Search results for: upflow anaerobic sludge blanket
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 614

Search results for: upflow anaerobic sludge blanket

164 Electrochemical Treatment and Chemical Analyses of Tannery Wastewater Using Sacrificial Aluminum Electrode, Ethiopia

Authors: Dessie Tibebe, Muluken Asmare, Marye Mulugeta, Yezbie Kassa, Zerubabel Moges, Dereje Yenealem, Tarekegn Fentie, Agmas Amare

Abstract:

The performance of electrocoagulation (EC) using Aluminium electrodes for the treatment of effluent-containing chromium metal using a fixed bed electrochemical batch reactor was studied. In the present work, the efficiency evaluation of EC in removing physicochemical and heavy metals from real industrial tannery wastewater in the Amhara region, collected from Bahirdar, Debre Brihan, and Haik, was investigated. The treated and untreated samples were determined by AAS and ICP OES spectrophotometers. The results indicated that selected heavy metals were removed in all experiments with high removal percentages. The optimal results were obtained regarding both cost and electrocoagulation efficiency with initial pH = 3, initial concentration = 40 mg/L, electrolysis time = 30 min, current density = 40 mA/cm2, and temperature = 25oC favored metal removal. The maximum removal percentages of selected metals obtained were 84.42% for Haik, 92.64% for Bahir Dar and 94.90% for Debre Brihan. The sacrificial electrode and sludge were characterized by FT-IR, SEM and XRD. After treatment, some metals like chromium will be used again as a tanning agent in leather processing to promote a circular economy.

Keywords: electrochemical, treatment, aluminum, tannery effluent

Procedia PDF Downloads 75
163 Effects of Bacterial Inoculants and Enzymes Inoculation on the Fermentation and Aerobic Stability of Potato Hash Silage

Authors: B. D. Nkosi, T. F. Mutavhatsindi, J. J. Baloyi, R. Meeske, T. M. Langa, I. M. M. Malebana, M. D. Motiang

Abstract:

Potato hash (PH), a by-product from food production industry, contains 188.4 g dry matter (DM)/kg and 3.4 g water soluble carbohydrate (WSC)/kg DM, and was mixed with wheat bran (70:30 as is basis) to provide 352 g DM/kg and 315 g WSC/kg DM. The materials were ensiled with or without silage additives in 1.5L anaerobic jars (3 jars/treatment) that were kept at 25-280 C for 3 months. Four types of silages were produced which were: control (no additive, denoted as T1), celluclast enzyme (denoted as T2), emsilage bacterial inoculant (denoted as T3) and silosolve bacterial inoculant (denoted as T4). Three jars per treatment were opened after 3 months of ensiling for the determination of nutritive values, fermentation characteristics and aerobic stability. Aerobic stability was done by exposing silage samples to air for 5 days. The addition of enzyme (T2) was reduced (P<0.05) silage pH, fiber fractions (NDF and ADF) while increasing (P < 0.05) residual WSC and lactic acid (LA) production, compared to other treatments. Silage produced had pH of < 4.0, indications of well-preserved silage. Bacterial inoculation (T3 and T4) improved (P < 0.05) aerobic stability of the silage, as indicated by increased number of hours and lower CO2 production, compared to other treatments. However, the aerobic stability of silage was worsen (P < 0.05) with the addition of an enzyme (T2). Further work to elucidate these effects on nutrient digestion and growth performance on ruminants fed the silage is needed.

Keywords: by-products, digestibility, feeds, inoculation, ruminants, silage

Procedia PDF Downloads 416
162 Effect of Fluidized Granular Activated Carbon for the Mitigation of Membrane Fouling in Wastewater Treatment

Authors: Jingwei Wang, Anthony G. Fane, Jia Wei Chew

Abstract:

The use of fluidized Granular Activated Carbon (GAC) as a means of mitigation membrane fouling in membrane bioreactors (MBRs) has received much attention in recent years, especially in anaerobic fluidized bed membrane bioreactors (AFMBRs). It has been affirmed that the unsteady-state tangential shear conferred by GAC fluidization on membrane surface suppressed the extent of membrane fouling with energy consumption much lower than that of bubbling (i.e., air sparging). In a previous work, the hydrodynamics of the fluidized GAC particles were correlated with membrane fouling mitigation effectiveness. Results verified that the momentum transfer from particle to membrane held a key in fouling mitigation. The goal of the current work is to understand the effect of fluidized GAC on membrane critical flux. Membrane critical flux values were measured by a vertical Direct Observation Through the Membrane (DOTM) setup. The polystyrene particles (known as latex particles) with the particle size of 5 µm were used as model foulant thus to give the number of the foulant on the membrane surface. Our results shed light on the positive effect of fluidized GAC enhancing the critical membrane flux by an order-of-magnitude as compared to that of liquid shear alone. Membrane fouling mitigation was benefitted by the increasing of power input.

Keywords: membrane fouling mitigation, liquid-solid fluidization, critical flux, energy input

Procedia PDF Downloads 381
161 Control of Spoilage Fungi by Lactobacilli

Authors: Laref Nora, Guessas Bettache

Abstract:

Lactic acid bacteria (LAB) have a major potential to be used in biopreservation methods because they are safe to consume (GRAS: generally regarded as safe) and they naturally occurring microflora of many foods. The preservative action of LAB is due to several antimicrobial metabolites, including lactic acid, acetic acid, hydrogen peroxide, bacteriocins, carbon dioxide, diacetyl, and reuterin. Several studies have focused on the antifungal activity compounds from natural sources for biopreservation in alternatives to chemical use. LAB has an antifungal activity which may inhibit food spoilage fungi. Lactobacillus strains isolated from silage prepared in our laboratory by fermentation of grass in anaerobic condition were screened for antifungal activity with overlay assay against Aspergillus spp. The antifungal compounds were originated from organic acids; inhibitory activity did not change after treatment with proteolytic enzymes. Lactobacillus strains were able also to inhibit Trichoderma spp, Penicillium spp, Fusarium roseum, and Stemphylim spp by confrontation assay. The inhibitory activity could be detected against the mould Aspergillus spp in the apricot juice but not in a bakery product. These antifungal compounds have the potential to be used as food biopreservation to inhibit conidia germination, and mycelia growth of spoilage fungi depending on food type, pH of food especially in heat, and cold processed foods.

Keywords: lactic acid bacteria, Lactobacillus, Aspergillus, antifungal activity

Procedia PDF Downloads 305
160 Reliability and Validity of Determining Ventilatory Threshold and Respiratory Compensation Point by Near-Infrared Spectroscopy

Authors: Tso-Yen Mao, De-Yen Liu, Chun-Feng Huang

Abstract:

Purpose: This research intends to investigate the reliability and validity of ventilatory threshold (VT) and respiratory compensation point (RCP) determined by skeletal muscle hemodynamic status. Methods: One hundred healthy male (age: 22±3 yrs; height: 173.1±6.0 cm; weight: 67.1±10.5 kg) performed graded cycling exercise test which ventilatory and skeletal muscle hemodynamic data were collected simultaneously. VT and RCP were determined by combined V-slope (VE vs. VCO2) and ventilatory efficiency (VE/VO2 vs. VE/VCO2) methods. Pearson correlation, paired t-test, and Bland-Altman plots were used to analyze reliability, validity, and similarities. Statistical significance was set at α =. 05. Results: There are high test-retest correlations of VT and RCP in ventilatory or near-infrared spectroscopy (NIRS) methods (VT vs. VTNIRS: 0.95 vs. 0.94; RCP vs. RCPNIRS: 0.93 vs. 0.93, p<. 05). There are high coefficient of determination at the first timing point of O2Hb decreased (R2 = 0.88, p<. 05) with VT, and high coefficient of determination at the second timing point of O2Hb declined (R2 = 0.89, p< .05) with RCP. VO2 of VT and RCP are not significantly different between ventilatory and NIRS methods (p>. 05). Conclusion: Using NIRS method to determine VT and RCP is reliable and valid in male individuals during graded exercise. Non-invasive skeletal muscle hemodynamics monitor also can be used for controlling training intensity in the future.

Keywords: anaerobic threshold, exercise intensity, hemodynamic, NIRS

Procedia PDF Downloads 292
159 Increased Nitrogen Removal in Cold Deammonification Biofilm Reactor (9-15°C) by Smooth Temperature Decreasing

Authors: Ivar Zekker, Ergo Rikmann, Anni Mandel, Markus Raudkivi, Kristel Kroon, Liis Loorits, Andrus Seiman, Hannu Fritze, Priit Vabamäe, Toomas Tenno, Taavo Tenno

Abstract:

The anaerobic ammonium oxidation (anammox) and nitritation-anammox (deammonification) processes are widely used for N-rich wastewater treatment nowadays. A deammonification moving bed biofilm reactor (MBBR) with a high maximum total nitrogen removal rate (TNRR) of 1.5 g N m-2 d-1 was started up and similarly high TNRR was sustained at low temperature of 15°C. During biofilm cultivation, temperature in MBBR was lowered by 0.5° C week-1 sustaining the high TNRR. To study the short-term effect of temperature on the TNRR, a series of batch-scale experiments performed showed sufficient TNRRs even at 9-15° C (4.3-5.4 mg N L-1 h-1, respectively). After biomass was adapted to lower temperature (15°C), the TNRR increase at lower temperature (15°C) was relatively higher (15-20%) than with biomass adapted to higher temperatures (17-18°C). Anammox qPCR showed increase of Candidatus Brocadia quantities from 5×103 to 1×107 anammox gene copies g-1 TSS despite temperature lowered to 15°C. Modeling confirmed causes of stable and unstable periods in the reactor and in batch test high Arrhenius constant of 29.7 kJ mol-1 of the process as high as at 100 mg NO2--N L-1 were determined. 

Keywords: deammonification, reject water, intermittent aeration, nitrite inhibition

Procedia PDF Downloads 394
158 Polyacrylates in Poly (Lactic Acid) Matrix, New Biobased Polymer Material

Authors: Irena Vuković-Kwiatkowska, Halina Kaczmarek

Abstract:

Poly (lactic acid) is well known polymer, often called green material because of its origin (renewable resources) and biodegradability. This biopolymer can be used in the packaging industry very often. Poor resistance to permeation of gases is the disadvantage of poly (lactic acid). The permeability of gases and vapor through the films applied for packages and bottles generally should be very low to prolong products shelf-life. We propose innovation method of PLA gas barrier modification using electromagnetic radiation in ultraviolet range. Poly (lactic acid) (PLA) and multifunctional acrylate monomers were mixed in different composition. Final films were obtained by photochemical reaction (photocrosslinking). We tested permeability to water vapor and carbon dioxide through these films. Also their resistance to UV radiation was also studied. The samples were conditioned in the activated sludge and in the natural soil to test their biodegradability. An innovative method of PLA modification allows to expand its usage, and can reduce the future costs of waste management what is the result of consuming such materials like PET and HDPE. Implementation of our material for packaging will contribute to the protection of the environment from the harmful effects of extremely difficult to biodegrade materials made from PET or other plastic

Keywords: interpenetrating polymer network, packaging films, photocrosslinking, polyacrylates dipentaerythritol pentaacrylate DPEPA, poly (lactic acid), polymer biodegradation

Procedia PDF Downloads 451
157 The Interplay of Dietary Fibers and Intestinal Microbiota Affects Type 2 Diabetes by Generating Short-Chain Fatty Acids

Authors: Muhammad Mazhar, Yong Zhu, Likang Qin

Abstract:

Foods contain endogenous components known as dietary fibers, which are classified into soluble and insoluble forms. Dietary fibers are resistant to gut digestive enzymes, modulating anaerobic intestinal microbiota (AIM) and fabricating short-chain fatty acids (SCFAs). Acetate, butyrate, and propionate dominate in the gut, and different pathways, including Wood-Ljungdahl and acrylate pathways, generate these SCFAs. In pancreatic dysfunction, the release of insulin/glucagon is impaired, which leads to hyperglycemia. SCFAs enhance insulin sensitivity or secretion, beta-cell functions, leptin release, mitochondrial functions, and intestinal gluconeogenesis in human organs, which positively affect type 2 diabetes (T2D). Research models presented that SCFAs either enhance the release of peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) from L-cells (entero-endocrine) or promote the release of leptin hormone satiation in adipose tissues through G-protein receptors, i.e., GPR-41/GPR-43. Dietary fibers are the components of foods that influence AIM and produce SCFAs, which may be offering beneficial effects on T2D. This review addresses the effectiveness of SCFAs in modulating gut AIM in the fermentation of dietary fiber and their worth against T2D.

Keywords: dietary fibers, intestinal microbiota, short-chain fatty acids, fermentation, type 2 diabetes

Procedia PDF Downloads 47
156 Deep Eutectic Solvent/ Polyimide Blended Membranes for Anaerobic Digestion Gas Separation

Authors: Glemarie C. Hermosa, Sheng-Jie You, Chien Chih Hu

Abstract:

Efficient separation technologies are required for the removal of carbon dioxide from natural gas streams. Membrane-based natural gas separation has emerged as one of the fastest growing technologies, due to the compactness, higher energy efficiency and economic advantages which can be reaped. The removal of Carbon dioxide from gas streams using membrane technology will also give the advantage like environmental friendly process compared to the other technologies used in gas separation. In this study, Polyimide membranes, which are mostly used in the separation of gases, are blended with a new kind of solvent: Deep Eutectic Solvents or simply DES. The three types of DES are used are choline chloride based mixed with three different hydrogen bond donors: Lactic acid, N-methylurea and Urea. The blending of the DESs to Polyimide gave out high permeability performance. The Gas Separation performance for all the membranes involving CO2/CH4 showed low performance while for CO2/N2 surpassed the performance of some studies. Among the three types of DES used the solvent Choline Chloride/Lactic acid exhibited the highest performance for both Gas Separation applications. The values are 10.5 for CO2/CH4 selectivity and 60.5 for CO2/N2. The separation results for CO2/CH4 may be due to the viscosity of the DESs affecting the morphology of the fabricated membrane thus also impacts the performance. DES/blended Polyimide membranes fabricated are novel and have the potential of a low-cost and environmental friendly application for gas separation.

Keywords: deep eutectic solvents, gas separation, polyimide blends, polyimide membranes

Procedia PDF Downloads 282
155 De Novo Design of a Minimal Catalytic Di-Nickel Peptide Capable of Sustained Hydrogen Evolution

Authors: Saroj Poudel, Joshua Mancini, Douglas Pike, Jennifer Timm, Alexei Tyryshkin, Vikas Nanda, Paul Falkowski

Abstract:

On the early Earth, protein-metal complexes likely harvested energy from a reduced environment. These complexes would have been precursors to the metabolic enzymes of ancient organisms. Hydrogenase is an essential enzyme in most anaerobic organisms for the reduction and oxidation of hydrogen in the environment and is likely one of the earliest evolved enzymes. To attempt to reinvent a precursor to modern hydrogenase, we computationally designed a short thirteen amino acid peptide that binds the often-required catalytic transition metal Nickel in hydrogenase. This simple complex can achieve hundreds of hydrogen evolution cycles using light energy in a broad range of temperature and pH. Biophysical and structural investigations strongly indicate the peptide forms a di-nickel active site analogous to Acetyl-CoA synthase, an ancient protein central to carbon reduction in the Wood-Ljungdahl pathway and capable of hydrogen evolution. This work demonstrates that prior to the complex evolution of multidomain enzymes, early peptide-metal complexes could have catalyzed energy transfer from the environment on the early Earth and enabled the evolution of modern metabolism

Keywords: hydrogenase, prebiotic enzyme, metalloenzyme, computational design

Procedia PDF Downloads 196
154 A Coordinated School Health Program Effect on Cardiorespiratory Fitness in Preschool Children

Authors: Zasha Romero, Roberto Trevino, Lin Wang, Elizabeth Alanis, Jesus Cuellar

Abstract:

Background: There is a strong relationship between low cardiorespiratory fitness (CRF) and high adiposity levels. The purpose of this study was to assess the effects of the Bienestar/Neema Coordinated School Health Program (BN CSHP) on the CRF of preschool children. Methods: This is a randomized cluster trial conducted in preschools of two school districts located along the Texas-Mexico border. Of 48 eligible schools, 28 were randomly selected (intervention, n=14; control, n=14). Family demographics and household health characteristics were collected from parents. CRF, as measured by the Progressive Anaerobic Capacity Endurance Run (PACER) fitness test, was collected from the children. A generalized linear mixed model (GLMM) was used to analyze the data. Results: Family demographics, household health characteristics, and children’s weight, obesity prevalence, and sedentary activity were similar among both treatment groups. After adjusting for covariates, the number of laps run by children in the control group increased by 23% (CI: -5% to 60%) per each data collection period compared with 53% (CI: 7% to 119%) in the intervention group. Conclusions: Children in the BN CSHP, compared to those in the control group, had a significantly higher increase in their CRF. This finding is important because of the health benefits of CRF in children.

Keywords: coordinated school health program, cardiorespiratory fitness, obesity, border health, preschool, physical education, movement

Procedia PDF Downloads 63
153 Interference of Polymers Addition in Wastewaters Microbial Survey: Case Study of Viral Retention in Sludges

Authors: Doriane Delafosse, Dominique Fontvieille

Abstract:

Background: Wastewater treatment plants (WWTPs) generally display significant efficacy in virus retention yet, are sometimes highly variable, partly in relation to large fluctuating loads at the head of the plant and partly because of episodic dysfunctions in some treatment processes. The problem is especially sensitive when human enteric viruses, such as human Noroviruses Genogroup I or Adenoviruses, are in concern: their release downstream WWTP, in environments often interconnected to recreational areas, may be very harmful to human communities even at low concentrations. It points out the importance of WWTP permanent monitoring from which their internal treatment processes could be adjusted. One way to adjust primary treatments is to add coagulants and flocculants to sewage ahead settling tanks to improve decantation. In this work, sludge produced by three coagulants (two organics, one mineral), four flocculants (three cationic, one anionic), and their combinations were studied for their efficacy in human enteric virus retention. Sewage samples were coming from a WWTP in the vicinity of the laboratory. All experiments were performed three times and in triplicates in laboratory pilots, using Murine Norovirus (MNV-1), a surrogate of human Norovirus, as an internal control (spiking). Viruses were quantified by (RT-)qPCR after nucleic acid extraction from both treated water and sediment. Results: Low values of sludge virus retention (from 4 to 8% of the initial sewage concentration) were observed with each cationic organic flocculant added to wastewater and no coagulant. The largest part of the virus load was detected in the treated water (48 to 90%). However, it was not counterbalancing the amount of the introduced virus (MNV-1). The results pertained to two types of cationic flocculants, branched and linear, and in the last case, to two percentages of cations. Results were quite similar to the association of a linear cationic organic coagulant and an anionic flocculant, though suggesting that differences between water and sludges would sometimes be related to virus size or virus origins (autochthonous/allochthonous). FeCl₃, as a mineral coagulant associated with an anionic flocculant, significantly increased both auto- and allochthonous virus retention in the sediments (15 to 34%). Accordingly, virus load in treated water was lower (14 to 48%) but with a total that still does not reach the amount of the introduced virus (MNV-1). It also appeared that the virus retrieval in a bare 0.1M NaCl suspension varied rather strongly according to the FeCl₃ concentration, suggesting an inhibiting effect on the molecular analysis used to detect the virus. Finally, no viruses were detected in both phases (sediment and water) with the combination branched cationic coagulant-linear anionic flocculant, which was later demonstrated as an effect, here also, of polymers on the virus detection-molecular analysis. Conclusions: The combination of FeCl₃-anionic flocculant gave its highest performance to the decantation-based virus removal process. However, large unbalanced values in spiking experiments were observed, suggesting that polymers cast additional obstacles to both elution buffer and lysis buffer on their way to reach the virus. The situation was probably even worse with autochthonous viruses already embedded into sewage's particulate matter. Polymers and FeCl₃ also appeared to interfere in some steps of molecular analyses. More attention should be paid to such impediments wherever chemical additives are considered to be used to enhance WWTP processes. Acknowledgments: This research was supported by the ABIOLAB laboratory (Montbonnot Saint-Martin, France) and by the ASPOSAN association. Field experiments were possible thanks to the Grand Chambéry WWTP authorities (Chambéry, France).

Keywords: flocculants-coagulants, polymers, enteric viruses, wastewater sedimentation treatment plant

Procedia PDF Downloads 98
152 Co-Composting of Poultry Manure with Different Organic Amendments

Authors: M. E. Silva, I. Brás

Abstract:

To study the influence of different organic amendments on the quality of poultry manure compost, three pilot composting trials were carried out with different mixes: poultry manure/carcasse meal/ashes/grape pomace (Pile 1), poultry manure/ cellulosic sludge (Pile 2) and poultry manure (Pile 3). For all piles, wood chips were applied as bulking agent. The process was monitored, over time, by evaluating standard physical and chemical parameters, such as, pH, electric conductivity, moisture, organic matter and ash content, total carbon and total nitrogen content, carbon/nitrogen ratio (C/N) and content in mineral elements. Piles 1 and 2 reached a thermophilic phase, however having different trends. Pile 1 reached this phase earlier than Pile 2. For both, the pH showed a slight alkaline character and the electric conductivity was lower than 2 mS/cm. Also, the initial C/N value was 22 and reached values lower than 15 at the end of composting process. The total N content of the Pile 1 increased slightly during composting, in contrast with the others piles. At the end of composting process, the phosphorus content ranged between 54 and 236 mg/kg dry matter, for Pile 2 and 3, respectively. Generally, the Piles 1 and 3 exhibited similar heavy metals content. This study showed that organic amendments can be used as carbon source, given that the final composts presented parameters within the range of those recommended in the 2nd Draft of EU regulation proposal (DG Env.A.2 2001) for compost quality.

Keywords: co-composting, compost quality, organic ammendment, poultry manure

Procedia PDF Downloads 284
151 The Occurrence of Sporeformers in Processed Milk from Household Refrigerators and The Effect of Heat Treatment on Bacillus Spores Activation

Authors: Sarisha Devnath, Oluwatosin A. Ijabadeniyi

Abstract:

In recent years milk contamination has become a major problem in households; due to the likely occurrence of bacteria, even after the milk has been processed. One such genus of bacteria causing unwanted growth is Bacillus. This research project looks at the presence of spore formers in processed milk from household refrigerators and the effect of pasteurization and high temperature on Bacillus spores activation. 24 samples each of UHT milk and pasteurised milk from 24 households were sampled for the presence of spore formers. While anaerobic spore formers were not found in any of the samples, the average aerobic spore formers in UHT milk and pasteurized milk however were 5.77 cfu/ml and 5.88 cfu/ml respectively. After sequencing, it was detected that the mixed culture contained Bacillus cereus, for both pasteurised and UHT milk samples. For the activation study, raw milk samples were collected and subjected to four different temperatures; 65˚C, 72˚C, 80˚C, 100˚C respectively. Samples were stored for 7 days at 5˚C and 10˚C and analysed daily. The average aerobic spore formers in raw milk for samples stored at 5˚C range between 4.67-6.00 cfu/ml while it ranges between 4.84-6.00 cfu/ml at 10˚C, signifying that the high temperatures could have resulted in germination of dominant spores. Statistical analysis conducted on these results indicated a significant difference between the numbers of colonies present at the different treatment temperatures the bacterium was exposed to. This work showed that household milk may constitute public health risk furthermore; pasteurization and higher temperatures may not be effective to remove aerobic spore formers because of Bacillus spores activation.

Keywords: sporeformers, bacillus, spores, activation, milk

Procedia PDF Downloads 417
150 Kinetic Evaluation of Biodegradability of Paint Shop Wastewater of a Bus Production Factory

Authors: Didem Güven, Oytun Hanhan, Elif Ceren Aksoy, Emine Ubay Çokgör

Abstract:

This paper presents a biological treatability study ofpaintshopwastewaterof a bus factory by an anoxic/aerobic sequencing batch reactor.A lab scale 14L SBR system was implementedto investigate carbon and nitrogen removal performance frompaint shop waste streams combined with domestic and process wastewater of a bus production factory in Istanbul (Turkey).The wastewater collected from decanters of the paint boots and pre-treatmentplant was usedforthefeeding of SBR. The reactor was operated with a total hydraulic retention time of 24 hrs, and a total sludge age of 18.7 days. Initially the efficiency and stability of the reactor were studied when fed with main wastewater stream to simulate the current wastewater treatment plant. Removal efficiency of 57% nitrogen and 90% COD were obtained. Once the paint shop wastewater was introduced to mainstream feeding with a ratio of 1:5, nitrification completely, carbon removal were partially inhibited. SBR system was successful to handle even at very high COD concentrations of paint shop wastewater after feeding of 2 months, with an average effluent COD of 100 mg/L. For the determination of kinetic parameters, respirometric analysis was also conducted with/without paint shop wastewater addition. Model simulation indicated lower maximum specific growth and hydrolysis rates when paint shop wastewater was mixed with the mainstream wastewater of the factory.

Keywords: biological treatability, nitrogen removal, paint shop wastewater, sequencing batch reactor

Procedia PDF Downloads 275
149 Turn Organic Waste to Green Fuels with Zero Landfill

Authors: Xu Fei (Philip) WU

Abstract:

As waste recycling concept been accepted more and more in modern societies, the organic portion of the municipal waste become a sires issue in today’s life. Depend on location and season, the organic waste can bee anywhere between 40-65% of total municipal solid waste. Also composting and anaerobic digestion technologies been applied in this field for years, however both process have difficulties been selected by economical and environmental factors. Beside environmental pollution and risk of virus spread, the compost is not a product been welcomed by people even the waste management has to give up them at no cost. The anaerobic digester has to have 70% of water and keep at 35 degree C or above; base on above conditions, the retention time only can be up to two weeks and remain solid has to be dewater and composting again. The enhancive waste water treatment has to be added after. Because these reasons, the voice of suggesting cancelling recycling program and turning all waste to mass burn incinerations have been raised-A process has already been proved has least energy efficiency and most air pollution problem associated process. A newly developed WXF Bio-energy process employs recently developed and patented pre-designed separation, multi-layer and multi-cavity successive bioreactor landfill technology. It features an improved leachate recycling technology, technologies to maximize the biogas generation rate and a reduced overall turnaround period on the land. A single properly designed and operated site can be used indefinitely. In this process, all collected biogas will be processed to eliminate H2S and other hazardous gases. The methane, carbon dioxide and hydrogen will be utilized in a proprietary process to manufacture methanol which can be sold to mitigate operating costs of the landfill. This integration of new processes offers a more advanced alternative to current sanitary landfill, incineration and compost technology. Xu Fei (Philip) Wu Xu Fei Wu is founder and Chief Scientist of W&Y Environmental International Inc. (W & Y), a Canadian environmental and sustainable energy technology company with patented landfill processes and proprietary waste to energy technologies. He has worked in environmental and sustainable energy fields over the last 25 years. Before W&Y, he worked for Conestoga-Rovers & Associates Limited, Microbe Environmental Science and Technology Inc. of Canada and The Ministry of Nuclear Industry and Ministry of Space Flight Industry of China. Xu Fei Wu holds a Master of Engineering Science degree from The University of Western Ontario. I wish present this paper as an oral presentation only Selected Conference Presentations: • “Removal of Phenolic Compounds with Algae” Presented at 25th Canadian Symposium on Water Pollution Research (CAWPRC Conference), Burlington, Ontario Canada. February, 1990 • “Removal of Phenolic Compounds with Algae” Presented at Annual Conference of Pollution Control Association of Ontario, London, Ontario, Canada. April, 1990 • “Removal of Organochlorine Compounds in a Flocculated Algae Photo-Bioreactor” Presented at International Symposium on Low Cost and Energy Saving Wastewater Treatment Technologies (IAWPRC Conference), Kiyoto, Japan, August, 1990 • “Maximizing Production and Utilization of Landfill Gas” 2009 Wuhan International Conference on Environment(CAWPRC Conference, sponsored by US EPA) Wuhan, China. October, 2009. • “WXF Bio-Energy-A Green, Sustainable Waste to Energy Process” Presented at 9Th International Conference Cooperation for Waste Issues, Kharkiv, Ukraine March, 2012 • “A Lannfill Site Can Be Recycled Indefinitely” Presented at 28th International Conference on solid Waste Technology and Management, Philadelphia, Pennsylvania, USA. March, 2013. Hosted by The Journal of Solid Waste Technology and Management.

Keywords: green fuel, waste management, bio-energy, sustainable development, methanol

Procedia PDF Downloads 250
148 Bacillus cereus Bacteremia and Multi-Organ Failure With Diffuse Brain Hypoxia During Acute Lymphoblastic Leukemia Induction Therapy. A Case Report

Authors: Roni Rachel Mendelson, Caileigh Pudela

Abstract:

Bacillus cereus is a toxin-producing, facultatively anaerobic gram-positive bacterium that is widely distributed environmentally. It can quickly multiply at room temperature with an abundantly present preformed toxin. When ingested, this toxin can cause gastrointestinal illness, which is the commonly known manifestation of the disease. Bacillus cereus sepsis is a disease that is mostly concerning in the population of the immunocompromised patients. One of them is acute lymphoblastic leukemia’s patients during induction. Pediatric acute lymphoblastic leukemia is a common pediatric hematologic malignancy. It is characterized by the rapid proliferation of poorly differentiated lymphoid progenitor cells inside the bone marrow. We present here a 21-month-old boy undergoing induction chemotherapy for acute lymphoblastic leukemia who developed bacillus sepsis bacteremia and, as a result, multi organ failure leading to seizures and multiple strokes. Our case report highlights the extensive overall and neurological damage that can be caused because of bacillus cereus bacteremia, which can lead to higher mortality rate and decreased in survivorship in a highly curable disease. It is very subtle and difficult to recognize and appears to be deteriorating extremely fast. There should be a low threshold for work up and empiric coverage for neutropenic patients during acute lymphoblastic leukemia induction therapy.

Keywords: acute lymphoblastic leukemia, bacillus cereus, immunocompromised, sepsis

Procedia PDF Downloads 58
147 An Overview of Food Waste Management Technologies; The Advantages of Using New Management Methods over the Older Methods to Reduce the Environmental Impacts of Food Waste, Conserve Resources, and Energy Recovery

Authors: Bahareh Asefi, Fereidoun Farzaneh, Ghazaleh Asefi

Abstract:

Continuous increasing food waste produced on a global as well as national scale may lead to burgeoning environmental and economic problems. Simultaneously, decreasing the use efficiencies of natural resources such as land, water, and energy is occurring. On the other hand, food waste has a high-energy content, which seems ideal to achieve dual benefits in terms of energy recovery and the improvement of resource use efficiencies. Therefore, to decrease the environmental impacts of food waste and resource conservation, the researcher has focused on traditional methods of using food waste as a resource through different approaches such as anaerobic digestion, composting, incineration, and landfill. The adverse environmental effects of growing food waste make it difficult for traditional food waste treatment and management methods to balance social, economic, and environmental benefits. The old technology does not need to develop, but several new technologies such as microbial fuel cells, food waste disposal, and bio-converting food waste technology still need to establish or appropriately considered. It is pointed out that some new technologies can take into account various benefits. Since the information about food waste and its management method is critical for executable policy, a review of the latest information regarding the source of food waste and its management technology in some counties is provided in this study.

Keywords: food waste, management technology, innovative method, bio converting food waste, microbial fuel cell

Procedia PDF Downloads 88
146 Evaluation of the Safety and Performance of Blood Culture Practices Using BD Safety-Lokᵀᴹ Blood Collection Sets in the Emergency Room

Authors: Jeonghyun Chang, Taegeun Lee, Heungsup Sung, Yoon-Seon Lee, Youn-Jung Kim, Mi-Na Kim

Abstract:

Background: Safety device has been applied to improve safety and performance of blood culture practice. BD vacutainer® Safety-Lokᵀᴹ blood collection sets with pre-attached holder (Safety-Lok) (BD, USA) was evaluated in the emergency room (ER) of a tertiary care hospital. Methods: From April to June 2017, interns and nurses in ER were surveyed for blood culture practices with a questionnaire before and after 2 or 3 weeks of experience of Safety-Lok. All of them participated in exercise workshop for 1 hour combined with video education prior to the initial survey. The blood volume, positive and contamination rates of Safety-Lok-drawn (SD) blood cultures were compared to those of overall blood cultures. Results: Eighteen interns and 30 nurses were enrolled. As a result of the initial survey, interns had higher rates of needlestick incidence (27.8%), carriage of the blood-filled syringe with needle (88.9%) and lower rates of vacutainer use (38.9%) than nurses (13.3%, 53.3%, and 60.0%). Interns preferred to use safety devices (88.9%) rather than nurses (40.0%). The number of overall blood cultures and SD blood cultures was 9,053 and 555, respectively. While the overall blood volume of aerobic bottles was 2.6±2.1 mL, those of SD blood cultures were 5.0±3.0 mL in aerobic bottles and 6.0±3.0 mL in anaerobic bottles. Positive and contamination rates were 6.5% and 0.72% with SD blood cultures and 6.2% and 0.3% with overall blood cultures. Conclusions: The introduction of the safety device would encourage healthcare workers to collect adequate blood volume as well as lead to safer practices in the ER.

Keywords: blood culture, needlestick, safety device, volume

Procedia PDF Downloads 178
145 Constructed Wetlands: A Sustainable Approach for Waste Water Treatment

Authors: S. Sehar, S. Khan, N. Ali, S. Ahmed

Abstract:

In the last decade, the hunt for cost-effective, eco-friendly and energy sustainable technologies for waste water treatment are gaining much attention due to emerging water crisis and rapidly depleting existing water reservoirs all over the world. In this scenario, constructed wetland being a “green technology” could be a reliable mean for waste water treatment especially in small communities due to cost-effectiveness, ease in management, less energy consumption and sludge production. Therefore, a low cost, lab-scale sub-surface flow hybrid constructed wetland (SS-HCW) was established for domestic waste water treatment.It was observed that not only the presence but also choice of suitable vegetation along with hydraulic retention time (HRT) are key intervening ingredients which directly influence pollutant removals in constructed wetlands. Another important aspect of vegetation is that it may facilitate microbial attachment in rhizosphere, thus promote biofilm formation via microbial interactions. The major factors that influence initial aggregation and subsequent biofilm formation i.e. divalent cations (Ca2+) and extra cellular DNA (eDNA) were also studied in detail. The presence of Ca2+ in constructed wetland demonstrate superior performances in terms of effluent quality, i.e BOD5, COD, TDS, TSS, and PO4- than in absence of Ca2+. Finally, light and scanning electron microscopies coupled with EDS were carried out to get more insights into the mechanics of biofilm formation with or without Ca addition. Therefore, the same strategy can be implemented in other waste water treatment technologies.

Keywords: hybrid constructed wetland, biofilm formation, waste water treatment, waste water

Procedia PDF Downloads 378
144 Pilot Scale Sub-Surface Constructed Wetland: Evaluation of Performance of Bed Vegetated with Water Hyacinth in the Treatment of Domestic Sewage

Authors: Abdul-Hakeem Olatunji Abiola, A. E. Adeniran, A. O. Ajimo, A. B. Lamilisa

Abstract:

Introduction: Conventional wastewater treatment technology has been found to fail in developing countries because they are expensive to construct, operate and maintain. Constructed wetlands are nowadays considered as a low-cost alternative for effective wastewater treatment, especially where suitable land can be available. This study aims to evaluate the performance of the constructed wetland vegetated with water hyacinth (Eichhornia crassipes) plant for the treatment of wastewater. Methodology: The sub-surface flow wetland used for this study was an experimental scale constructed wetland consisting of four beds A, B, C, and D. Beds A, B, and D were vegetated while bed C which was used as a control was non-vegetated. This present study presents the results from bed B vegetated with water hyacinth (Eichhornia crassipes) and control bed C which was non-vegetated. The influent of the experimental scale wetland has been pre-treated with sedimentation, screening and anaerobic chamber before feeding into the experimental scale wetland. Results: pH and conductivity level were more reduced, colour of effluent was more improved, nitrate, iron, phosphate, and chromium were more removed, and dissolved oxygen was more improved in the water hyacinth bed than the control bed. While manganese, nickel, cyanuric acid, and copper were more removed from the control bed than the water hyacinth bed. Conclusion: The performance of the experimental scale constructed wetland bed planted with water hyacinth (Eichhornia crassipes) is better than that of the control bed. It is therefore recommended that plain bed without any plant should not be encouraged.

Keywords: constructed experimental scale wetland, domestic sewage, treatment, water hyacinth

Procedia PDF Downloads 113
143 Potentiality of Biohythane Process for the Gaseous Energy Recovery from Organic Wastes

Authors: Debabrata Das, Preeti Mishra

Abstract:

A two-phase anaerobic process combining biohydrogen followed by biomethane (biohythane technology) serves as an environment-friendly and economically sustainable approach for the improved valorization of organic wastes. Suitability of the pure cultures like Klebsiela pneumonia, C. freundii, B. coagulan, etc. and mixed acidogenic cultures for the biohydrogen production was already studied. The characteristics of organic wastes play a critical role in biohydrogen production. The choice of an appropriate combination of complementary organic wastes can vastly improve the bioenergy generation besides achieving the significant cost reduction. Suitability and economic viability of using the groundnut deoiled cake (GDOC), mustard deoiled cake (MDOC), distillers’ dried grain with soluble (DDGS) and algal biomass (AB) as a co-substrate were studied for a biohythane production. Results show that maximum gaseous energy of 20.7, 9.3, 16.7 and 15.6 % was recovered using GDOC, MDOC, DDGS and AB in the two stage biohythane production, respectively. Both GDOC and DDGS were found to be better co-substrates as compared to MDOC and AB in terms of hythane production, respectively. The maximum cumulative hydrogen and methane production of 150 and 64 mmol/L were achieved using GDOC. Further, 98 % reduction in substrate input cost (SIC) was achieved using the co-supplementation procedure.

Keywords: Biohythane, algal biomass, distillers’ dried grain with soluble (DDGS), groundnut deoiled cake (GDOC), mustard deoiled cake (MDOC)

Procedia PDF Downloads 173
142 Enzymatic Biomonitoring of Aquatic Pollution at Jeddah Southern Red Sea Shore

Authors: Saleh Mohamed, Mohamed El-Shal, Taha Kumosani, Ahmad Mal, Youssri Ahmed, Yasser Almulaiky

Abstract:

The marine environment of the Jeddah southern red sea shore is subjected to increasing anthropogenic activities as sewage sludge draining and desalting processes. The objective of this study is to compare the quantitative responses of enzymatic biomarkers in fish from polluted area with the responses of organism from reference area. Enzymatic biomarkers as neurotoxic, antioxidant and detoxifying enzymes were evaluated in the brain and liver from Variola louti as a sentinel species sampled from both polluted and reference sites in the Jeddah southern red sea shore during four months January, April, July and October in 2014 and 2015. In brain of V. louti, the activity of acetylcholinestease (AChE) collected from reference area significantly increased 8.8 and 10.5 folds than that from polluted area in 2014 and 2015, respectively. The activities of catalase (CAT), glutathione reductase (GR) and glutathione peroxidase (GPx) and glutathione-S-transferase (GST) from liver of V. louti in polluted area significantly increased 1.4, 1.27 and 3, 4.5 and 4.37, 2 and 5, 4.5 folds than that from reference area in 2014 and 2015, respectively. The levels of examined enzymes are approximately similar in the four seasons detected in 2014 and 2015 indicating that the similar components of sewage were draining in red sea. In conclusion, these findings suggest the important of enzymatic biomarkers in monitoring the pollution in Jeddah red sea shore.

Keywords: Variola louti, enzymatic biomarkers, pollution, Red sea

Procedia PDF Downloads 311
141 Examining the Presence of Heterotrophic Aerobic Bacteria (HAB), and Sulphate Reducing Bacteria (SRB) in Some Types of Water from the City of Tripoli, Libya

Authors: Abdulsalam. I. Rafida, Marwa. F. Elalem, Hasna. E. Alemam

Abstract:

This study aimed at testing the various types of water in some areas of the city of Tripoli, Libya for the presence of Heterotrophic Aerobic Bacteria (HAB), and anaerobic Sulphate Reducing Bacteria (SRB). The water samples under investigation included rainwater accumulating on the ground, sewage water (from the city sewage treatment station, sulphate water from natural therapy swimming sites), and sea water (i.e. sea water exposed to pollution by untreated sewage water, and unpolluted sea water from specific locations). A total of 20 samples have been collected distributed as follows: rain water (8 samples), sewage water (6 samples), and sea water (6 samples). An up-to-date method for estimation has been used featuring readymade solutions i.e. (BARTTM test for HAB and BARTTM test for SRB). However, with the exception of one rain water sample, the results have indicated that the target bacteria have been present in all samples. Regarding HAB bacteria the samples have shown a maximum average of 7.0 x 106 cfu/ml featuring sewage and rain water and a minimum average of 1.8 x 104 cuf/ml featuring unpolluted sea water collected from a specific location. As for SRB bacteria; a maximum average of 7.0 x 105 cfu/ml has been shown by sewage and rain water and a minimum average of 1.8 x 104 cfu/ml by sewage and sea water. The above results highlight the relationship between pollution and the presence of bacteria in water particularly water collected from specific locations, and also the presence of bacteria as the result of the use of water provided that a suitable environment exists for its growth.

Keywords: heterotrophic aerobic bacteria (HAB), sulphate reducing bacteria (SRB), water, environmental sciences

Procedia PDF Downloads 464
140 Bioremediation Potential in Recalcitrant Areas of PCE in Alluvial Fan Deposits

Authors: J. Herrero, D. Puigserver, I. Nijenhuis, K. Kuntze, J. M. Carmona

Abstract:

In the transition zone between aquifers and basal aquitards, the perchloroethene (PCE)-pools are more recalcitrant than those elsewhere in the aquifer. Although biodegradation of chloroethenes occur in this zone, it is a slow process and a remediation strategy is needed. The aim of this study is to demonstrate that combined strategy of biostimulation and in situ chemical reduction (ISCR) is more efficient than the two separated strategies. Four different microcosm experiments with sediment and groundwater of a selected field site where an aged pool exists at the bottom of a transition zone were designed under i) natural conditions, ii) biostimulation with lactic acid, iii) ISCR with zero-value iron (ZVI) and under iv) a combined strategy with lactic acid and ZVI. Biotic and abiotic dehalogenation, terminal electron acceptor processes and evolution of microbial communities were determined for each experiment. The main results were: i) reductive dehalogenation of PCE-pools occurs under sulfate-reducing conditions; ii) biostimulation with lactic acid supports more pronounced reductive dehalogenation of PCE and trichloroethene (TCE), but results in an accumulation of 1,2-cis-dichloroethene (cDCE); iii) ISCR with ZVI produces a sustained dehalogenation of PCE and its metabolites iv) combined strategy of biostimulation and ISCR results in a fast dehalogenation of PCE and TCE and a sustained dehalogenation of cisDCE. These findings suggest that biostimulation and ISCR with ZVI are the most suitable strategies for a complete reductive dehalogenation of PCE-pools in the transition zone and further to enable the dissolution of dense non-aqueous phase liquids.

Keywords: aged PCE-pool, anaerobic microcosm experiment, biostimulation, in situ chemical reduction, natural attenuation

Procedia PDF Downloads 172
139 Micropollutant Carbamazepine: Its Occurrences, Toxicological Effects, and Possible Degradation Methods (Review)

Authors: Azad Khalid, Sifa Dogan

Abstract:

Because of its persistence in conventional treatment plants and broad prevalence in water bodies, the pharmaceutical chemical carbamazepine (CBZ) has been suggested as an anthropogenic marker to evaluate water quality. This study provides a thorough examination of the origins and occurrences of CBZ in water bodies, as well as the drug's toxicological effects and laws. Given CBZ's well-documented negative consequences on the human body when used medicinally, cautious monitoring in water is advised. CBZ residues in drinking water may enter embryos and newborns via intrauterine exposure or breast-feeding, causing congenital abnormalities and/or neurodevelopmental issues over time. The insufficiency of solo solutions was shown after an in-depth technical study of traditional and sophisticated treatment technologies. Nanofiltration and reverse osmosis membranes are more successful at removing CBZ than traditional activated sludge and membrane bioreactor techniques. Recent research has shown that severe chemical cleaning, which is essential to prevent membrane fouling, may lower long-term removal efficiency. Furthermore, despite the efficacy of activated carbon adsorption and advanced oxidation processes, a few issues such as chemical cost and activated carbon renewal must be carefully examined. Individual technology constraints lead to the benefits of combined and hybrid systems, namely the heterogeneous advanced oxidation process.

Keywords: carbamazepine, occurrence, toxicity, conventical treatment, advanced oxidation process (AOPs)

Procedia PDF Downloads 71
138 Production of Biogas from Organic Wastes Using Plastic Biodigesternoura

Authors: Oladipo Oluwaseun Peter

Abstract:

Daily consumption of crude oil is alarming as a result of increasing demand for energy. Waste generation tends to rise with the level of economic advancement of a nation. Hence, this project work researches how wastes which could pose toxic if left unattended to can be processed through biodigestion in order to generate biofuel which could serve as a good substitute for petroleum, a non renewable energy source, so as to reduce over-dependence on petroleum and to prevent environmental pollution. Anaerobic digestion was carried out on organic wastes comprising brewery spent grains, rice husks and poultry droppings in a plastic biodigester of 1000 liters volume using the poultry droppings as a natural inoculums source. The feed composition in ratio 5:3:2, spent grain, rice husks and poultry droppings were mixed with water in the ratio 1:6. Thus, 600 Kg of water was used to prepare the slurry with 100 Kg of feed materials. A plastic biodigester was successfully constructed, and the problem of corrosion and rusting were completely overcome as a result of the use of non-corroding materials of construction. A reasonable quantity of biogas, 33.63m3, was generated over a period of 60 days of biodigestion. The bioslurry was processed through two different process routes; evaporation and filteration. Evaporation process of analysis shows high values of 0.64%, 2.11% and 0.034% for nitrogen, phosphorous and potassium respectively, while filteration process gives 00.61%, 1.93% and 0.026% for nitrogen, phosphorous and potassium respectively.

Keywords: biodigestion, biofuel, digestion, slurry, biogas

Procedia PDF Downloads 358
137 Determination of Acid Volatile Sulfides–Simultaneously Extracted Metal Relationship and Toxicity in Contaminated Sediment Layer in Mid-Black Sea Coasts

Authors: Arife Simsek, Gulfem Bakan

Abstract:

Sediment refers to the accumulation of varying amounts of sediment material in natural waters and the formation of bottom sludge. Sediments are the most important sources of pollutants as well as important future sources and carriers of pollutants. The accumulation of pollutants in sediments can cause serious environmental problems for the surrounding areas. Heavy metals (such as Cr, Cd, Al, Pb, Cu, Al, Zn) disrupt the water quality, affect the useful use of sediment, affect the ecosystem and have a toxic effect on the life of the sediment layer. This effect, which accumulates in the aquatic organisms, can enter the human body with the food chain and affect health seriously. Potential metal toxicity can be determined by comparing acid volatile sulfides (AVS) – simultaneously extracted metal (SEM) ratio in anoxic sediments to determine the effect of metals. Determination of the concentration of SEM and AVS is useful in screening sediments for potential toxicity due to the high metal concentration. In the case of SEM/AVS < 0 (anoxic sediment); in terms of AVS biomass production, its toxicity can be controlled. No toxic effects may be observed when SEM / AVS < 0. SEM / AVS > 0 (in the case of oxic sediment); metals with sensitive fraction such as Cu, As, Ag, Zn are stored. In this study, AVS and SEM measurements of sediment samples collected from five different points in the district of Tekkeköy in Samsun province were performed. The SEM - AVS ratio was greater than 0 in all samples. Therefore, it is necessary to test the toxicity against the risks that may occur in the ecosystem.

Keywords: AVS-SEM, Black Sea, heavy metal, sediment, toxicity

Procedia PDF Downloads 113
136 Evaluation of Strategies to Mitigate the Carbon Emissions from MSW: A Case Study

Authors: N. Anusree, P. Sughosh, G. L. Sivakumar Babu

Abstract:

Municipalities throughout the world are marred with serious issues related to the Municipal Solid Waste (MSW) collection, treatment, and safe disposal. While the Waste Management sector contributes around 3-9 % of the overall anthropogenic methane emission, measures towards mitigating these emissions are rarely given attention in developing countries. In the case of Bangalore, India, around 5680 tons of MSW is generated in a day, and its collection and treatment efficiency are around 90-95 % and 26.4 %, respectively. About 33.4 % of the waste collected is directly landfilled without any treatment, further aggravating the situation. The potential of reducing the emissions emanating from the MSW of Bangalore city without any severe consequences on the current MSW management practices is evaluated in this study. Three emission scenarios consisting of the baseline condition (current practices – Case-1), the application of biocovers for methane oxidation in the dumpsites (case-2), and the diversion of Organic Fraction of MSW (OFMSW) along with the application of biocovers (case-3) are evaluated and compared with each other. The emissions are calculated based on the aerobic and anaerobic stochiometric relations for the three scenarios. Laboratory scale column studies are carried out to determine the methane oxidation potential of three different biocover material (digested MBT (mechanically biologically treated) waste, Fresh MBT waste, and charcoal amended with fresh MBT waste). The results shown that around 40 % and 83 % reduction in carbon emissions can be achieved in case 3 and 2 in comparison to the baseline condition. The study clearly shows that with minor changes in the waste management practices, substantial reductions in the carbon emissions can be attained in Bangalore City.

Keywords: MSW, biocover, composting, carbon emission

Procedia PDF Downloads 110
135 Hybrid Advanced Oxidative Pretreatment of Complex Industrial Effluent for Biodegradability Enhancement

Authors: K. Paradkar, S. N. Mudliar, A. Sharma, A. B. Pandit, R. A. Pandey

Abstract:

The study explores the hybrid combination of Hydrodynamic Cavitation (HC) and Subcritical Wet Air Oxidation-based pretreatment of complex industrial effluent to enhance the biodegradability selectively (without major COD destruction) to facilitate subsequent enhanced downstream processing via anaerobic or aerobic biological treatment. Advanced oxidation based techniques can be less efficient as standalone options and a hybrid approach by combining Hydrodynamic Cavitation (HC), and Wet Air Oxidation (WAO) can lead to a synergistic effect since both the options are based on common free radical mechanism. The HC can be used for initial turbulence and generation of hotspots which can begin the free radical attack and this agitating mixture then can be subjected to less intense WAO since initial heat (to raise the activation energy) can be taken care by HC alone. Lab-scale venturi-based hydrodynamic cavitation and wet air oxidation reactor with biomethanated distillery wastewater (BMDWW) as a model effluent was examined for establishing the proof-of-concept. The results indicated that for a desirable biodegradability index (BOD: COD - BI) enhancement (up to 0.4), the Cavitation (standalone) pretreatment condition was: 5 bar and 88 min reaction time with a COD reduction of 36 % and BI enhancement of up to 0.27 (initial BI - 0.17). The optimum WAO condition (standalone) was: 150oC, 6 bar and 30 minutes with 31% COD reduction and 0.33 BI. The hybrid pretreatment (combined Cavitation + WAO) worked out to be 23.18 min HC (at 5 bar) followed by 30 min WAO at 150oC, 6 bar, at which around 50% COD was retained yielding a BI of 0.55. FTIR & NMR analysis of pretreated effluent indicated dissociation and/or reorientation of complex organic compounds in untreated effluent to simpler organic compounds post-pretreatment.

Keywords: hybrid, hydrodynamic cavitation, wet air oxidation, biodegradability index

Procedia PDF Downloads 591