Search results for: plastic recycling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1542

Search results for: plastic recycling

1092 Enzymatic Degradation of Poly (Butylene Adipate Terephthalate) Copolymer Using Lipase B From Candida Antarctica and Effect of Poly (Butylene Adipate Terephthalate) on Plant Growth

Authors: Aqsa Kanwal, Min Zhang, Faisal Sharaf, Li Chengtao

Abstract:

The globe is facing increasing challenges of plastic pollution due to single-use of plastic-based packaging material. The plastic material is continuously being dumped into the natural environment, which causes serious harm to the entire ecosystem. Polymer degradation in nature is very difficult, so the use of biodegradable polymers instead of conventional polymers can mitigate this issue. Due to the good mechanical properties and biodegradability, aliphatic-aromatic polymers are being widely commercialized. Due to the advancement in molecular biology, many studies have reported specific microbes that can effectively degrade PBAT. Aliphatic polyesters undergo hydrolytic cleavage of ester groups, so they can be easily degraded by microorganisms. In this study, we investigated the enzymatic degradation of poly (butylene adipate terephthalate) (PBAT) copolymer using lipase B from Candida Antarctica (CALB). Results of the study displayed approximately 5.16 % loss in PBAT mass after 2 days which significantly increased to approximately 15.7 % at the end of the experiment (12 days) as compared to blank. The pH of the degradation solution also displayed significant reduction and reached the minimum value of 6.85 at the end of the experiment. The structure and morphology of PBAT after degradation were characterized by FTIR, XRD, SEM, and TGA. FTIR analysis showed that after degradation many peaks become weaker and the peak at 2950 cm-1 almost disappeared after 12 days. The XRD results indicated that as the degradation time increases the intensity of diffraction peaks slightly increases as compared to the blank PBAT. TGA analysis also confirmed the successful degradation of PBAT with time. SEM micrographs further confirmed that degradation has occurred. Hence, biodegradable polymers can widely be used. The effect of PBAT biodegradation on plant growth was also studied and it was found that PBAT has no toxic effect on the growth of plants. Hence PBAT can be employed in a wide range of applications.

Keywords: aliphatic-aromatic co-polyesters, polybutylene adipate terephthalate, lipase (CALB), biodegradation, plant growth

Procedia PDF Downloads 79
1091 Implementation of Industrial Ecology Principles in the Production and Recycling of Solar Cells and Solar Modules

Authors: Julius Denafas, Irina Kliopova, Gintaras Denafas

Abstract:

Three opportunities for implementation of industrial ecology principles in the real industrial production of c-Si solar cells and modules are presented in this study. It includes: material flow dematerialisation, product modification and industrial symbiosis. Firstly, it is shown how the collaboration between R&D institutes and industry helps to achieve significant reduction of material consumption by a) refuse from phosphor silicate glass cleaning process and b) shortening of silicon nitride coating production step. Secondly, it was shown how the modification of solar module design can reduce the CO2 footprint for this product and enhance waste prevention. It was achieved by implementing a frameless glass/glass solar module design instead of glass/backsheet with aluminium frame. Such a design change is possible without purchasing new equipment and without loss of main product properties like efficiency, rigidity and longevity. Thirdly, industrial symbiosis in the solar cell production is possible in such case when manufacturing waste (silicon wafer and solar cell breakage) also used solar modules are collected, sorted and supplied as raw-materials to other companies involved in the production chain of c-Si solar cells. The obtained results showed that solar cells produced from recycled silicon can have a comparable electrical parameters like produced from standard, commercial silicon wafers. The above mentioned work was performed at solar cell producer Soli Tek R&D in the frame of H2020 projects CABRISS and Eco-Solar.

Keywords: manufacturing, process optimisation, recycling, solar cells, solar modules, waste prevention

Procedia PDF Downloads 142
1090 Modeling of Ductile Fracture Using Stress-Modified Critical Strain Criterion for Typical Pressure Vessel Steel

Authors: Carlos Cuenca, Diego Sarzosa

Abstract:

Ductile fracture occurs by the mechanism of void nucleation, void growth and coalescence. Potential sites for initiation are second phase particles or non-metallic inclusions. Modelling of ductile damage at the microscopic level is very difficult and complex task for engineers. Therefore, conservative predictions of ductile failure using simple models are necessary during the design and optimization of critical structures like pressure vessels and pipelines. Nowadays, it is well known that the initiation phase is strongly influenced by the stress triaxiality and plastic deformation at the microscopic level. Thus, a simple model used to study the ductile failure under multiaxial stress condition is the Stress Modified Critical Strain (SMCS) approach. Ductile rupture has been study for a structural steel under different stress triaxiality conditions using the SMCS method. Experimental tests are carried out to characterize the relation between stress triaxiality and equivalent plastic strain by notched round bars. After calibration of the plasticity and damage properties, predictions are made for low constraint bending specimens with and without side grooves. Stress/strain fields evolution are compared between the different geometries. Advantages and disadvantages of the SMCS methodology are discussed.

Keywords: damage, SMSC, SEB, steel, failure

Procedia PDF Downloads 297
1089 Evaluation of the Effectiveness of Barriers for the Control of Rats in Rice Plantation Field

Authors: Melina, Jumardi Jumardi, Erwin Erwin, Sri Nuraminah, Andi Nasruddin

Abstract:

The rice field rat (Rattus argentiventer Robinson and Kloss) is a pest causing the greatest yield loss of rice plants, especially in lowland agroecosystems with intensive cropping patterns (2-3 plantings per year). Field mice damage rice plants at all stages of growth, from seedling to harvest, even in storage warehouses. Severe damage with yield loss of up to 100% occurs if rats attack rice at the generative stage because the plants are no longer able to recover by forming new tillers. Farmers mainly use rodenticides in the form of poisoned baits or as fumigants, which are applied to rat burrow holes. This practice is generally less effective because mice are able to avoid the poison or become resistant after several exposures to it. In addition, excessive use of rodenticides can have negative impacts on the environment and non-target organisms. For this reason, this research was conducted to evaluate the effectiveness of fences as an environmentally friendly mechanical control method in reducing rice yield losses due to rat attacks. This study used a factorial randomized block design. The first factor was the fence material, namely galvanized zinc plate and plastic. The second factor was the height of the fence, namely 25, 50, 75, and 100 cm from the ground level. Each treatment combination was repeated five times. Data shows that zinc fences with a height of 75 and 100 cm are able to provide full protection to plants from rat infestations throughout the planting season. However, zinc fences with a height of 25 and 50 cm failed to prevent rat attacks. Plastic fences with a height of 25 and 50 cm failed to prevent rat attacks during the planting season, whereas 75 and 100 cm were able to prevent rat attacks until all the crops outside of the fence had been eaten by rats. The rat managed to get into the fence by biting the plastic fence close to the ground. Thus, the research results show that fences made of zinc plate with a height of at least 75 cm from the ground surface are effective in preventing plant damage caused by rats. To our knowledge, this research is the first to quantify the effectiveness of fences as a control of field rodents.

Keywords: rice field rat, Rattus argentiventer, fence, rice

Procedia PDF Downloads 40
1088 Quantification of E-Waste: A Case Study in Federal University of Espírito Santo, Brazil

Authors: Andressa S. T. Gomes, Luiza A. Souza, Luciana H. Yamane, Renato R. Siman

Abstract:

The segregation of waste of electrical and electronic equipment (WEEE) in the generating source, its characterization (quali-quantitative) and identification of origin, besides being integral parts of classification reports, are crucial steps to the success of its integrated management. The aim of this paper was to count WEEE generation at the Federal University of Espírito Santo (UFES), Brazil, as well as to define sources, temporary storage sites, main transportations routes and destinations, the most generated WEEE and its recycling potential. Quantification of WEEE generated at the University in the years between 2010 and 2015 was performed using data analysis provided by UFES’s sector of assets management. EEE and WEEE flow in the campuses information were obtained through questionnaires applied to the University workers. It was recorded 6028 WEEEs units of data processing equipment disposed by the university between 2010 and 2015. Among these waste, the most generated were CRT screens, desktops, keyboards and printers. Furthermore, it was observed that these WEEEs are temporarily stored in inappropriate places at the University campuses. In general, these WEEE units are donated to NGOs of the city, or sold through auctions (2010 and 2013). As for recycling potential, from the primary processing and further sale of printed circuit boards (PCB) from the computers, the amount collected could reach U$ 27,839.23. The results highlight the importance of a WEEE management policy at the University.

Keywords: solid waste, waste of electrical and electronic equipment, waste management, institutional solid waste generation

Procedia PDF Downloads 260
1087 Transitioning towards a Circular Economy in the Textile Industry: Approaches to Address Environmental Challenges

Authors: Mozhdeh Khalili Kordabadi

Abstract:

Textiles play a vital role in human life, particularly in the form of clothing. However, the alarming rate at which textiles end up in landfills presents a significant environmental risk. With approximately one garbage truck per second being filled with discarded textiles, urgent measures are required to mitigate this trend. Governments and responsible organizations are calling upon various stakeholders to shift from a linear economy to a circular economy model in the textile industry. This article highlights several key approaches that can be undertaken to address this pressing issue. These approaches include the creation of renewable raw material sources, rethinking production processes, maximizing the use and reuse of textile products, implementing reproduction and recycling strategies, exploring redistribution to new markets, and finding innovative means to extend the lifespan of textiles. By adopting these strategies, the textile industry can contribute to a more sustainable and environmentally friendly future. Introduction: Textiles, particularly clothing, are essential to human existence. However, the rapid accumulation of textiles in landfills poses a significant threat to the environment. This article explores the urgent need for the textile industry to transition from a linear economy model to a circular economy model. The linear model, characterized by the creation, use, and disposal of textiles, is unsustainable in the long term. By adopting a circular economy approach, the industry can minimize waste, reduce environmental impact, and promote sustainable practices. This article outlines key approaches that can be undertaken to drive this transition. Approaches to Address Environmental Challenges: Creation of Renewable Raw Materials Sources: Exploring and promoting the use of renewable and sustainable raw materials, such as organic cotton, hemp, and recycled fibers, can significantly reduce the environmental footprint of textile production. Rethinking Production Processes: Implementing cleaner production techniques, optimizing resource utilization, and minimizing waste generation are crucial steps in reducing the environmental impact of textile manufacturing. Maximizing Use and Reuse of Textile Products: Encouraging consumers to prolong the lifespan of textile products through proper care, maintenance, and repair services can reduce the frequency of disposal and promote a culture of sustainability. Reproduction and Recycling Strategies: Investing in innovative technologies and infrastructure to enable efficient reproduction and recycling of textiles can close the loop and minimize waste generation. Redistribution of Textiles to New Markets: Exploring opportunities to redistribute textiles to new and parallel markets, such as resale platforms, can extend their lifecycle and prevent premature disposal. Improvising Means to Extend Textile Lifespan: Encouraging design practices that prioritize durability, versatility, and timeless aesthetics can contribute to prolonging the lifespan of textiles. Conclusion: The textile industry must urgently transition from a linear economy to a circular economy model to mitigate the adverse environmental impact caused by textile waste. By implementing the outlined approaches, such as sourcing renewable raw materials, rethinking production processes, promoting reuse and recycling, exploring new markets, and extending the lifespan of textiles, stakeholders can work together to create a more sustainable and environmentally friendly textile industry. These measures require collective action and collaboration between governments, organizations, manufacturers, and consumers to drive positive change and safeguard the planet for future generations.

Keywords: textiles, circular economy, environmental challenges, renewable raw materials, production processes, reuse, recycling, redistribution, textile lifespan extension.

Procedia PDF Downloads 96
1086 Cyclic Stress and Masing Behaviour of Modified 9Cr-1Mo at RT and 300 °C

Authors: Preeti Verma, P. Chellapandi, N.C. Santhi Srinivas, Vakil Singh

Abstract:

Modified 9Cr-1Mo steel is widely used for structural components like heat exchangers, pressure vessels and steam generator in the nuclear reactors. It is also found to be a candidate material for future metallic fuel sodium cooled fast breeder reactor because of its high thermal conductivity, lower thermal expansion coefficient, micro structural stability, high irradiation void swelling resistance and higher resistance to stress corrosion cracking in water-steam systems compared to austenitic stainless steels. The components of steam generators that operate at elevated temperatures are often subjected to repeated thermal stresses as a result of temperature gradients which occur on heating and cooling during start-ups and shutdowns or during variations in operating conditions of a reactor. These transient thermal stresses give rise to LCF damage. In the present investigation strain controlled low cycle fatigue tests were conducted at room temperature and 300 °C in normalized and tempered condition using total strain amplitudes in the range from ±0.25% to ±0.5% at strain rate of 10-2 s-1. Cyclic Stress response at high strain amplitudes (±0.31% to ±0.5%) showed initial softening followed by hardening upto a few cycles and subsequent softening till failure. The extent of softening increased with increase in strain amplitude and temperature. Depends on the strain amplitude of the test the stress strain hysteresis loops displayed Masing behaviour at higher strain amplitudes and non-Masing at lower strain amplitudes at both the temperatures. It is quite opposite to the usual Masing and Non-Masing behaviour reported earlier for different materials. Low cycle fatigue damage was evaluated in terms of plastic strain and plastic strain energy approach at room temperature and 300 °C. It was observed that the plastic strain energy approach was found to be more closely matches with the experimental fatigue lives particularly, at 300 °C where dynamic strain aging was observed.

Keywords: Modified 9Cr-mo steel, low cycle fatigue, Masing behavior, cyclic softening

Procedia PDF Downloads 443
1085 Low-carbon Footprint Diluents in Solvent Extraction for Lithium-ion Battery Recycling

Authors: Abdoulaye Maihatchi Ahamed, Zubin Arora, Benjamin Swobada, Jean-yves Lansot, Alexandre Chagnes

Abstract:

Lithium-ion battery (LiB) is the technology of choice in the development of electric vehicles. But there are still many challenges, including the development of positive electrode materials exhibiting high cycle ability, high energy density, and low environmental impact. For this latter, LiBs must be manufactured in a circular approach by developing the appropriate strategies to reuse and recycle them. Presently, the recycling of LiBs is carried out by the pyrometallurgical route, but more and more processes implement or will implement the hydrometallurgical route or a combination of pyrometallurgical and hydrometallurgical operations. After producing the black mass by mineral processing, the hydrometallurgical process consists in leaching the black mass in order to uptake the metals contained in the cathodic material. Then, these metals are extracted selectively by liquid-liquid extraction, solid-liquid extraction, and/or precipitation stages. However, liquid-liquid extraction combined with precipitation/crystallization steps is the most implemented operation in the LiB recycling process to selectively extract copper, aluminum, cobalt, nickel, manganese, and lithium from the leaching solution and precipitate these metals as high-grade sulfate or carbonate salts. Liquid-liquid extraction consists in contacting an organic solvent and an aqueous feed solution containing several metals, including the targeted metal(s) to extract. The organic phase is non-miscible with the aqueous phase. It is composed of an extractant to extract the target metals and a diluent, which is usually aliphatic kerosene produced from the petroleum industry. Sometimes, a phase modifier is added in the formulation of the extraction solvent to avoid the third phase formation. The extraction properties of the diluent do not depend only on the chemical structure of the extractant, but it may also depend on the nature of the diluent. Indeed, the interactions between the diluent can influence more or less the interactions between extractant molecules besides the extractant-diluent interactions. Only a few studies in the literature addressed the influence of the diluent on the extraction properties, while many studies focused on the effect of the extractants. Recently, new low-carbon footprint aliphatic diluents were produced by catalytic dearomatisation and distillation of bio-based oil. This study aims at investigating the influence of the nature of the diluent on the extraction properties of three extractants towards cobalt, nickel, manganese, copper, aluminum, and lithium: Cyanex®272 for nickel-cobalt separation, DEHPA for manganese extraction, and Acorga M5640 for copper extraction. The diluents used in the formulation of the extraction solvents are (i) low-odor aliphatic kerosene produced from the petroleum industry (ELIXORE 180, ELIXORE 230, ELIXORE 205, and ISANE IP 175) and (ii) bio-sourced aliphatic diluents (DEV 2138, DEV 2139, DEV 1763, DEV 2160, DEV 2161 and DEV 2063). After discussing the effect of the diluents on the extraction properties, this conference will address the development of a low carbon footprint process based on the use of the best bio-sourced diluent for the production of high-grade cobalt sulfate, nickel sulfate, manganese sulfate, and lithium carbonate, as well as metal copper.

Keywords: diluent, hydrometallurgy, lithium-ion battery, recycling

Procedia PDF Downloads 88
1084 Carbon Footprint of Blowmoulded Plastic Parts-Case Study on Automotive Industry

Authors: Mădălina Elena Mavrodin, Gabriela Andreea Despescu, Gheorghe Lăzăroiu

Abstract:

Long term trend of global warming has brought a very deep interest in climate change, which is due most likely to increasing concentrations of anthropogenic greenhouse gases. 0f these, particular attention is paid to carbon dioxide, which has led in desire for obtaining carbon footprint products. Automotive industry is one of the world’s most important economic sectors with a great impact over the environment through all range of activities. Its impact over the environment has been studied, researcher trying as much as possible to reduce it and to offer environmental friendly solution for the using, but also manufacturing cars. In the global endeavour to meet the international commitments in order to reduce the greenhouse gas emissions, many companies integrate environmental issues into their management systems, with potential effects in their entire production chains. Several tools and calculators have been developed to measure the environmental impact of a product in the life cycle perspective of the whole product chain. There were a lot of ways to obtain the carbon footprint of driving a car, but the total carbon footprint of a car includes also the carbon footprint of all the components and accessories. In the automotive industry, one of the challenges is to calculate the carbon footprint of a car from ‘cradle to grave’; this meaning not only for driving the car, but also manufacturing it, so there can be an overview over the entire process of production.

Keywords: carbon footprint, global warming potential, greenhouse gases, manufacture, plastic air ducts

Procedia PDF Downloads 322
1083 Effect of Plastic Deformation on the Carbide-Free Bainite Transformation in Medium C-Si Steel

Authors: Mufath Zorgani, Carlos Garcia-Mateo, Mohammad Jahazi

Abstract:

In this study, the influence of pre-strained austenite on the extent of isothermal bainite transformation in medium-carbon, high-silicon steel was investigated. Different amounts of deformations were applied at 600°C on the austenite right before quenching to the region, where isothermal bainitic transformation is activated. Four different temperatures of 325, 350, 375, and 400°C considering similar holding time 1800s at each temperature, were selected to investigate the extent of isothermal bainitic transformation. The results showed that the deformation-free austenite transforms to the higher volume fraction of CFB bainite when the isothermal transformation temperature reduced from 400 to 325°C, the introduction of plastic deformation in austenite prior to the formation of bainite invariably involves a delay of the same or identical isothermal treatment. On the other side, when the isothermal transformation temperature and deformation increases, the volume fraction and the plate thickness of bainite decreases and the amount of retained austenite increases. The shape of retained austenite is mostly representing blocky-shape one due to the less amount of transformed bainite. Moreover, the plate-like shape bainite cannot be resolved when the deformation amount reached 30%, and the isothermal transformation temperatures are of 375 and 400°C. The amount of retained austenite and the percentage of its transformation to martensite during the final cooling stage play a significant role in the variation of hardness level for different thermomechanical regimes.

Keywords: ausforming, carbide free bainite, dilatometry, microstructure

Procedia PDF Downloads 128
1082 Numerical Analysis of Crack's Effects in a Dissimilar Welded Joint

Authors: Daniel N. L. Alves, Marcelo C. Rodrigues, Jose G. de Almeida

Abstract:

The search for structural efficiency in mechanical systems has been strongly exerted with aim of economic optimization and structural safety. As soon, to understand the response of materials when submitted to adverse conditions is essential to design a safety project. This work investigates the presence of cracks in dissimilar welded joints (DWJ). Its fracture toughness responses depend upon the heterogeneity present in these joints. Thus, this work aim analyzing the behavior of the crack tip zone located in a buttery dissimilar welded joint (ASTM A-36, Inconel, and AISI 8630 M) used in the union of pipes present in the offshore oil production lines. The crack was placed 1 mm from fusion line (FL) Inconel-AISI 8630 M toward the AISI 8630 M. Finite Element Method (FEM) was used to analyze stress and strain fields generated during the loading imposed on the specimen. It was possible observing critical stress area by the numerical tool as well as a preferential plastic flow was also observed in the sample of dissimilar welded joint, which can be considered a harbinger of the crack growth path. The results obtained through numerical analysis showed a convergent behavior in relation to the plastic flow, qualitatively and quantitatively, in agreement with previous performed.

Keywords: crack, dissimilar welded joint, numerical analysis, strain field, the stress field

Procedia PDF Downloads 171
1081 Reducing Environmental Impact of Olive Oil Production in Sakaka City Using Combined Chemical, Physical, and Biological Treatment

Authors: Abdullah Alhajoj, Bassam Alowaiesh

Abstract:

This work aims to reduce the risks of discharging olive mill waste directly to the environment without treatment in Sakaka City, KSA. The organic loads expressed by chemical oxygen demand (COD) and biological oxygen demand (BOD) of the produced wastewater (OMWW) as well as the solid waste (OMW) were evaluated. The wastes emitted from the three-phase centrifuge decanters was found to be higher than that emitted from the two-phase centrifuge decanters. The olive mill wastewater (OMWW) was treated using advanced oxidation combined with filtration treatment. The results indicated that the concentration of COD, BOD, TSS, oil and grease and phenol was reduced by using complex sand filtration from 72150, 21660 10256, 36430, and 1470 mg/l to 980, 421, 58, 68, and 0.35 mg/l for three-phase OMWW and from 150562, 17955, 15325, 19658 and 2153 mg/l to 1050, 501, 29, 0.75, and 0.29 mg/l, respectively. While, by using modified trickling filter (packed with the neck of waste plastic bottles the concentration of the previously mentioned parameters was reduced to 1190, 570, 55, 0.85, and 0.3 mg/l, respectively. This work supports the application of such treatment technique for reducing the environmental threats of olive mill waste effluents in Saudi Arabia.

Keywords: two-phase, three-phase, olive mill, olive oil, waste treatment, filtration, advanced oxidation, waste plastic bottles

Procedia PDF Downloads 153
1080 Selectivity Mechanism of Cobalt Precipitation by an Imidazole Linker From an Old Battery Solution

Authors: Anna-Caroline Lavergne-Bril, Jean-François Colin, David Peralta, Pascale Maldivi

Abstract:

Cobalt is a critical material, widely used in Li-ion batteries. Due to the planned electrification of European vehicles, cobalt needs are expending – and resources are limited. To meet the needs in cobalt to come, it is necessary to develop new efficient ways to recycle cobalt. One of the biggest sources comes from old electrical vehicles batteries (batteries sold in 2019: 500 000 tons of waste to be). A closed loop process of cobalt recycling has been developed and this presentation aims to present the selectivity mechanism of cobalt over manganese and nickel in solution. Cobalt precipitation as a ZIF material (Zeolitic Imidazolate framework) from a starting solution composed of equimolar nickel, manganese and cobalt is studied. A 2-MeIm (2-methylimidazole) linker is introduced in a multimetallic Ni, Mn, Co solution and the resulting ZIF-67 is 100% pure Co among its metallic centers. Selectivity of Co over Ni is experimentally studied and DFT modelisation calculation are conducted to understand the geometry of ligand-metal-solvent complexes in solution. Selectivity of Co over Mn is experimentally studied, and DFT modelisation calcucation are conducted to understand the link between pKa of the ligand and precipitration of Mn impurities within the final material. Those calculation open the way to other ligand being used in the same process, with more efficiency. Experimental material are synthetized from bimetallic (Ni²⁺/Co²⁺, Mn²⁺/Co²⁺, Mn²⁺/Ni²⁺) solutions. Their crystallographic structure is analysed by XRD diffraction (Brüker AXS D8 diffractometer, Cu anticathode). Morphology is studied by scanning electron microscopy, using a LEO 1530 FE-SEM microscope. The chemical analysis is performed by using ICP-OES (Agilent Technologies 700 series ICP-OES). Modelisation calculation are DFT calculation (density functional theory), using B3LYP, conducted with Orca 4.2.

Keywords: MOFs, ZIFs, recycling, closed-loop, cobalt, li-ion batteries

Procedia PDF Downloads 137
1079 Flexural Behavior of Composite Hybrid Beam Models Combining Steel Inverted T-Section and RC Flange

Authors: Abdul Qader Melhem, Hacene Badache

Abstract:

This paper deals with the theoretical and experimental study of shear connection via simple steel reinforcement shear connectors, which are steel reinforcing bars bent into L-shapes, instead of commonly used headed studs. This suggested L-shape connectors are readily available construction material in steel reinforcement. The composite section, therefore, consists of steel inverted T-section being embedded within a lightly reinforced concrete flange at the top slab as a unit. It should be noted that the cross section of these composite models involves steel inverted T-beam, replacing the steel top flange of a standard commonly employed I-beam section. The paper concentrates on the elastic and elastic-plastic behavior of these composite models. Failure modes either by cracking of concrete or shear connection be investigated in details. Elastic and elastoplastic formulas of the composite model have been computed for different locations of NA. Deflection formula has been derived, its value was close to the test value. With a supportive designing curve, this curve is valuable for both designing engineers and researchers. Finally, suggested designing curves and valuable equations will be presented. A check is made between theoretical and experimental outcomes.

Keywords: composite, elastic-plastic, failure, inverted T-section, L-Shape connectors

Procedia PDF Downloads 227
1078 Optimization of Cutting Parameters on Delamination Using Taguchi Method during Drilling of GFRP Composites

Authors: Vimanyu Chadha, Ranganath M. Singari

Abstract:

Drilling composite materials is a frequently practiced machining process during assembling in various industries such as automotive and aerospace. However, drilling of glass fiber reinforced plastic (GFRP) composites is significantly affected by damage tendency of these materials under cutting forces such as thrust force and torque. The aim of this paper is to investigate the influence of the various cutting parameters such as cutting speed and feed rate; subsequently also to study the influence of number of layers on delamination produced while drilling a GFRP composite. A plan of experiments, based on Taguchi techniques, was instituted considering drilling with prefixed cutting parameters in a hand lay-up GFRP material. The damage induced associated with drilling GFRP composites were measured. Moreover, Analysis of Variance (ANOVA) was performed to obtain minimization of delamination influenced by drilling parameters and number layers. The optimum drilling factor combination was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that feed rate was the most influential factor on the delamination. The best results of the delamination were obtained with composites with a greater number of layers at lower cutting speeds and feed rates.

Keywords: analysis of variance, delamination, design optimization, drilling, glass fiber reinforced plastic composites, Taguchi method

Procedia PDF Downloads 258
1077 Low-Density Polyethylene Film Biodegradation Potential by Fungal Species From Thailand

Authors: Patcharee Pripdeevech, Sarunpron Khruengsai

Abstract:

Thirty fungi were tested for their degradation ability on low-density polyethylene (LDPE) plastic film. Biodegradation of all fungi was screened in mineral salt medium broth containing LDPE film as the sole carbon source for 30 days. Diaporthe italiana, Thyrostroma jaczewskii, Colletotrichum fructicola, and Stagonosporopsis citrulli were able to colonize and cover the surface of LDPE film in media. The degradation test result was compared to those obtained from Aspergillus niger. LDPE films cocultured with D. italiana, T. jaczewskii, C. fructicola, S. citrulli, A. niger, and control showed weight loss of 43.90%, 46.34%, 48.78%, 45.12%, 28.78%, and 10.85%, respectively. The tensile strength of degraded LDPE films cocultured with D. italiana, T. jaczewskii, C. fructicola, S. citrulli, A. niger, and control also reduced significantly by 1.56 MPa, 1.78 MPa, 0.43 MPa, 1.86 MPa, 3.34 MPa, and 9.98 MPa, respectively. Analysis of LDPE films by Fourier transform infrared spectroscopy and scanning electron microscopy confirmed the biodegradation by the presence of morphological changes such as cracks, scions, and holes on the surface of the film. These fungi have the ability to break down and consume the LDPE film, especially C. fructicola. These findings showed the potential of fungi in Thailand that play an important role in LDPE film degradation.

Keywords: plastic biodegradation, LDPE film, fungi, Fourier transform infrared, scanning electron microscopy

Procedia PDF Downloads 134
1076 Production of Bricks Using Mill Waste and Tyre Crumbs at a Low Temperature by Alkali-Activation

Authors: Zipeng Zhang, Yat C. Wong, Arul Arulrajah

Abstract:

Since automobiles became widely popular around the early 20th century, end-of-life tyres have been one of the major types of waste humans encounter. Every minute, there are considerable quantities of tyres being disposed of around the world. Most end-of-life tyres are simply landfilled or simply stockpiled, other than recycling. To address the potential issues caused by tyre waste, incorporating it into construction materials can be a possibility. This research investigated the viability of manufacturing bricks using mill waste and tyre crumb by alkali-activation at a relatively low temperature. The mill waste was extracted from a brick factory located in Melbourne, Australia, and the tyre crumbs were supplied by a local recycling company. As the main precursor, the mill waste was activated by the alkaline solution, which was comprised of sodium hydroxide (8m) and sodium silicate (liquid). The introduction ratio of alkaline solution (relative to the solid weight) and the weight ratio between sodium hydroxide and sodium silicate was fixed at 20 wt.% and 1:1, respectively. The tyre crumb was introduced to substitute part of the mill waste at four ratios by weight, namely 0, 5, 10 and 15%. The mixture of mill waste and tyre crumbs were firstly dry-mixed for 2 min to ensure the homogeneity, followed by a 2.5-min wet mixing after adding the solution. The ready mixture subsequently was press-moulded into blocks with the size of 109 mm in length, 112.5 mm in width and 76 mm in height. The blocks were cured at 50°C with 95% relative humidity for 2 days, followed by a 110°C oven-curing for 1 day. All the samples were then placed under the ambient environment until the age of 7 and 28 days for testing. A series of tests were conducted to evaluate the linear shrinkage, compressive strength and water absorption of the samples. In addition, the microstructure of the samples was examined via the scanning electron microscope (SEM) test. The results showed the highest compressive strength was 17.6 MPa, found in the 28-day-old group using 5 wt.% tyre crumbs. Such strength has been able to satisfy the requirement of ASTM C67. However, the increasing addition of tyre crumb weakened the compressive strength of samples. Apart from the strength, the linear shrinkage and water absorption of all the groups can meet the requirements of the standard. It is worth noting that the use of tyre crumbs tended to decrease the shrinkage and even caused expansion when the tyre content was over 15 wt.%. The research also found that there was a significant reduction in compressive strength for the samples after water absorption tests. In conclusion, the tyre crumbs have the potential to be used as a filler material in brick manufacturing, but more research needs to be done to tackle the durability problem in the future.

Keywords: bricks, mill waste, tyre crumbs, waste recycling

Procedia PDF Downloads 122
1075 Eliminating Arm, Neck and Leg Fatigue of United Asia International Plastics Corporation Workers through Rapid Entire Body Assessment

Authors: John Cheferson R. De Belen, John Paul G. Elizares, Ronald John G. Raz, Janina Elyse A. Reyes, Charie G. Salengua, Aristotle L. Soriano

Abstract:

Plastic is a type of synthetic or man-made polymer that can readily be molded into a variety of products. Its usage over the past century has enabled society to make huge technological advances. The workers of United Asia International Plastics Corporation (UAIPC), a plastic manufacturing company performs manual packaging which causes fatigue and stress on their arm, neck, and legs due to extended periods of standing and repetitive motions. With the use of the Fishbone Diagram, Five-Why Analysis, Rapid Entire Body Assessment (REBA), and Anthropometry, the stressful tasks and activities were identified and analyzed. Given the anthropometric measurements obtained from the workers, improved dimensions for the tables and chairs should be used and provide a new packaging machine. The validation of this proposal shall follow after its implementation. By eliminating fatigue during working hours in the production, the workers will be at ease at performing their work properly; productivity will increase that will lead to more profit. Further areas for study include measurement and comparison of the worker’s anthropometric measurement with the industry standard.

Keywords: anthropometry, fishbone diagram, five-why analysis, rapid entire body assessment

Procedia PDF Downloads 265
1074 Combined Effects of Microplastics and Climate Change on Marine Life

Authors: Vikrant Sinha, Himanshu Singh, Nitish Kumar Singh, Sujal Nag

Abstract:

This research creates an urgent and complex challenge for marine ecosystems. Microplastics were primarily found on land, but now they are pervasive in marine environments as well, affecting a wide range of marine species, from zooplankton to larger mammals that live in those environments. These pollutants interfere with major biological processes like feeding and reproduction, causing disruption throughout the food web as microplastics are getting accumulated at different tropic levels. Meanwhile, climatic changes made these effects more accelerated, and the concentration of microplastics due to these occurrences is increasing day by day. Rising temperatures, melting ice, increased runoff due to rainfall, and shifting wind patterns are transforming marine life in a way that intensifies the burden on marine life. This dual stress is particularly present in fragile ecosystems of marine life, such as coral reefs and mangroves. Addressing this twisted crisis requires not only efforts to restrain plastic pollution but also adapts strategies for climate mitigation. This research emphasizes the critical need to combine approaches to save marine biodiversity and withstand the rapid changes in the environment.

Keywords: microplastic pollution, climate change impacts, marine ecosystems, biodiversity threats, zooplankton ingestion, trophic accumulation, coral reef degradation, ecosystem resilience, plastic pollution mitigation, climate adaptation strategies, SST, sea surface temperature

Procedia PDF Downloads 10
1073 Effect of Permeability on Glass Fiber Reinforced Plastic Laminate Produced by Vacuum Assisted Resin Transfer Molding Process

Authors: Nagri Sateesh, Kundavarapu Vengalrao, Kopparthi Phaneendra Kumar

Abstract:

Vacuum assisted resin transfer molding (VARTM) is one of the manufacturing technique that is viable for production of fiber reinforced polymer composite components suitable for aerospace, marine and commercial applications. However, the repeatable quality of the product can be achieved by critically fixing the process parameters such as Vacuum Pressure (VP) and permeability of the preform. The present investigation is aimed at studying the effect of permeability for production of Glass Fiber Reinforced Plastic (GFRP) components with consistent quality. The VARTM mould is made with an acrylic transparent top cover to observe and record the resin flow pattern. Six layers of randomly placed glass fiber under five different vacuum pressures VP1 = 0.013, VP2 = 0.026, VP3 = 0.039, VP4 = 0.053 and VP5 = 0.066 MPa were studied. The laminates produced by this process under the above mentioned conditions were characterized with ASTM D procedures so as to study the effect of these process parameters on the quality of the laminate. Moreover, as mentioned there is a considerable effect of permeability on the impact strength and the void content in the laminates under different vacuum pressures. SEM analysis of the impact tested fractured GFRP composites showed the bonding of fiber and matrix.

Keywords: permeability, vacuum assisted resin transfer molding (VARTM), ASTM D standards, SEM

Procedia PDF Downloads 160
1072 The Effect of Size and Tumor Depth on Histological Clearance Margins of Basal Cell Carcinomas

Authors: Martin Van, Mohammed Javed, Sarah Hemington-Gorse

Abstract:

Aim: Our aim was to determine the effect of size and tumor depth of basal cell carcinomas (BCCs) on surgical margin clearance. Methods: A retrospective study was conducted at the Welsh Centre for Burns and Plastic Surgery (WCBPS), Morriston Hospital between 1 Jan 2016 – 31 July 2016. Only patients with confirmed BCC on histopathological analysis were included. Patient data including anatomical region treated, lesion size, histopathological clearance margins and histological sub-types were recorded. An independent T-test was performed determine statistical significance. Results: A total of 228 BCCs were excised in 160 patients. Eleven lesions (4.8%) were incompletely excised. The nose area had the highest rate of incomplete excision. The mean diameter of incompletely excised lesions was 11.4mm vs 11.5mm in completely excised lesions (p=0.959) and the mean histological depth of incompletely excised lesions was 4.1mm vs. 2.5mm for completely excised BCCs (p < 0.05). Conclusions: BCC tumor depth of > 4.1 mm was associated with high rate of incomplete margin clearance. Hence, in prospective patients, a BCC tumor depth (>4 mm) on tissue biopsy should alert the surgeon of potentially higher risk of incomplete excision of lesion.

Keywords: basal cell carcinoma, excision margins, plastic surgery, treatment

Procedia PDF Downloads 238
1071 Experimental Characterization of Flowable Cement Pastes Made with Marble Waste

Authors: F. Messaoudi, O. Haddad, R. Bouras, S. Kaci

Abstract:

The development of self-compacting concrete (SCC) marks a huge step towards improved efficiency and working conditions on construction sites and in the precast industry. SCC flows easily into more complex shapes and through reinforcement bars, reduces the manpower required for the placement; no vibration is required to ensure correct compaction of concrete. This concrete contains a high volume of binder which is controlled by their rheological behavior. The paste consists of binders (Portland cement with or without supplementary cementitious materials), water, chemical admixtures and fillers. In this study, two series of tests were performed on self-compacting cement pastes made with marble waste additions as the mineral addition. The first series of this investigation was to determine the flow time of paste using Marsh cone, the second series was to determine the rheological parameters of the same paste namely yield stress and plastic viscosity using the rheometer Haake RheoStress 1. The results of this investigation allowed us to study the evolution of the yield stress, viscosity and the flow time Marsh cone paste as a function of the composition of the paste. A correlation between the results obtained on the flow test Marsh cone and those of the plastic viscosity on the mottled different cement pastes is proposed.

Keywords: adjuvant, rheological parameter, self-compacting cement pastes, waste marble

Procedia PDF Downloads 276
1070 Anaerobic Soil Disinfestation: Feasible Alternative to Soil Chemical Fumigants

Authors: P. Serrano-Pérez, M. C. Rodríguez-Molina, C. Palo, E. Palo, A. Lacasa

Abstract:

Phytophthora nicotianae is the principal causal agent of root and crown rot disease of red pepper plants in Extremadura (Western Spain). There is a need to develop a biologically-based method of soil disinfestation that facilitates profitable and sustainable production without the use of chemical fumigants. Anaerobic Soil Disinfestation (ASD), as well know as biodisinfestation, has been shown to control a wide range of soil-borne pathogens and nematodes in numerous crop production systems. This method implies soil wetting, incorporation of a easily decomposable carbon-rich organic amendment and covering with plastic film for several weeks. ASD with rapeseed cake (var. Tocatta, a glucosinolates-free variety) used as C-source was assayed in spring 2014, before the pepper crop establishment. The field experiment was conducted at the Agricultural Research Centre Finca La Orden (Southwestern Spain) and the treatments were: rapeseed cake (RCP); rapeseed cake without plastic cover (RC); control non-amendment (CP) and control non-amendment without plastic cover (C). The experimental design was a randomized complete block design with four replicates and a plot size of 5 x 5 m. On 26 March, rapeseed cake (1 kg·m-2) was incorporated into the soil with a rotovator. Biological probes with the inoculum were buried at 15 and 30-cm depth (biological probes were previously prepared with 100 g of disinfected soil inoculated with chlamydospores (chlam) of P. nicotianae P13 isolate [100 chlam·g-1 of soil] and wrapped in agryl cloth). Sprinkler irrigation was run until field capacity and the corresponding plots were covered with transparent plastic (PE 0.05 mm). On 6 May plastics were removed, the biological probes were dug out and a bioassay was established. One pepper seedling at the 2 to 4 true-leaves stage was transplanted in the soil from each biological probe. Plants were grown in a climatic chamber and disease symptoms were recorded every week during 2 months. Fragments of roots and crown of symptomatic plants were analyzed on NARPH media and soil from rizospheres was analyzed using carnation petals as baits. Results of “survival” were expressed as the percentage of soil samples where P. nicotianae was detected and results of “infectivity” were expressed as the percentage of diseased plants. No differences were detected in deep effect. Infectivity of P. nicotianae chlamydospores was successfully reduced in RCP treatment (4.2% of infectivity) compared with the controls (41.7% of infectivity). The pattern of survival was similar to infectivity observed by the bioassay: 21% of survival in RCP; 79% in CP; 83% in C and 87% in RC. Although ASD may be an effective alternative to chemical fumigants to pest management, more research is necessary to show their impact on the microbial community and chemistry of the soil.

Keywords: biodisinfestation, BSD, soil fumigant alternatives, organic amendments

Procedia PDF Downloads 217
1069 A Study on the Interlaminar Shear Strength of Carbon Fiber Reinforced Plastics Depending on the Lamination Methods

Authors: Min Sang Lee, Hee Jae Shin, In Pyo Cha, Sun Ho Ko, Hyun Kyung Yoon, Hong Gun Kim, Lee Ku Kwac

Abstract:

The prepreg process among the CFRP (Carbon Fiber Reinforced Plastic) forming methods is the short term of ‘Pre-impregnation’, which is widely used for aerospace composites that require a high quality property such as a fiber-reinforced woven fabric, in which an epoxy hardening resin is impregnated. the reality is, however, that this process requires continuous researches and developments for its commercialization because the delamination characteristically develops between the layers when a great weight is loaded from outside. to supplement such demerit, three lamination methods among the prepreg lamination methods of CFRP were designed to minimize the delamination between the layers due to external impacts. Further, the newly designed methods and the existing lamination methods were analyzed through a mechanical characteristic test, Interlaminar Shear Strength test. The Interlaminar Shear Strength test result confirmed that the newly proposed three lamination methods, i.e. the Roll, Half and Zigzag laminations, presented more excellent strengths compared to the conventional Ply lamination. The interlaminar shear strength in the roll method with relatively dense fiber distribution was approximately 1.75% higher than that in the existing ply lamination method, and in the half method, it was approximately 0.78% higher.

Keywords: carbon fiber reinforced plastic(CFRP), pre-impregnation, laminating method, interlaminar shear strength (ILSS)

Procedia PDF Downloads 372
1068 Organic Fertilizers Mitigate Microplastics Toxicity in Agricultural Soil

Authors: Ghulam Abbas Shah, Maqsood Sadiq, Ahsan Yasin

Abstract:

Massive global plastic production, combined with poor degradation and recycling, leads to significant environmental pollution from microplastics, whose effects on plants in the soil remain understudied. Besides, effective mitigation strategies and their impact on ammonia (NH₃) emissions under varying fertilizer management practices remains sketchy. Therefore, the objectives of the study were (i) to determine the impact of organic fertilizers on the toxicity of microplastics in sorghum and physicochemical characteristics of microplastics-contaminated soil and (ii) to assess the impacts of these fertilizers on NH₃ emissions from this soil. A field experiment was conducted using sorghum as a test crop. Treatments were: (i) Control (C), (ii) Microplastics (MP), (iii) Inorganic fertilizer (IF), (iv) MPIF, (v) Farmyard manure (FM), (vi) MPFM, (vii) Biochar (BC), and (viii) MPBC, arranged in a randomized complete block design (RCBD) with three replicates. Microplastics of polyvinyl chloride (PVC) were applied at a rate of 1.5 tons ha-¹, and all fertilizers were applied at the recommended dose of 90 kg N ha-¹. Soil sampling was done before sowing and after harvesting the sorghum, with samples analyzed for chemical properties and microbial biomass. Crop growth and yield attributes were measured. In a parallel pot experiment, NH₃ emissions were measured using passive flux samplers over 72 hours following the application of treatments similar to those used in the field experiment. Application of MPFM, MPBC and MPIF reduced soil mineral nitrogen by 8, 20 and 38% compared to their sole treatments, respectively. Microbial biomass carbon (MBC) was reduced by 19, 25 and 59% in MPIF, MPBC and MPFM as compared to their sole application, respectively. Similarly, the respective reduction in microbial biomass nitrogen (MBN) was 10, 27 and 66%. The toxicity of microplastics was mitigated by MPFM and MPBC, each with only a 5% reduction in grain yield of sorghum relative to their sole treatments. The differences in nitrogen uptake between BC vs. MPBC, FM vs. MPFM, and IF vs. MPIF were 8, 10, and 12 kg N ha-¹, respectively, indicating that organic fertilizers mitigate microplastic toxicity in the soil. NH₃ emission was reduced by 5, 11 and 20% after application of MPFM, MPBC and MPIF than their sole treatments, respectively. The study concludes that organic fertilizers such as FM and BC can effectively mitigate the toxicity of microplastics in soil, leading to improved crop growth and yield.

Keywords: microplastics, soil characteristics, crop n uptake, biochar, NH₃ emissions

Procedia PDF Downloads 39
1067 Microplastics in Fish from Grenada, West Indies: Problems and Opportunities

Authors: Michelle E. Taylor, Clare E. Morrall

Abstract:

Microplastics are small particles produced for industrial purposes or formed by breakdown of anthropogenic debris. Caribbean nations import large quantities of plastic products. The Caribbean region is vulnerable to natural disasters and Climate Change is predicted to bring multiple additional challenges to island nations. Microplastics have been found in an array of marine environments and in a diversity of marine species. Occurrence of microplastic in the intestinal tracts of marine fish is a concern to human and ecosystem health as pollutants and pathogens can associate with plastics. Studies have shown that the incidence of microplastics in marine fish varies with species and location. Prevalence of microplastics (≤ 5 mm) in fish species from Grenadian waters (representing pelagic, semi-pelagic and demersal lifestyles) harvested for human consumption have been investigated via gut analysis. Harvested tissue was digested in 10% KOH and particles retained on a 0.177 mm sieve were examined. Microplastics identified have been classified according to type, colour and size. Over 97% of fish examined thus far (n=34) contained microplastics. Current and future work includes examining the invasive Lionfish (Pterois spp.) for microplastics, investigating marine invertebrate species as well as examining environmental sources of microplastics (i.e. rivers, coastal waters and sand). Owing to concerns of pollutant accumulation on microplastics and potential migration into organismal tissues, we plan to analyse fish tissue for mercury and other persistent pollutants. Despite having ~110,000 inhabitants, the island nation of Grenada imported approximately 33 million plastic bottles in 2013, of which it is estimated less than 5% were recycled. Over 30% of the imported bottles were ‘unmanaged’, and as such are potential litter/marine debris. A revised Litter Abatement Act passed into law in Grenada in 2015, but little enforcement of the law is evident to date. A local Non-governmental organization (NGO) ‘The Grenada Green Group’ (G3) is focused on reducing litter in Grenada through lobbying government to implement the revised act and running sessions in schools, community groups and on local media and social media to raise awareness of the problems associated with plastics. A local private company has indicated willingness to support an Anti-Litter Campaign in 2018 and local awareness of the need for a reduction of single use plastic use and litter seems to be high. The Government of Grenada have called for a Sustainable Waste Management Strategy and a ban on both Styrofoam and plastic grocery bags are among recommendations recently submitted. A Styrofoam ban will be in place at the St. George’s University campus from January 1st, 2018 and many local businesses have already voluntarily moved away from Styrofoam. Our findings underscore the importance of continuing investigations into microplastics in marine life; this will contribute to understanding the associated health risks. Furthermore, our findings support action to mitigate the volume of plastics entering the world’s oceans. We hope that Grenada’s future will involve a lot less plastic. This research was supported by the Caribbean Node of the Global Partnership on Marine Litter.

Keywords: Caribbean, microplastics, pollution, small island developing nation

Procedia PDF Downloads 211
1066 50/50 Oil-Water Ratio Invert Emulsion Drilling Mud Using Vegetable Oil as Continuous Phase

Authors: P. C. Ihenacho, M. Burby, G. G. Nasr, G. C. Enyi

Abstract:

Formulation of a low oil-water ratio drilling mud with vegetable oil continuous phase without adversely affecting the mud rheology and stability has been a major challenge. A low oil-water ratio is beneficial in producing low fluid loss which is essential for wellbore stability. This study examined the possibility of 50/50 oil-water ratio invert emulsion drilling mud using a vegetable oil continuous phase. Jatropha oil was used as continuous phase. 12 ml of egg yolk which was separated from the albumen was added as the primary emulsifier additive. The rheological, stability and filtration properties were examined. The plastic viscosity and yield point were found to be 36cp and 17 Ib/100 ft2 respectively. The electrical stability at 48.9ºC was 353v and the 30 minutes fluid loss was 6ml. The results compared favourably with a similar formulation using 70/30 oil - water ratio giving plastic viscosity of 31cp, yield point of 17 Ib/100 ft2, electrical stability value of 480v and 12ml for the 30 minutes fluid loss. This study indicates that with a good mud composition using guided empiricism, 50/50 oil-water ratio invert emulsion drilling mud is feasible with a vegetable oil continuous phase. The choice of egg yolk as emulsifier additive is for compatibility with the vegetable oil and environmental concern. The high water content with no fluid loss additive will also minimise the cost of mud formulation.

Keywords: environmental compatibility, low cost of mud formulation, low fluid loss, wellbore stability

Procedia PDF Downloads 390
1065 Finite Element Modeling and Mechanical Properties of Aluminum Proceed by Equal Channel Angular Pressing Process

Authors: F. Al-Mufadi, F. Djavanroodi

Abstract:

During the last decade ultrafine grained (UFG) and nano-structured (NS) materials have experienced a rapid development. In this research work finite element analysis has been carried out to investigate the plastic strain distribution in equal channel angular process (ECAP). The magnitudes of standard deviation (S. D.) and inhomogeneity index (Ci) were compared for different ECAP passes. Verification of a three-dimensional finite element model was performed with experimental tests. Finally the mechanical property including impact energy of ultrafine grained pure commercially pure Aluminum produced by severe plastic deformation method has been examined. For this aim, equal channel angular pressing die with the channel angle, outer corner angle and channel diameter of 90°, 20° and 20 mm had been designed and manufactured. Commercial pure Aluminum billets were ECAPed up to four passes by route BC at the ambient temperature. The results indicated that there is a great improvement at the hardness measurement, yield strength and ultimate tensile strength after ECAP process. It is found that the magnitudes of HV reach 67 HV from 21 HV after the final stage of process. Also, about 330% and 285% enhancement at the YS and UTS values have been obtained after the fourth pass as compared to the as-received conditions, respectively. On the other hand, the elongation to failure and impact energy have been reduced by 23% and 50% after imposing four passes of ECAP process, respectively.

Keywords: SPD, ECAP, FEM, pure Al, mechanical properties

Procedia PDF Downloads 179
1064 Improvement in Plasticity Index and Group Index of Black Cotton Soil Using Palm Kernel Shell Ash

Authors: Patel Darshan Shaileshkumar, M. G. Vanza

Abstract:

Black cotton soil is problematic soil for any construction work. Black cotton soil contains montmorillonite in its structure. Due to this mineral, black cotton soil will attain maximum swelling and shrinkage. Due to these volume changes, it is necessary to stabilize black cotton soil before the construction of the road. For soil stabilization use of pozzolanic waste is found to be a good solution by some researchers. The palm kernel shell ash (PKSA) is a pozzolanic material that can be used for soil stabilization. Basically, PKSA is a waste material, and it is available at a cheap cost. Palm kernel shell is a waste material generated in palm oil mills. Then palm kernel shell is used in industries instead of coal for power generation. After the burning of a palm kernel shell, ash is formed; the ash is called palm kernel shell ash (PKSA). The PKSA contains a free lime content that will react chemically with the silicate and aluminate of black cotton soil and forms a C-S-H and C-A-H gel which will bines soil particles together and reduce the plasticity of the soil. In this study, the PKSA is added to the soil. It was found that with the addition of PKSA content in the soil, the liquid limit of the soil is decreased, the plastic limit of the soil is increased, and the plasticity of the soil is decreased. The group index value of the soil is evaluated, and it was found that with the addition of PKSA GI value of the soil is decreased, which indicates the strength of the soil is improved.

Keywords: palm kernel shell ash, black cotton soil, liquid limit, group index, plastic limit, plasticity index

Procedia PDF Downloads 110
1063 Identify the Risks Factors and Problems of Waste Management in Developing Countries as Hurdles

Authors: Zubair Ahmad

Abstract:

The aim of this study is to analyze the risks factors and issues with waste management in developing nations as barriers. Depending on their content and categorization, wastes are managed differently. Waste management strategies differ for liquid, solid, and organic wastes. The final stage of trash disposal entails procedures like burning, interment, recycling, and treatment. Due to the rising creation of solid waste, the growing urban population has a magnified impact on the environment and public health. All regions, but especially informal urban neighborhoods, tribal villages, and official rural settlements have a protracted backlog in waste services. Another significant impediment seen in the developing world is a lack of education and awareness of effective waste-management practices. Unauthorized dumpsites pose a serious risk to the environment since they could contain dangerous elements like radioactive, infectious, and toxic waste. Wealthier individuals are more inclined to think that their actions will have an impact on environmental problems and to act to address them. Waste managers need to take action to make sure the public is given information that is consistent with what they currently know. The results of the data analysis conducted with the aid of the various methodologies discussed in the preceding chapter are presented in this chapter by the researcher. Descriptive analysis has been used in research to determine whether or not there are relationships between variables and to determine the importance of the variables. According to a survey, there are no efforts being made to lessen the odor that garbage dump sites emit (in terms of treating or recycling the material placed at dumpsite) This might be the case since respondents only commented on the waste management conditions in their immediate surroundings and may not have fully understood the steps taken to resolve this issue.

Keywords: risk factor of waste material, lack of awareness, developing countries struggles, waste management

Procedia PDF Downloads 70