Search results for: solar modules
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1874

Search results for: solar modules

1874 Characteristics of Different Solar PV Modules under Partial Shading

Authors: Hla Hla Khaing, Yit Jian Liang, Nant Nyein Moe Htay, Jiang Fan

Abstract:

Partial shadowing is one of the problems that are always faced in terrestrial applications of solar photovoltaic (PV). The effects of partial shadow on the energy yield of conventional mono-crystalline and multi-crystalline PV modules have been researched for a long time. With deployment of new thin-film solar PV modules in the market, it is important to understand the performance of new PV modules operating under the partial shadow in the tropical zone. This paper addresses the impacts of different partial shadowing on the operating characteristics of four different types of solar PV modules that include multi-crystalline, amorphous thin-film, CdTe thin-film and CIGS thin-film PV modules.

Keywords: partial shade, CdTe, CIGS, multi-crystalline (mc-Si), amorphous silicon (a-Si), bypass diode

Procedia PDF Downloads 408
1873 A Three-Dimensional TLM Simulation Method for Thermal Effect in PV-Solar Cells

Authors: R. Hocine, A. Boudjemai, A. Amrani, K. Belkacemi

Abstract:

Temperature rising is a negative factor in almost all systems. It could cause by self heating or ambient temperature. In solar photovoltaic cells this temperature rising affects on the behavior of cells. The ability of a PV module to withstand the effects of periodic hot-spot heating that occurs when cells are operated under reverse biased conditions is closely related to the properties of the cell semi-conductor material. In addition, the thermal effect also influences the estimation of the maximum power point (MPP) and electrical parameters for the PV modules, such as maximum output power, maximum conversion efficiency, internal efficiency, reliability, and lifetime. The cells junction temperature is a critical parameter that significantly affects the electrical characteristics of PV modules. For practical applications of PV modules, it is very important to accurately estimate the junction temperature of PV modules and analyze the thermal characteristics of the PV modules. Once the temperature variation is taken into account, we can then acquire a more accurate MPP for the PV modules, and the maximum utilization efficiency of the PV modules can also be further achieved. In this paper, the three-Dimensional Transmission Line Matrix (3D-TLM) method was used to map the surface temperature distribution of solar cells while in the reverse bias mode. It was observed that some cells exhibited an inhomogeneity of the surface temperature resulting in localized heating (hot-spot). This hot-spot heating causes irreversible destruction of the solar cell structure. Hot spots can have a deleterious impact on the total solar modules if individual solar cells are heated. So, the results show clearly that the solar cells are capable of self-generating considerable amounts of heat that should be dissipated very quickly to increase PV module's lifetime.

Keywords: thermal effect, conduction, heat dissipation, thermal conductivity, solar cell, PV module, nodes, 3D-TLM

Procedia PDF Downloads 350
1872 Implementation of Industrial Ecology Principles in the Production and Recycling of Solar Cells and Solar Modules

Authors: Julius Denafas, Irina Kliopova, Gintaras Denafas

Abstract:

Three opportunities for implementation of industrial ecology principles in the real industrial production of c-Si solar cells and modules are presented in this study. It includes: material flow dematerialisation, product modification and industrial symbiosis. Firstly, it is shown how the collaboration between R&D institutes and industry helps to achieve significant reduction of material consumption by a) refuse from phosphor silicate glass cleaning process and b) shortening of silicon nitride coating production step. Secondly, it was shown how the modification of solar module design can reduce the CO2 footprint for this product and enhance waste prevention. It was achieved by implementing a frameless glass/glass solar module design instead of glass/backsheet with aluminium frame. Such a design change is possible without purchasing new equipment and without loss of main product properties like efficiency, rigidity and longevity. Thirdly, industrial symbiosis in the solar cell production is possible in such case when manufacturing waste (silicon wafer and solar cell breakage) also used solar modules are collected, sorted and supplied as raw-materials to other companies involved in the production chain of c-Si solar cells. The obtained results showed that solar cells produced from recycled silicon can have a comparable electrical parameters like produced from standard, commercial silicon wafers. The above mentioned work was performed at solar cell producer Soli Tek R&D in the frame of H2020 projects CABRISS and Eco-Solar.

Keywords: manufacturing, process optimisation, recycling, solar cells, solar modules, waste prevention

Procedia PDF Downloads 101
1871 Research on the Effect of Accelerated Aging Illumination Mode on Bifacial Solar Modules

Authors: T. H. Huang, C. L. Fern, Y. K. Tseng

Abstract:

The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. Bifacial solar cells not only absorb light from the front side but also absorb light reflected from the ground on the back side, surpassing the performance of single-sided solar cells. Due to the asymmetry of the two sides of the light, in addition to the difference in photovoltaic conversion efficiency, there will also be differences in heat distribution, which will affect the electrical properties and material structure of the bifacial solar cell itself. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with UVC light sources and halogen lamps for accelerated aging, as well as a control group without aging. After two weeks of accelerated aging, the bifacial solar cells were visual observation, and infrared thermal images were taken; then, the samples were subjected to IV measurement, and samples were taken for SEM, Raman, and XRD analyses in order to identify the defects that lead to failure and chemical changes, as well as to analyze the reasons for the degradation of their characteristics. From the results of the analysis, it is found that aging will cause carbonization of the polymer material on the surface of bifacial solar cells, and the crystal structure will be affected.

Keywords: bifacial solar cell, accelerated aging, temperature, characterization, electrical measurement

Procedia PDF Downloads 55
1870 Electrical and Thermal Characteristics of a Photovoltaic Solar Wall with Passive and Active Ventilation through a Room

Authors: Himanshu Dehra

Abstract:

An experimental study was conducted for ascertaining electrical and thermal characteristics of a pair of photovoltaic (PV) modules integrated with solar wall of an outdoor room. A pre-fabricated outdoor room was setup for conducting outdoor experiments on a PV solar wall with passive and active ventilation through the outdoor room. The selective operating conditions for glass coated PV modules were utilized for establishing their electrical and thermal characteristics. The PV solar wall was made up of glass coated PV modules, a ventilated air column, and an insulating layer of polystyrene filled plywood board. The measurements collected were currents, voltages, electric power, air velocities, temperatures, solar intensities, and thermal time constant. The results have demonstrated that: i) a PV solar wall installed on a wooden frame was of more heat generating capacity in comparison to a window glass or a standalone PV module; ii) generation of electric power was affected with operation of vertical PV solar wall; iii) electrical and thermal characteristics were not significantly affected by heat and thermal storage losses; and iv) combined heat and electricity generation were function of volume of thermal and electrical resistances developed across PV solar wall. Finally, a comparison of temperature plots of passive and active ventilation envisaged that fan pressure was necessary to avoid overheating of the PV solar wall. The active ventilation was necessary to avoid over-heating of the PV solar wall and to maintain adequate ventilation of room under mild climate conditions.

Keywords: photovoltaic solar wall, solar energy, passive ventilation, active ventilation

Procedia PDF Downloads 369
1869 The Use of Industrial Ecology Principles in the Production of Solar Cells and Solar Modules

Authors: Julius Denafas, Irina Kliopova, Gintaras Denafas

Abstract:

Three opportunities for implementation of industrial ecology principles in the real industrial production of c-Si solar cells and modules are presented in this study. It includes: material flow dematerialisation, product modification and industrial symbiosis. Firstly, it is shown how the collaboration between R&D institutes and industry helps to achieve significant reduction of material consumption by a) refuse from phosphor silicate glass cleaning process and b) shortening of SiNx coating production step. This work was performed in the frame of Eco-Solar project, where Soli Tek R&D is collaborating together with the partners from ISC-Konstanz institute. Secondly, it was shown how the modification of solar module design can reduce the CO2 footprint for this product and enhance waste prevention. It was achieved by implementing a frameless glass/glass solar module design instead of glass/backsheet with aluminium frame. Such a design change is possible without purchasing new equipment and without loss of main product properties like efficiency, rigidity and longevity. Thirdly, industrial symbiosis in the solar cell production is possible in such case when manufacturing waste (silicon wafer and solar cell breakage) are collected, sorted and supplied as raw-materials to other companies involved in the production chain of c-Si solar cells. The obtained results showed that solar cells produced from recycled silicon can have a comparable electrical parameters like produced from standard, commercial silicon wafers. The above mentioned work was performed at solar cell producer Soli Tek R&D in the frame of H2020 projects CABRISS and Eco-Solar.

Keywords: solar cells and solar modules, manufacturing, waste prevention, recycling

Procedia PDF Downloads 176
1868 Electrical Performance Analysis of Single Junction Amorphous Silicon Solar (a-Si:H) Modules Using IV Tracer (PVPM)

Authors: Gilbert Omorodion Osayemwenre, Edson Meyer, R. T. Taziwa

Abstract:

The electrical analysis of single junction amorphous silicon solar modules is carried out using outdoor monitoring technique. Like crystalline silicon PV modules, the electrical characterisation and performance of single junction amorphous silicon modules are best described by its current-voltage (IV) characteristic. However, IV curve has a direct dependence on the type of PV technology and material properties used. The analysis reveals discrepancies in the modules performance parameter even though they are of similar technology. The aim of this work is to compare the electrical performance output of each module, using electrical parameters with the aid of PVPM 100040C IV tracer. These results demonstrated the relevance of standardising the performance parameter for effective degradation analysis of a-Si:H.

Keywords: PVPM 100040C IV tracer, SolarWatt part, single junction amorphous silicon module (a-Si:H), Staebler-Wronski (S-W) degradation effect

Procedia PDF Downloads 281
1867 Spectral Response Measurements and Materials Analysis of Ageing Solar Photovoltaic Modules

Authors: T. H. Huang, C. Y. Gao, C. H. Lin, J. L. Kwo, Y. K. Tseng

Abstract:

The design and reliability of solar photovoltaic modules are crucial to the development of solar energy, and efforts are still being made to extend the life of photovoltaic modules to improve their efficiency because natural aging is time-consuming and does not provide manufacturers and investors with timely information, accelerated aging is currently the best way to estimate the life of photovoltaic modules. In this study, the accelerated aging of different light sources was combined with spectral response measurements to understand the effect of light sources on aging tests. In this study, there are two types of experimental samples: packaged and unpackaged and then irradiated with full-spectrum and UVC light sources for accelerated aging, as well as a control group without aging. The full-spectrum aging was performed by irradiating the solar cell with a xenon lamp like the solar spectrum for two weeks, while the accelerated aging was performed by irradiating the solar cell with a UVC lamp for two weeks. The samples were first visually observed, and infrared thermal images were taken, and then the electrical (IV) and Spectral Responsivity (SR) data were obtained by measuring the spectral response of the samples, followed by Scanning Electron Microscopy (SEM), Raman spectroscopy (Raman), and X-ray Diffraction (XRD) analysis. The results of electrical (IV) and Spectral Responsivity (SR) and material analyses were used to compare the differences between packaged and unpackaged solar cells with full spectral aging, accelerated UVC aging, and unaged solar cells. The main objective of this study is to compare the difference in the aging of packaged and unpackaged solar cells by irradiating different light sources. We determined by infrared thermal imaging that both full-spectrum aging and UVC accelerated aging increase the defects of solar cells, and IV measurements demonstrated that the conversion efficiency of solar cells decreases after full-spectrum aging and UVC accelerated aging. SEM observed some scorch marks on both unpackaged UVC accelerated aging solar cells and unpackaged full-spectrum aging solar cells. Raman spectroscopy examines the Si intensity of solar cells, and XRD confirms the crystallinity of solar cells by the intensity of Si and Ag winding peaks.

Keywords: solar cell, aging, spectral response measurement

Procedia PDF Downloads 69
1866 Analysis of Accurate Direct-Estimation of the Maximum Power Point and Thermal Characteristics of High Concentration Photovoltaic Modules

Authors: Yan-Wen Wang, Chu-Yang Chou, Jen-Cheng Wang, Min-Sheng Liao, Hsuan-Hsiang Hsu, Cheng-Ying Chou, Chen-Kang Huang, Kun-Chang Kuo, Joe-Air Jiang

Abstract:

Performance-related parameters of high concentration photovoltaic (HCPV) modules (e.g. current and voltage) are required when estimating the maximum power point using numerical and approximation methods. The maximum power point on the characteristic curve for a photovoltaic module varies when temperature or solar radiation is different. It is also difficult to estimate the output performance and maximum power point (MPP) due to the special characteristics of HCPV modules. Based on the p-n junction semiconductor theory, a brand new and simple method is presented in this study to directly evaluate the MPP of HCPV modules. The MPP of HCPV modules can be determined from an irradiated I-V characteristic curve, because there is a non-linear relationship between the temperature of a solar cell and solar radiation. Numerical simulations and field tests are conducted to examine the characteristics of HCPV modules during maximum output power tracking. The performance of the presented method is evaluated by examining the dependence of temperature and irradiation intensity on the MPP characteristics of HCPV modules. These results show that the presented method allows HCPV modules to achieve their maximum power and perform power tracking under various operation conditions. A 0.1% error is found between the estimated and the real maximum power point.

Keywords: energy performance, high concentrated photovoltaic, maximum power point, p-n junction semiconductor

Procedia PDF Downloads 535
1865 Analyses of Defects in Flexible Silicon Photovoltaic Modules via Thermal Imaging and Electroluminescence

Authors: S. Maleczek, K. Drabczyk, L. Bogdan, A. Iwan

Abstract:

It is known that for industrial applications using solar panel constructed from silicon solar cells require high-efficiency performance. One of the main problems in solar panels is different mechanical and structural defects, causing the decrease of generated power. To analyse defects in solar cells, various techniques are used. However, the thermal imaging is fast and simple method for locating defects. The main goal of this work was to analyze defects in constructed flexible silicon photovoltaic modules via thermal imaging and electroluminescence method. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management. Thermal behavior was observed using thermographic camera (VIGOcam v50, VIGO System S.A, Poland) using a DC conventional source. Electroluminescence was observed by Steinbeis Center Photovoltaics (Stuttgart, Germany) equipped with a camera, in which there is a Si-CCD, 16 Mpix detector Kodak KAF-16803type. The camera has a typical spectral response in the range 350 - 1100 nm with a maximum QE of 60 % at 550 nm. In our work commercial silicon solar cells with the size 156 × 156 mm were cut for nine parts (called single solar cells) and used to create photovoltaic modules with the size of 160 × 70 cm (containing about 80 single solar cells). Flexible silicon photovoltaic modules on polyamides or polyester fabric were constructed and investigated taking into consideration anomalies on the surface of modules. Thermal imaging provided evidence of visible voltage-activated conduction. In electro-luminescence images, two regions are noticeable: darker, where solar cell is inactive and brighter corresponding with correctly working photovoltaic cells. The electroluminescence method is non-destructive and gives greater resolution of images thereby allowing a more precise evaluation of microcracks of solar cell after lamination process. Our study showed good correlations between defects observed by thermal imaging and electroluminescence. Finally, we can conclude that the thermographic examination of large scale photovoltaic modules allows us the fast, simple and inexpensive localization of defects at the single solar cells and modules. Moreover, thermographic camera was also useful to detection electrical interconnection between single solar cells.

Keywords: electro-luminescence, flexible devices, silicon solar cells, thermal imaging

Procedia PDF Downloads 283
1864 Photocapacitor Integrating Solar Energy Conversion and Energy Storage

Authors: Jihuai Wu, Zeyu Song, Zhang Lan, Liuxue Sun

Abstract:

Solar energy is clean, open, and infinite, but solar radiation on the earth is fluctuating, intermittent, and unstable. So, the sustainable utilization of solar energy requires a combination of high-efficient energy conversion and low-loss energy storage technologies. Hence, a photo capacitor integrated with photo-electrical conversion and electric-chemical storage functions in single device is a cost-effective, volume-effective and functional-effective optimal choice. However, owing to the multiple components, multi-dimensional structure and multiple functions in one device, especially the mismatch of the functional modules, the overall conversion and storage efficiency of the photocapacitors is less than 13%, which seriously limits the development of the integrated system of solar conversion and energy storage. To this end, two typical photocapacitors were studied. A three-terminal photocapacitor was integrated by using perovskite solar cell as solar conversion module and symmetrical supercapacitor as energy storage module. A function portfolio management concept was proposed the relationship among various efficiencies during photovoltaic conversion and energy storage process were clarified. By harmonizing the energy matching between conversion and storage modules and seeking the maximum power points coincide and the maximum efficiency points synchronize, the overall efficiency of the photocapacitor surpassed 18 %, and Joule efficiency was closed to 90%. A voltage adjustable hybrid supercapacitor (VAHSC) was designed as energy storage module, and two Si wafers in series as solar conversion module, a three-terminal photocapacitor was fabricated. The VAHSC effectively harmonizes the energy harvest and storage modules, resulting in the current, voltage, power, and energy match between both modules. The optimal photocapacitor achieved an overall efficiency of 15.49% and Joule efficiency of 86.01%, along with excellent charge/discharge cycle stability. In addition, the Joule efficiency (ηJoule) was defined as the energy ratio of discharge/charge of the devices for the first time.

Keywords: joule efficiency, perovskite solar cell, photocapacitor, silicon solar cell, supercapacitor

Procedia PDF Downloads 41
1863 PV Module as a Design Element of Barriers for Protection against Noise

Authors: Budimir S. Sudimac, Andjela N. Dubljevic

Abstract:

The aim of thisresearch paper is to consider possibilities for improving the street lighting on the E75 highway, which passes through Serbia, using renewable sources of energy. In this paper, we analyzed the possibilities for installing sound barriers along the highway and integrating photovoltaic (PV) modules, which would generate electrical energy to power the lighting on the section of the highway running through Belgrade. The main aim of this paper is to analyze, show and promote innovative, hybrid, multi-functional solar technology using PV modules as an element of sound barriers in urban areas. The paper seeks to show the hybridity of using sustainable technologies in solving environmental issues. This structure solves the problem of noise in populated areas and provides the electricity from renewable source.

Keywords: noise, PV modules, solar energy, sound barriers

Procedia PDF Downloads 439
1862 Performance Evaluation of Different Technologies of PV Modules in Algeria

Authors: Amira Balaska, Ali Tahri, Amine Boudghene Stambouli, Takashi Oozeki

Abstract:

This paper is dealing with the evaluation of photovoltaic modules as part of the Sahara Solar Breeder project (SSB), five different photovoltaic module technologies which are: m-si, CIS, HIT, Back Contact, a-si_μc -si and a weather station recently installed at the University of Saida (Tahar Moulay) in Saida city located at the gate of the great southern Algeria’s Sahara. The objective of the present work is the study of solar photovoltaic capacity and performance parameters of each PV module technology. The goal of the study is to compare the five different PV technologies in order to find which technologies are suitable for the climate conditions of Algeria’s desert. Measurements of various parameters as irradiance, temperature, humidity and so on by the weather station and I-V curves were performed outdoors at the location without shadow. Finally performance parameters as performance ratio, energy yield and temperature losses are given and analyzed.

Keywords: photovoltaic modules, performance ratio, energy yield, sahara solar breeder, outdoor conditions

Procedia PDF Downloads 626
1861 Working Title: Estimating the Power Output of Photovoltaics in Kuwait Using a Monte Carlo Approach

Authors: Mohammad Alshawaf, Rahmat Poudineh, Nawaf Alhajeri

Abstract:

The power generated from photovoltaic (PV) modules is non-dispatchable on demand due to the stochastic nature of solar radiation. The random variations in the measured intensity of solar irradiance are due to clouds and, in the case of arid regions, dust storms which decrease the intensity of intensity of solar irradiance. Therefore, modeling PV power output using average, maximum, or minimum solar irradiance values is inefficient to predict power generation reliably. The overall objective of this paper is to predict the power output of PV modules using Monte Carlo approach based the weather and solar conditions measured in Kuwait. Given the 250 Wp PV module used in study, the average daily power output is 1021 Wh/day. The maximum power was generated in April and the minimum power was generated in January 1187 Wh/day and 823 Wh/day respectively. The certainty of the daily predictions varies seasonally and according to the weather conditions. The output predictions were far more certain in the summer months, for example, the 80% certainty range for August is 89 Wh/day, whereas the 80% certainty range for April is 250 Wh/day.

Keywords: Monte Carlo, solar energy, variable renewable energy, Kuwait

Procedia PDF Downloads 102
1860 Local Homology Modules

Authors: Fatemeh Mohammadi Aghjeh Mashhad

Abstract:

In this paper, we give several ways for computing generalized local homology modules by using Gorenstein flat resolutions. Also, we find some bounds for vanishing of generalized local homology modules.

Keywords: a-adic completion functor, generalized local homology modules, Gorenstein flat modules

Procedia PDF Downloads 375
1859 Efficiency Enhancement of Photovoltaic Panels Using an Optimised Air Cooled Heat Sink

Authors: Wisam K. Hussam, Ali Alfeeli, Gergory J. Sheard

Abstract:

Solar panels that use photovoltaic (PV) cells are popular for converting solar radiation into electricity. One of the major problems impacting the performance of PV panels is the overheating caused by excessive solar radiation and high ambient temperatures, which degrades the efficiency of the PV panels remarkably. To overcome this issue, an aluminum heat sink was used to dissipate unwanted heat from PV cells. The dimensions of the heat sink were determined considering the optimal fin spacing that fulfils hot climatic conditions. In this study, the effects of cooling on the efficiency and power output of a PV panel were studied experimentally. Two PV modules were used: one without and one with a heat sink. The experiments ran for 11 hours from 6:00 a.m. to 5:30 p.m. where temperature readings in the rear and front of both PV modules were recorded at an interval of 15 minutes using sensors and an Arduino microprocessor. Results are recorded for both panels simultaneously for analysis, temperate comparison, and for power and efficiency calculations. A maximum increase in the solar to electrical conversion efficiency of 35% and almost 55% in the power output were achieved with the use of a heat sink, while temperatures at the front and back of the panel were reduced by 9% and 11%, respectively.

Keywords: photovoltaic cell, natural convection, heat sink, efficiency

Procedia PDF Downloads 115
1858 Study of Lamination Quality of Semi-Flexible Solar Modules with Special Textile Materials

Authors: K. Drabczyk, Z. Starowicz, S. Maleczek, P. Zieba

Abstract:

The army, police and fire brigade commonly use dedicated equipment based on special textile materials. The properties of these textiles should ensure human life and health protection. Equally important is the ability to use electronic equipment and this requires access to the source of electricity. Photovoltaic cells integrated with such textiles can be solution for this problem in the most of outdoor circumstances. One idea may be to laminate the cells to textile without changing their properties. The main goal of this work was analyzed lamination quality of special designed semi-flexible solar module with special textile materials as a backsheet. In the first step of investigation, the quality of lamination was determined using device equipped with dynamometer. In this work, the crystalline silicon solar cells 50 x 50 mm and thin chemical tempered glass - 62 x 62 mm and 0.8 mm thick - were used. The obtained results showed the correlation between breaking force and type of textile weave and fiber. The breaking force was in the ranges: 4.5-5.5 N, 15-20 N and 30-33 N depending on the type of wave and fiber type. To verify these observations the microscopic and FTIR analysis of fibers was performed. The studies showed the special textile can be used as a backsheet of semi-flexible solar modules. This work presents a new composition of solar module with special textile layer which, to our best knowledge, has not been published so far. Moreover, the work presents original investigations on adhesion of EVA (ethylene-vinyl acetate) polymer to textile with respect to fiber structure of laminated substrate. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management.

Keywords: flexible solar modules, lamination process, solar cells, textile for photovoltaics

Procedia PDF Downloads 324
1857 Study of Mechanical Properties of Large Scale Flexible Silicon Solar Modules on the Various Substrates

Authors: M. Maleczek, Leszek Bogdan, Kazimierz Drabczyk, Agnieszka Iwan

Abstract:

Crystalline silicon (Si) solar cells are the main product in the market among the various photovoltaic technologies concerning such advantages as: material richness, high carrier mobilities, broad spectral absorption range and established technology. However, photovoltaic technology on the stiff substrates are heavier, more fragile and less cost-effective than devices on the flexible substrates to be applied in special applications. The main goal of our work was to incorporate silicon solar cells into various fabric, without any change of the electrical and mechanical parameters of devices. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management. In our work, the polyamide or polyester fabrics were used as a flexible substrate in the created devices. Applied fabrics differ in tensile and tear strength. All investigated polyamide fabrics are resistant to weathering and UV, while polyester ones is resistant to ozone, water and ageing. The examined fabrics are tight at 100 cm water per 2 hours. In our work, commercial silicon solar cells with the size 156 × 156 mm were cut into nine parts (called single solar cells) by diamond saw and laser. Gap and edge after cutting of solar cells were checked by transmission electron microscope (TEM) to study morphology and quality of the prepared single solar cells. Modules with the size of 160 × 70 cm (containing about 80 single solar cells) were created and investigated by electrical and mechanical methods. Weight of constructed module is about 1.9 kg. Three types of solar cell architectures such as: -fabric/EVA/Si solar cell/EVA/film for lamination, -backsheet PET/EVA/Si solar cell/EVA/film for lamination, -fabric/EVA/Si solar cell/EVA/tempered glass, were investigated taking into consideration type of fabric and lamination process together with the size of solar cells. In investigated devices EVA, it is ethylene-vinyl acetate, while PET - polyethylene terephthalate. Depend on the lamination process and compatibility of textile with solar cell an efficiency of investigated flexible silicon solar cells was in the range of 9.44-16.64 %. Multi folding and unfolding of flexible module has no impact on its efficiency as was detected by Instron equipment. Power (P) of constructed solar module is 30 W, while voltage about 36 V. Finally, solar panel contains five modules with the polyamide fabric and tempered glass will be produced commercially for different applications (dual use).

Keywords: flexible devices, mechanical properties, silicon solar cells, textiles

Procedia PDF Downloads 145
1856 Comparison of Irradiance Decomposition and Energy Production Methods in a Solar Photovoltaic System

Authors: Tisciane Perpetuo e Oliveira, Dante Inga Narvaez, Marcelo Gradella Villalva

Abstract:

Installations of solar photovoltaic systems have increased considerably in the last decade. Therefore, it has been noticed that monitoring of meteorological data (solar irradiance, air temperature, wind velocity, etc.) is important to predict the potential of a given geographical area in solar energy production. In this sense, the present work compares two computational tools that are capable of estimating the energy generation of a photovoltaic system through correlation analyzes of solar radiation data: PVsyst software and an algorithm based on the PVlib package implemented in MATLAB. In order to achieve the objective, it was necessary to obtain solar radiation data (measured and from a solarimetric database), analyze the decomposition of global solar irradiance in direct normal and horizontal diffuse components, as well as analyze the modeling of the devices of a photovoltaic system (solar modules and inverters) for energy production calculations. Simulated results were compared with experimental data in order to evaluate the performance of the studied methods. Errors in estimation of energy production were less than 30% for the MATLAB algorithm and less than 20% for the PVsyst software.

Keywords: energy production, meteorological data, irradiance decomposition, solar photovoltaic system

Procedia PDF Downloads 100
1855 Second Representation of Modules over Commutative Rings

Authors: Jawad Abuhlail, Hamza Hroub

Abstract:

Let R be a commutative ring. Representation theory studies the representation of R-modules as (possibly finite) sums of special types of R-submodules. Here we are interested in a class of R-modules between the class of semisimple R-modules and the class of R-modules that can be written as (possibly finite) sums of secondary R-submodules (we know that every simple R-submodule is secondary). We investigate R-modules which can be written as (possibly finite) sums of second R-submodules (we call those modules second representable). Moreover, we investigate the class of (main) second attached prime ideals related to a module with such representation. We provide sufficient conditions for an R-module M to get a (minimal) second representation. We also found the collection of second attached prime ideals for some types of second representable R-modules, in particular within the class of injective R-modules. As we know that every simple R-submodule is second and every second R-submodule is secondary, we can see the importance of the second representable R-module.

Keywords: lifting modules, second attached prime ideals, second representations, secondary representations, semisimple modules, second submodules

Procedia PDF Downloads 152
1854 Development of an Asset Database to Enhance the Circular Business Models for the European Solar Industry: A Design Science Research Approach

Authors: Ässia Boukhatmi, Roger Nyffenegger

Abstract:

The expansion of solar energy as a means to address the climate crisis is undisputed, but the increasing number of new photovoltaic (PV) modules being put on the market is simultaneously leading to increased challenges in terms of managing the growing waste stream. Many of the discarded modules are still fully functional but are often damaged by improper handling after disassembly or not properly tested to be considered for a second life. In addition, the collection rate for dismantled PV modules in several European countries is only a fraction of previous projections, partly due to the increased number of illegal exports. The underlying problem for those market imperfections is an insufficient data exchange between the different actors along the PV value chain, as well as the limited traceability of PV panels during their lifetime. As part of the Horizon 2020 project CIRCUSOL, an asset database prototype was developed to tackle the described problems. In an iterative process applying the design science research methodology, different business models, as well as the technical implementation of the database, were established and evaluated. To explore the requirements of different stakeholders for the development of the database, surveys and in-depth interviews were conducted with various representatives of the solar industry. The proposed database prototype maps the entire value chain of PV modules, beginning with the digital product passport, which provides information about materials and components contained in every module. Product-related information can then be expanded with performance data of existing installations. This information forms the basis for the application of data analysis methods to forecast the appropriate end-of-life strategy, as well as the circular economy potential of PV modules, already before they arrive at the recycling facility. The database prototype could already be enriched with data from different data sources along the value chain. From a business model perspective, the database offers opportunities both in the area of reuse as well as with regard to the certification of sustainable modules. Here, participating actors have the opportunity to differentiate their business and exploit new revenue streams. Future research can apply this approach to further industry and product sectors, validate the database prototype in a practical context, and can serve as a basis for standardization efforts to strengthen the circular economy.

Keywords: business model, circular economy, database, design science research, solar industry

Procedia PDF Downloads 73
1853 Sensitivity Studies for a Pin Homojunction a-Si:H Solar Cell

Authors: Leila Ayat, Afak Meftah

Abstract:

Amorphous-silicon alloys have great promise as low cost solar cell materials. They have excellent photo-conductivity and high optical absorption to sunlight. Now PIN a-Si:H based solar cells are widely used in power generation modules. However, to improve the performance of these cells further, a better fundamental under-standing of the factors limiting cell performance in the homo junction PIN structure is necessary. In this paper we discuss the sensitivity of light J-V characteristics to various device and material parameters in PIN homo junction solar cells. This work is a numerical simulation of the output parameters of a PIN a-Si:H solar cell under AM1.5 spectrum. These parameters are the short circuit current (Jsc), the open circuit voltage (Voc), the fill factor (FF), the conversion efficiency. The simulation was performed with SCAPS-1D software version 3.3 developed at ELIS in Belgium by Marc Burgelman et al. The obtained results are in agreement with experiment. In addition, the effect of the thickness, doping density, capture cross sections of the gap states and the band microscopic mobilities on the output parameters of the cell are also presented.

Keywords: amorphous silicon p-i-n junctions, thin film, solar cells, sensitivity

Procedia PDF Downloads 475
1852 Design and Comparative Analysis of Grid-Connected Bipv System with Monocrystalline Silicon and Polycrystalline Silicon in Kandahar Climate

Authors: Ahmad Shah Irshad, Naqibullah Kargar, Wais Samadi

Abstract:

Building an integrated photovoltaic (BIPV) system is a new and modern technique for solar energy production in Kandahar. Due to its location, Kandahar has abundant sources of solar energy. People use both monocrystalline and polycrystalline silicon solar PV modules for the grid-connected solar PV system, and they don’t know which technology performs better for the BIPV system. This paper analyses the parameters described by IEC61724, “Photovoltaic System Performance Monitoring Guidelines for Measurement, Data Exchange and Analysis,” to evaluate which technology shows better performance for the BIPV system. The monocrystalline silicon BIPV system has a 3.1% higher array yield than the polycrystalline silicon BIPV system. The final yield is 0.2%, somewhat higher for monocrystalline silicon than polycrystalline silicon. Monocrystalline silicon has 0.2% and 4.5% greater yearly yield factor and capacity factors than polycrystalline silicon, respectively. Monocrystalline silicon shows 0.3% better performance than polycrystalline silicon. With 1.7% reduction and 0.4% addition in collection losses and useful energy produced, respectively, monocrystalline silicon solar PV system shows good performance than polycrystalline silicon solar PV system. But system losses are the same for both technologies. The monocrystalline silicon BIPV system injects 0.2% more energy into the grid than the polycrystalline silicon BIPV system.

Keywords: photovoltaic technologies, performance analysis, solar energy, solar irradiance, performance ratio

Procedia PDF Downloads 326
1851 Prediction of Energy Storage Areas for Static Photovoltaic System Using Irradiation and Regression Modelling

Authors: Kisan Sarda, Bhavika Shingote

Abstract:

This paper aims to evaluate regression modelling for prediction of Energy storage of solar photovoltaic (PV) system using Semi parametric regression techniques because there are some parameters which are known while there are some unknown parameters like humidity, dust etc. Here irradiation of solar energy is different for different places on the basis of Latitudes, so by finding out areas which give more storage we can implement PV systems at those places and our need of energy will be fulfilled. This regression modelling is done for daily, monthly and seasonal prediction of solar energy storage. In this, we have used R modules for designing the algorithm. This algorithm will give the best comparative results than other regression models for the solar PV cell energy storage.

Keywords: semi parametric regression, photovoltaic (PV) system, regression modelling, irradiation

Procedia PDF Downloads 342
1850 Maximizing the Output of Solar Photovoltaic System

Authors: Vipresh Mehta , Aman Abhishek, Jatin Batra, Gautam Iyer

Abstract:

Huge amount of solar radiation reaching the earth can be harnessed to provide electricity through Photo voltaic (PV) panels. The solar PV is an exciting technology but suffers from low efficiency. A study on low efficiency in multi MW solar power plants reveals that the electric yield of the PV modules is reduced due to reflection of the irradiation from the sun and when a module’s temperature is elevated, as there is decrease in the voltage and efficiency. We intend to alter the structure of the PV system, We also intend to improve the efficiency of the Solar Photo Voltaic Panels by active cooling to reduce the temperature losses considerably and decrease reflection losses to some extent. Reflectors/concentrators and anti-reflecting coatings are also used to intensify the amount of output produced from the system. Apart from this, transformer-less Grid-tied Inverter. And also, a T-LCL immitance circuit is used to reduce the harmonics and produce a constant output from the entire system.

Keywords: PV panels, efficiency improvement, active cooling, quantum dots, organic-inorganic hybrid 3D panel, ground water tunneling

Procedia PDF Downloads 738
1849 Efficiency Enhancement in Solar Panel

Authors: R. S. Arun Raj

Abstract:

In today's climate of growing energy needs and increasing environmental issues, alternatives to the use of non-renewable and polluting fossil fuels have to be investigated. One such alternative is the solar energy. The SUN provides every hour as much energy as mankind consumes in one year. This paper clearly explains about the solar panel design and new models and methodologies that can be implemented for better utilization of solar energy. Minimisation of losses in solar panel as heat is my innovative idea revolves around. The pay back calculations by implementation of solar panels is also quoted.

Keywords: on-grid and off-grid systems, pyro-electric effect, pay-back calculations, solar panel

Procedia PDF Downloads 543
1848 A Technical-Economical Study of a New Solar Tray Distillator

Authors: Abderrahmane Diaf, Assia Cherfa, Lamia Karadaniz

Abstract:

Multiple tray solar distillation offers an interesting alternative for small-scale desalination and production high quality distilled water at a competitive cost using solar energy. In this work, we present indoor/outdoor trial performance data of our multiple tray solar distillation as well as the results of cost estimation analysis.

Keywords: solar desalination, tray distillation, multi-étages solaire, solar distillation

Procedia PDF Downloads 376
1847 [Keynote Speaker]: Enhancing the Performance of a Photovoltaic Module Using Different Cooling Methods

Authors: Ahmed Amine Hachicha

Abstract:

Temperature effect on the performance of a photovoltaic module is one of the main concern that face this renewable energy, especially in the hot arid region, e.g United Arab Emirates. Overheating of the PV modules reduces the open circuit voltage and the efficiency of the modules dramatically. In this work, water cooling is developed to enhance the performance of PV modules. Different scenarios are tested under UAE weather conditions: front, back and double cooling. A spraying system is used for the front cooling whether a direct contact water system is used for the back cooling. The experimental results are compared to a non-cooling module and the performance of the PV module is determined for different situations. A mathematical model is presented to estimate the theoretical performance and validate the experimental results with and without cooling. The experimental results show that the front cooling is more effective than the back cooling and may decrease the temperature of the PV module significantly.

Keywords: PV cooling, solar energy, cooling methods, electrical efficiency, temperature effect

Procedia PDF Downloads 460
1846 Additive Carbon Dots Nanocrystals for Enhancement of the Efficiency of Dye-Sensitized Solar Cell in Energy Applications Technology

Authors: Getachew Kuma Watiro

Abstract:

The need for solar energy is constantly increasing and it is widely available on the earth’s surface. Photovoltaic technology is one of the most capable of all viable energy technology and is seen as a promising approach to the control era as it is readily available and has zero carbon emissions. Inexpensive and versatile solar cells have achieved the conversion efficiency and long life of dye-sensitized solar cells, improving the conversion efficiency from the sun to electricity. DSSCs have received a lot of attention for Various potential commercial uses, such as mobile devices and portable electronic devices, as well as integrated solar cell modules. The systematic reviews were used to show the critical impact of additive C-dots in the Dye-Sensitized solar cell for energy application technology. This research focuses on the following methods to synthesize nanoparticles such as facile, polyol, calcination, and hydrothermal technique. In addition to these, there are additives C-dots by the Hydrothermal method. This study deals with the progressive development of DSSC in photovoltaic technology. The applications of single and heterojunction structure technology devices were used (ZnO, NiO, SnO2, and NiO/ZnO/N719) and applied some additives C-dots (ZnO/C-dots /N719, NiO/C-dots /N719, SnO2 /C-dots /N719 and NiO/ZnO/C-dots/N719) and the effects of C-dots were reviewed. More than all, the technology of DSSC with C-dots enhances efficiency. Finally, recommendations have been made for future research on the application of DSSC with the use of these additives.

Keywords: dye-sensitized solar cells, heterojunction’s structure, carbon dot, conversion efficiency

Procedia PDF Downloads 86
1845 Highly Concentrated Photo Voltaic using Multi-Junction Concentrator Cell

Authors: Oriahi Love Ndidi

Abstract:

High concentration photovoltaic promises a more efficient, higher power output than traditional photovoltaic modules. One of the driving forces of this high system efficiency has been the continuous improvement of III-V multi-junction solar cell efficiencies. Multi-junction solar cells built from III-V semiconductors are being evaluated globally in concentrated photovoltaic systems designed to supplement electricity generation for utility companies. The high efficiency of this III-V multi-junction concentrator cells, with demonstrated efficiency over 40 percent since 2006, strongly reduces the cost of concentrated photovoltaic systems, and makes III-V multi-junction cells the technology of choice for most concentrator systems today.

Keywords: cost of multi-junction solar cell, efficiency, photovoltaic systems, reliability

Procedia PDF Downloads 685