of intermolecular interactions including charge transfer and hydrogen bonds in the title compound. Crystallographic data: monoclinic system - space group P21 / n. Celle parameters: a = 4.7606 (4) Å, b = 22.415 (2) Å, c = 10.7008 (15) Å, β = 92.566 (13) 0, V = 1140.7 (2) Å3, Z = 4, R = 0.0034 for 2693 observed reflections.Keywords: electron density, dipole moment, electrostatic potential, DFT, Mopro
Procedia PDF Downloads 3131980 NR/PEO Block Copolymer: A Chelating Exchanger for Metal Ions
Authors: M. S. Mrudula, M. R. Gopinathan Nair
Abstract:
In order to utilize the natural rubber for developing new green polymeric materials for specialty applications, we have prepared natural rubber and polyethylene oxide based polymeric networks by two shot method. The polymeric networks thus formed have been used as chelating exchanger for metal ion binding. Chelating exchangers are, in general, coordinating copolymers containing one or more electron donor atoms such as N, S, O, and P that can form coordinate bonds with metals. Hydrogels are water- swollen network of hydrophilic homopolymer or copolymers. They acquire a great interest due to the facility of the incorporation of different chelating groups into the polymeric networks. Such polymeric hydrogels are promising materials in the field of hydrometallurgical applications and water purification due to their chemical stability. The current study discusses the swelling response of the polymeric networks as a function of time, temperature, pH and [NaCl] and sorption studies. Equilibrium swelling has been observed to depend on both structural aspects of the polymers and environmental factors. Metal ion sorption shows that these polymeric networks can be used for removal, separation, and enrichment of metal ions from aqueous solutions and can play an important role for environmental remediation of municipal and industrial wastewater.Keywords: block copolymer, adsorption, chelating exchanger, swelling study, polymer, metal complexes
Procedia PDF Downloads 3421979 Use Process Ring-Opening Polymerization to Melt Processing of Cellulose Nanowhisker from Coconut Husk Fibers-Filled Polylactide-Based Nanocomposites
Authors: Imam Wierawansyah Eltara, Iftitah, Agus Ismail
Abstract:
In the present work, cellulose nanowhiskers (CNW) extracted from coconut husk fibers, were incorporated in polylactide (PLA)-based composites. Prior to the blending, PLA chains were chemically grafted on the surface of CNW to enhance the compatibilization between CNW and the hydrophobic polyester matrix. Ring-opening polymerization of L-lactide was initiated from the hydroxyl groups available at the CNW surface to yield CNW-g-PLA nanohybrids. PLA-based nanocomposites were prepared by melt blending to ensure a green concept of the study thereby limiting the use of organic solvents. The influence of PLA-grafted cellulose nanoparticles on the mechanical and thermal properties of the ensuing nanocomposites was deeply investigated. The thermal behavior and mechanical properties of the nanocomposites were determined using differential scanning calorimetry (DSC) and dynamical mechanical and thermal analysis (DMTA), respectively. In theory, evidenced that the chemical grafting of CNW enhances their compatibility with the polymeric matrix and thus improves the final properties of the nanocomposites. Large modification of the crystalline properties such as the crystallization half-time was evidenced according to the nature of the PLA matrix and the content of nanofillers.Keywords: cellulose nanowhiskers, nanocomposites, coconut husk fiber, ring opening polymerization
Procedia PDF Downloads 3171978 Current Status of Mosquitoes Vector Research and Control in Iran
Authors: Seyed Hassan Moosa-kazemi, Hassan Vatandoost
Abstract:
Malaria, Dirofilaria immitis (dog heart worm), and D. repens (dirofilariasis), which are transmitted by mosquitoes, have been reported in Iran. The Iranian mosquito fauna includes seven genera, 65 species, and three subspecies. Aedes albopictus has been reported since. West Nile, Sindbis, Dengue, Japanese encephalitis viruses, and the nematode Setaria (setariasis) has been reported in the country but there are no information about their vectors in Iran. Iran is malaria elimination phase. Insecticides residual spraying (IRS), distributed of insecticides long lasting treated nets (ITNs), fogging, release of larvivours fishes and Bacillus thuringiensis, chemical larviciding, as well as case finding and manipulation and modification of breeding places carried out thought the IVM program in the country. Prolonged exposure to insecticides over several generations of the vectors, develop resistance, a capacity to survive contact with insecticides. However, use of insecticides in agriculture has often been implicated as contributing to resistance in mosquito’s vectors. Resistance of mosquitoes to some insecticides has been documented just within a few years after the insecticides were introduced. Some enzymes such as monooxygenases, esterases and glutathione S-transferases have been considered as a reason for resistance to pyrethroid insecticides. In conclusion, regarding to documented resistance and tolerance of mosquitoes vectors to some insecticides, resistance management is suggested by using new insecticide with novel mode of action.Keywords: control, Iran, resistance, vector
Procedia PDF Downloads 3041977 Surface Sunctionalization Strategies for the Design of Thermoplastic Microfluidic Devices for New Analytical Diagnostics
Authors: Camille Perréard, Yoann Ladner, Fanny D'Orlyé, Stéphanie Descroix, Vélan Taniga, Anne Varenne, Cédric Guyon, Michael. Tatoulian, Frédéric Kanoufi, Cyrine Slim, Sophie Griveau, Fethi Bedioui
Abstract:
The development of micro total analysis systems is of major interest for contaminant and biomarker analysis. As a lab-on-chip integrates all steps of an analysis procedure in a single device, analysis can be performed in an automated format with reduced time and cost, while maintaining performances comparable to those of conventional chromatographic systems. Moreover, these miniaturized systems are either compatible with field work or glovebox manipulations. This work is aimed at developing an analytical microsystem for trace and ultra trace quantitation in complex matrices. The strategy consists in the integration of a sample pretreatment step within the lab-on-chip by a confinement zone where selective ligands are immobilized for target extraction and preconcentration. Aptamers were chosen as selective ligands, because of their high affinity for all types of targets (from small ions to viruses and cells) and their ease of synthesis and functionalization. This integrated target extraction and concentration step will be followed in the microdevice by an electrokinetic separation step and an on-line detection. Polymers consisting of cyclic olefin copolymer (COC) or fluoropolymer (Dyneon THV) were selected as they are easy to mold, transparent in UV-visible and have high resistance towards solvents and extreme pH conditions. However, because of their low chemical reactivity, surface treatments are necessary. For the design of this miniaturized diagnostics, we aimed at modifying the microfluidic system at two scales : (1) on the entire surface of the microsystem to control the surface hydrophobicity (so as to avoid any sample wall adsorption) and the fluid flows during electrokinetic separation, or (2) locally so as to immobilize selective ligands (aptamers) on restricted areas for target extraction and preconcentration. We developed different novel strategies for the surface functionalization of COC and Dyneon, based on plasma, chemical and /or electrochemical approaches. In a first approach, a plasma-induced immobilization of brominated derivatives was performed on the entire surface. Further substitution of the bromine by an azide functional group led to covalent immobilization of ligands through “click” chemistry reaction between azides and terminal alkynes. COC and Dyneon materials were characterized at each step of the surface functionalization procedure by various complementary techniques to evaluate the quality and homogeneity of the functionalization (contact angle, XPS, ATR). With the objective of local (micrometric scale) aptamer immobilization, we developed an original electrochemical strategy on engraved Dyneon THV microchannel. Through local electrochemical carbonization followed by adsorption of azide-bearing diazonium moieties and covalent linkage of alkyne-bearing aptamers through click chemistry reaction, typical dimensions of immobilization zones reached the 50 µm range. Other functionalization strategies, such as sol-gel encapsulation of aptamers, are currently investigated and may also be suitable for the development of the analytical microdevice. The development of these functionalization strategies is the first crucial step in the design of the entire microdevice. These strategies allow the grafting of a large number of molecules for the development of new analytical tools in various domains like environment or healthcare.Keywords: alkyne-azide click chemistry (CuAAC), electrochemical modification, microsystem, plasma bromination, surface functionalization, thermoplastic polymers
Procedia PDF Downloads 4421976 Occupational Health and Safety Implications of Flower Farming on the Local Communities in Central Uganda
Authors: Charles Owenda Omulo
Abstract:
This study examines Occupational Health and Safety implications in flower farms in Central Uganda. An exploratory sequential mixed method design and methodology was employed, with multiple data collection methods, including interviews, focus group discussions, and surveys. The findings show that occupational health and safety issues remain a major problem in flower farms. While the majority of workers agreed that the farms provided them with protective equipment, the data collected from the workers point to either the improper use or ineffectiveness of this equipment. A number of workers reported skin irritations, sore and painful eyes, stiff necks, back pains, and occasional headaches that were presumably argued to have arisen from their work environment. The study also found that farms have been adjusting in an attempt to correct some of these anomalies. These included the use of biological approaches to control pests and diseases and restricting the use of some chemical formulations that are deemed to be harmful to applicators and the environment. Alongside these efforts, the study recommends increased vigilance by the flower farm owners in the provision of personal protective equipment to workers.Keywords: flower farms, personal protective equipment, agrochemicals, rural communities, occupational health and safety
Procedia PDF Downloads 631975 Enhance Biogas Production by Enzymatic Pre-Treatment from Palm Oil Mill Effluent (POME)
Authors: M. S. Tajul Islam, Md. Zahangir Alam
Abstract:
To enhance biogas production through anaerobic digestion, the application of various type of pre-treatment method has some limitations in terms of sustainable environmental management. Many studies on pretreatments especially chemical and physical processes are carried out to evaluate the anaerobic digestion for enhanced biogas production. Among the pretreatment methods acid and alkali pre-treatments gained the highest importance. Previous studies have showed that although acid and alkali pretreatment has significant effect on degradation of biomass, these methods have some negative impact on environment due to their hazard in nature while enzymatic pre-treatment is environmentally friendly. One of the constrains to use of enzyme in pretreatment process for biogas production is high cost which is currently focused to reduce cost through fermentation of waste-based media. As such palm oil mill effluent (POME) as an abundant resource generated during palm oil processing at mill is being used a potential fermentation media for enzyme production. This low cost of enzyme could be an alternative to biogas pretreatment process. This review is to focus direct application of enzyme as enzymatic pre-treatment on POME to enhanced production of biogas.Keywords: POME, enzymatic pre-treatment, biogas, lignocellulosic biomass, anaerobic digestion
Procedia PDF Downloads 5501974 Spectroscopic Studies and Reddish Luminescence Enhancement with the Increase in Concentration of Europium Ions in Oxy-Fluoroborate Glasses
Authors: Mahamuda Sk, Srinivasa Rao Allam, Vijaya Prakash G.
Abstract:
The different concentrations of Eu3+ ions doped in Oxy-fluoroborate glasses of composition 60 B2O3-10 BaF2-10 CaF2-15 CaF2- (5-x) Al2O3 -x Eu2O3 where x = 0.1, 0.5, 1.0 and 2.0 mol%, have been prepared by conventional melt quenching technique and are characterized through absorption and photoluminescence (PL), decay, color chromaticity and Confocal measurements. The absorption spectra of all the glasses consists of six peaks corresponding to the transitions 7F0→5D2, 7F0→5D1, 7F1→5D1, 7F1→5D0, 7F0→7F6 and 7F1→7F6 respectively. The experimental oscillator strengths with and without thermal corrections have been evaluated using absorption spectra. Judd-Ofelt (JO) intensity parameters (Ω2 and Ω4) have been evaluated from the photoluminescence spectra of all the glasses. PL spectra of all the glasses have been recorded at excitation wavelengths 395 nm (conventional excitation source) and 410 nm (diode laser) to observe the intensity variation in the PL spectra. All the spectra consists of five emission peaks corresponding to the transitions 5D0→7FJ (J = 0, 1, 2, 3 and 4). Surprisingly no concentration quenching is observed on PL spectra. Among all the glasses the glass with 2.0 mol% of Eu3+ ion concentration possesses maximum intensity for the transition 5D0→7F2 (612 nm) in bright red region. The JO parameters derived from the photoluminescence spectra have been used to evaluate the essential radiative properties such as transition probability (A), radiative lifetime (τR), branching ratio (βR) and peak stimulated emission cross-section (σse) for the 5D0→7FJ (J = 0, 1, 2, 3 and 4) transitions of the Eu3+ ions. The decay rates of the 5D0 fluorescent level of Eu3+ ions in the title glasses are found to be single exponential for all the studied Eu3+ ion concentrations. A marginal increase in lifetime of the 5D0 level has been noticed with increase in Eu3+ ion concentration from 0.1 mol% to 2.0 mol%. Among all the glasses, the glass with 2.0 mol% of Eu3+ ion concentration possesses maximum values of branching ratio, stimulated emission cross-section and quantum efficiency for the transition 5D0→7F2 (612 nm) in bright red region. The color chromaticity coordinates are also evaluated to confirm the reddish luminescence from these glasses. These color coordinates exactly fall in the bright red region. Confocal images also recorded to confirm reddish luminescence from these glasses. From all the obtained results in the present study, it is suggested that the glass with 2.0 mol% of Eu3+ ion concentration is suitable to emit bright red color laser.Keywords: Europium, Judd-Ofelt parameters, laser, luminescence
Procedia PDF Downloads 2421973 Adverse Impacts of Poor Wastewater Management Practices on Water Quality in Gebeng Industrial Area, Pahang, Malaysia
Authors: I. M. Sujaul, M. A. Sobahan, A. A. Edriyana, F. M. Yahaya, R. M. Yunus
Abstract:
This study was carried out to investigate the adverse effect of industrial waste water on surface water quality in Gebeng industrial estate, Pahang, Malaysia. Surface water was collected from 6 sampling stations. Physico-chemical parameters were characterized based on in-situ and ex-situ analysis according to standard methods by American Public Health Association (APHA). Selected heavy metals were determined by using Inductively Coupled Plasma Mass Spectrometry (ICP MS). The result reveled that the concentration of heavy metals such as Pb, Cu, Cd, Cr and Hg were high in samples. The result showed that the value of Pb and Hg were higher in the wet season in comparison to dry season. According to Malaysia National Water Quality Standard (NWQS) and Water Quality Index (WQI) all the sampling station were categorized as class IV (highly polluted). The present study reveled that the adverse effects of careless disposal of wastes and directly discharge of effluents affected on surface water quality. Therefore, the authorities should implement the laws to ensure the proper practices of waste water management for environmental sustainability around the study area.Keywords: water, heavy metals, water quality index, Gebeng
Procedia PDF Downloads 3771972 A New Obesity Index Derived from Waist Circumference and Hip Circumference Well-Matched with Other Indices in Children with Obesity
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Anthropometric obesity indices such as waist circumference (WC), indices derived from anthropometric measurements such as waist-to-hip ratio (WHR), and indices created from body fat mass composition such as trunk-to-leg fat ratio (TLFR) are commonly used for the evaluation of mild or severe forms of obesity. Their clinical utilities are being compared using body mass index (BMI) percentiles to classify obesity groups. The best of them is still being investigated to make a clear-cut discrimination between healthy normal individuals (N-BMI) and overweight or obese (OB) or morbid obese patients. The aim of this study is to derive a new index, which best suits the purpose for the discrimination of children with N-BMI from OB children. A total of eighty-three children participated in the study. Two groups were constituted. The first group comprised 42 children with N-BMI, and the second group was composed of 41 OB children, whose age- and sex- adjusted BMI percentile values vary between 95 and 99. The corresponding values for the first group were between 15 and 85. This classification was based upon the tables created by World Health Organization. The institutional ethics committee approved the study protocol. Informed consent forms were filled by the parents of the participants. Anthropometric measurements were taken and recorded following a detailed physical examination. Within this context, weight, height (Ht), WC, hip C (HC), neck C (NC) values were taken. Body mass index, WHR, (WC+HC)/2, WC/Ht, (WC/HC)/Ht, WC*NC were calculated. Bioelectrical impedance analysis was performed to obtain body’s fat compartments in terms of total fat, trunk fat, leg fat, arm fat masses. Trunk-to-leg fat ratio, trunk-to-appendicular fat ratio (TAFR), (trunk fat+leg fat)/2 ((TF+LF)/2) were calculated. Fat mass index (FMI) and diagnostic obesity notation model assessment-II (D2I) index values were calculated. Statistical analysis of the data was performed. Significantly increased values of (WC+HC)/2, (TF+LF)/2, D2I, and FMI were observed in OB group in comparison with those of N-BMI group. Significant correlations were calculated between BMI and WC, (WC+HC)/2, (TF+LF)/2, TLFR, TAFR, D2I as well as FMI both in N-BMI and OB groups. The same correlations were obtained for WC. (WC+HC)/2 was correlated with TLFR, TAFR, (TF+LF)/2, D2I, and FMI in N-BMI group. In OB group, the correlations were the same except those with TLFR and TAFR. These correlations were not present with WHR. Correlations were observed between TLFR and BMI, WC, (WC+HC)/2, (TF+LF)/2, D2I as well as FMI in N-BMI group. Same correlations were observed also with TAFR. In OB group, correlations between TLFR or TAFR and BMI, WC as well as (WC+HC)/2 were missing. None was noted with WHR. From these findings, it was concluded that (WC+HC)/2, but not WHR, was much more suitable as an anthropometric obesity index. The only correlation valid in both groups was that exists between (WC+HC)/2 and (TF+LF)/2. This index was suggested as a link between anthropometric and fat-based indices.Keywords: children, hip circumference, obesity, waist circumference
Procedia PDF Downloads 1681971 Plackett-Burman Design to Evaluate the Influence of Operating Parameters on Anaerobic Orthophosphate Release from Enhanced Biological Phosphorus Removal Sludge
Authors: Reza Salehi, Peter L. Dold, Yves Comeau
Abstract:
The aim of the present study was to investigate the effect of a total of 6 operating parameters including pH (X1), temperature (X2), stirring speed (X3), chemical oxygen demand (COD) (X4), volatile suspended solids (VSS) (X5) and time (X6) on anaerobic orthophosphate release from enhanced biological phosphorus removal (EBPR) sludge. An 8-run Plackett Burman design was applied and the statistical analysis of the experimental data was performed using Minitab16.2.4 software package. The Analysis of variance (ANOVA) results revealed that temperature, COD, VSS and time had a significant effect with p-values of less than 0.05 whereas pH and stirring speed were identified as non-significant parameters, but influenced orthophosphate release from the EBPR sludge. The mathematic expression obtained by the first-order multiple linear regression model between orthophosphate release from the EBPR sludge (Y) and the operating parameters (X1-X6) was Y=18.59+1.16X1-3.11X2-0.81X3+3.79X4+9.89X5+4.01X6. The model p-value and coefficient of determination (R2) value were 0.026 and of 99.87%, respectively, which indicates the model is significant and the predicted values of orthophosphate release from the EBPR sludge have been excellently correlated with the observed values.Keywords: anaerobic, operating parameters, orthophosphate release, Plackett-Burman design
Procedia PDF Downloads 2791970 Development of Antioxidant Rich Bakery Products by Applying Lysine and Maillard Reaction Products
Authors: Attila Kiss, Erzsébet Némedi, Zoltán Naár
Abstract:
Due to the rapidly growing number of conscious customers in the recent years, more and more people look for products with positive physiological effects which may contribute to the preservation of their health. In response to these demands Food Science Research Institute of Budapest develops and introduces into the market new functional foods of guaranteed positive effect that contain bioactive agents. New, efficient technologies are also elaborated in order to preserve the maximum biological effect of the produced foods. The main objective of our work was the development of new functional biscuits fortified with physiologically beneficial ingredients. Bakery products constitute the base of the food nutrients’ pyramid, thus they might be regarded as foodstuffs of the largest consumed quantity. In addition to the well-known and certified physiological benefits of lysine, as an essential amino acid, a series of antioxidant type compounds is formed as a consequence of the occurring Maillard-reaction. Progress of the evoked Maillard-reaction was studied by applying diverse sugars (glucose, fructose, saccharose, isosugar) and lysine at several temperatures (120-170°C). Interval of thermal treatment was also varied (10-30 min). The composition and production technologies were tailored in order to reach the maximum of the possible biological benefits, so as to the highest antioxidant capacity in the biscuits. Out of the examined sugar components, theextent of the Maillard-reaction-driven transformation of glucose was the most pronounced at both applied temperatures. For the precise assessment of the antioxidant activity of the products FRAP and DPPH methods were adapted and optimised. To acquire an authentic and extensive mechanism of the occurring transformations, Maillard-reaction products were identified, and relevant reaction pathways were revealed. GC-MS and HPLC-MS techniques were applied for the analysis of the 60 generated MRPs and characterisation of actual transformation processes. 3 plausible major transformation routes might have been suggested based on the analytical result and the deductive sequence of possible occurring conversions between lysine and the sugars.Keywords: Maillard-reaction, lysine, antioxidant activity, GC-MS and HPLC-MS techniques
Procedia PDF Downloads 4821969 Wear and Mechanical Properties of Nodular Iron Modified with Copper
Authors: J. Ramos, V. Gil, A. F. Torres
Abstract:
The nodular iron is a material that has shown great advantages respect to other materials (steel and gray iron) in the production of machine elements. The engineering industry, especially automobile, are potential users of this material. As it is known, the alloying elements modify the properties of steels and castings. Copper has been investigated as a structural modifier of nodular iron, but studies of its mechanical and tribological implications still need to be addressed for industrial use. With the aim of improving the mechanical properties of nodular iron, alloying elements (Mn, Si, and Cu) are added in order to increase their pearlite (or ferrite) structure according to the percentage of the alloying element. In this research (using induction furnace process) nodular iron with three different percentages of copper (residual, 0,5% and 1,2%) was obtained. Chemical analysis was performed by optical emission spectrometry and microstructures were characterized by Optical Microscopy (ASTM E3) and Scanning Electron Microscopy (SEM). The study of mechanical behavior was carried out in a mechanical test machine (ASTM E8) and a Pin on disk tribometer (ASTM G99) was used to assess wear resistance. It is observed that copper increases the pearlite structure improving the wear behavior; tension behavior. This improvement is observed in higher proportion with 0,5% due to the fact that too much increase of pearlite leads to ductility loss.Keywords: copper, mechanical properties, nodular iron, pearlite structure, wear
Procedia PDF Downloads 3851968 Modelling the Physicochemical Properties of Papaya Based-Cookies Using Response Surface Methodology
Authors: Mayowa Saheed Sanusi A, Musiliu Olushola Sunmonua, Abdulquadri Alakab Owolabi Raheema, Adeyemi Ikimot Adejokea
Abstract:
The development of healthy cookies for health-conscious consumers cannot be overemphasized in the present global health crisis. This study was aimed to evaluate and model the influence of ripeness levels of papaya puree (unripe, ripe and overripe), oven temperature (130°C, 150°C and 170°C) and oven rack speed (stationary, 10 and 20 rpm) on physicochemical properties of papaya-based cookies using Response Surface Methodology (RSM). The physicochemical properties (baking time, cookies mass, cookies thickness, spread ratio, proximate composition, Calcium, Vitamin C and Total Phenolic Content) were determined using standard procedures. The data obtained were statistically analysed at p≤0.05 using ANOVA. The polynomial regression model of response surface methodology was used to model the physicochemical properties. The adequacy of the models was determined using the coefficient of determination (R²) and the response optimizer of RSM was used to determine the optimum physicochemical properties for the papaya-based cookies. Cookies produced from overripe papaya puree were observed to have the shortest baking time; ripe papaya puree favors cookies spread ratio, while the unripe papaya puree gives cookies with the highest mass and thickness. The highest crude protein content, fiber content, calcium content, Vitamin C and Total Phenolic Content (TPC) were observed in papaya based-cookies produced from overripe puree. The models for baking time, cookies mass, cookies thickness, spread ratio, moisture content, crude protein and TPC were significant, with R2 ranging from 0.73 – 0.95. The optimum condition for producing papaya based-cookies with desirable physicochemical properties was obtained at 149°C oven temperature, 17 rpm oven rack speed and with the use of overripe papaya puree. The Information on the use of puree from unripe, ripe and overripe papaya can help to increase the use of underutilized unripe or overripe papaya and also serve as a strategic means of obtaining a fat substitute to produce new products with lower production cost and health benefit.Keywords: papaya based-cookies, modeling, response surface methodology, physicochemical properties
Procedia PDF Downloads 1671967 Thermal Decontamination of Soils Polluted by Polychlorinated Biphenyls and Microplastics
Authors: Roya Biabani, Mentore Vaccari, Piero Ferrari
Abstract:
Accumulated microplastic (MPLs) in soil pose the risk of adsorbing and transporting polychlorinated biphenyls (PCBs) into the food chain or bodies. PCBs belong to a class of man-made hydrophobic organic chemicals (HOCs) that are classified as probable human carcinogens and a hazard to biota. Therefore, to take effective action and not aggravate the already recognized problems, the knowledge of PCB remediation in the presence of MPLs needs to be complete. Due to the high efficiency and little secondary pollution production, thermal desorption (TD) has been widely used for processing a variety of pollutants, especially for removing volatile and semi-volatile organic matter from contaminated solids and sediment. This study investigates the fate of PCB compounds during the thermal remediation method. For this, the PCB-contaminated soil was collected from the earth-canal downstream Caffaro S.p.A. chemical factory, which produced PCBs and PCB mixtures between 1930 and 1984. For MPL analysis, MPLs were separated by density separation and oxidation of organic matter. An operational range for the key parameters of thermal desorption processes was experimentally evaluated. Moreover, the temperature treatment characteristics of the PCBs-contaminated soil under anaerobic and aerobic conditions were studied using the Thermogravimetric Analysis (TGA).Keywords: contaminated soils, microplastics, polychlorinated biphenyls, thermal desorption
Procedia PDF Downloads 1041966 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar
Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola
Abstract:
This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index
Procedia PDF Downloads 1551965 Sustainable Development in Orthodontics: Orthodontic Archwire Waste
Authors: Saarah Juman, Ilona Johnson, Stephen Richmond, Brett Duane, Sheelagh Rogers
Abstract:
Introduction: Researchers suggest that within 50 years or less, the available supply of a range of metals will be exhausted, potentially leading to increases in resource conflict and largescale production shortages. The healthcare, dental and orthodontic sectors will undoubtedly be affected as stainless steel instruments are generally heavily relied on. Although changing orthodontic archwires are unavoidable and necessary to allow orthodontic tooth movement through the progression of an archwire sequence with fixed appliances, they are thought to be manufactured in excess of what is needed. Furthermore, orthodontic archwires require trimming extraorally to allow safe intraoral insertion, thus contributing to unnecessary waste of natural resources. Currently, there is no evidence to support the optimisation of archwire length according to orthodontic fixed appliance stage. As such, this study aims to quantify archwire excess (extraoral archwire trimmings) for different stages of orthodontic fixed appliance treatment. Methodology: This prospective, observational, quantitative study observed trimmings made extraorally against pre-treatment study models by clinicians over a 3-month period. Archwires were categorised into one of three categories (initial aligning, sequence, working/finishing arcwhires) within the orthodontic fixed appliance archwire sequence. Data collection included archwire material composition and the corresponding length and weight of excess archwire. Data was entered using a Microsoft Excel spreadsheet and imported into statistical software to obtain simple descriptive statistics. Results: Measurements were obtained for a total of 144 archwires. Archwire materials included nickel titanium and stainless steel. All archwires observed required extraorally trimming to allow safe intraoral insertion. The manufactured lengths of orthodontic initial aligning, sequence, and working/finishing arcwhires were at least 31%, 26%, and 39% in excess, respectively. Conclusions: Orthodontic archwires are manufactured to be excessively long at all orthodontic archwire sequence stages. To conserve natural resources, this study’s findings support the optimisation of orthodontic archwire lengths by manufacturers according to the typical stages of an orthodontic archwire sequence.Keywords: archwire, orthodontics, sustainability, waste
Procedia PDF Downloads 1961964 Effect of Wind and Humidity on Microwave Links in West North Libya
Authors: M. S. Agha, A. M. Eshahiry, S. A. Aldabbar, Z. M. Alshahri
Abstract:
The propagation of microwave is affected by rain and dust particles by way of signal attenuation and de-polarization. Computations of these effects require knowledge of the propagation characteristics of microwave and millimeter wave energy in the climate conditions of the studied region. This paper presents the effect of wind and humidity on wireless communication such as microwave links in the west north region of Libya (Al-Khoms), experimental procedure to study the effects mentioned above. The experimental procedure is done on three selected antennae towers (Nagaza stations, Al-Khoms center stations, Al-Khoms gateway stations) to determining of the attenuation loss per unit length and cross-polarization discrimination (XPD) change which coverage in the studied region, it is required to collect the dust particles carried out by the wind, measure the particles size distribution (PSD), calculate the concentration, and carry chemical analysis of the contents, then the dielectric constant can be calculated. The result showed that effect of the humidity and dust, the antenna height, the visibility, on the complex permittivity effects both attenuation and phase shift, there is some consideration that has to be taken into account in the communication power budget.Keywords: attenuation, de-polarization, scattering, transmission loss
Procedia PDF Downloads 154