Search results for: oscillatory shear index
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4812

Search results for: oscillatory shear index

4362 Morphology and Permeability of Biomimetic Cellulose Triacetate-Impregnated Membranes: in situ Synchrotron Imaging and Experimental Studies

Authors: Amira Abdelrasoul

Abstract:

This study aimed to ascertain the controlled permeability of biomimetic cellulose triacetate (CTA) membranes by investigating the electrical oscillatory behavior across impregnated membranes (IM). The biomimetic CTA membranes were infused with a fatty acid to induce electrical oscillatory behavior and, hence, to ensure controlled permeability. In situ synchrotron radiation micro-computed tomography (SR-μCT) at the BioMedical Imaging and Therapy (BMIT) Beamline at the Canadian Light Source (CLS) was used to evaluate the main morphology of IMs compared to neat CTA membranes to ensure fatty acid impregnation inside the pores of the membrane matrices. A monochromatic beam at 20 keV was used for the visualization of the morphology of the membrane. The X-ray radiographs were recorded by means of a beam monitor AA-40 (500 μm LuAG scintillator, Hamamatsu, Japan) coupled with a high-resolution camera, providing a pixel size of 5.5 μm and a field of view (FOV) of 4.4 mm × 2.2 mm. Changes were evident in the phase transition temperatures of the impregnated CTA membrane at the melting temperature of the fatty acid. The pulsations of measured voltages were related to changes in the salt concentration of KCl in the vicinity of the electrode. Amplitudes and frequencies of voltage pulsations were dependent on the temperature and concentration of the KCl solution, which controlled the permeability of the biomimetic membranes. The presented smart biomimetic membrane successfully combined porous polymer support and impregnating liquid not only imitate the main barrier properties of the biological membranes but could be easily modified to achieve some new properties, such as facilitated and active transport, regulation by chemical, physical and pharmaceutical factors. These results open new frontiers for the facilitation and regulation of active transport and permeability through biomimetic smart membranes for a variety of biomedical and drug delivery applications.

Keywords: biomimetic, membrane, synchrotron, permeability, morphology

Procedia PDF Downloads 88
4361 Waist Circumference-Related Performance of Tense Indices during Varying Pediatric Obesity States and Metabolic Syndrome

Authors: Mustafa Metin Donma

Abstract:

Obesity increases the risk of elevated blood pressure, which is a metabolic syndrome (MetS) component. Waist circumference (WC) is accepted as an indispensable parameter for the evaluation of these health problems. The close relationship of height with blood pressure values revealed the necessity of including height in tense indices. The association of tense indices with WC has also become an increasingly important topic. The purpose of this study was to develop a tense index that could contribute to differential diagnosis of MetS more than the indices previously introduced. One hundred and ninety-four children, aged 06-11 years, were considered to constitute four groups. The study was performed on normal weight (Group 1), overweight+obese (Group 2), morbid obese [without (Group 3) and with (Group 4) MetS findings] children. Children were included in the groups according to the recommendations of World Health Organization based on age- and gender dependent body mass index percentiles. For MetS group, MetS components well-established before were considered. Anthropometric measurements, as well as blood pressure values were taken. Tense indices were computed. The formula for the first tense index was (SP+DP)/2. The second index was Advanced Donma Tense Index (ADTI). The formula for this index was [(SP+DP)/2] * Height. Statistical calculations were performed. 0.05 was accepted as the p value indicating statistical significance. There were no statistically significant differences between the groups for pulse pressure, systolic-to-diastolic pressure ratio and tense index. Increasing values were observed from Group 1 to Group 4 in terms of mean arterial blood pressure and advanced Donma tense index (ADTI), which was highly correlated with WC in all groups except Group 1. Both tense index and ADTI exhibited significant correlations with WC in Group 3. However, in Group 4, ADTI, which includes height parameter in the equation, was unique in establishing a strong correlation with WC. In conclusion, ADTI was suggested as a tense index while investigating children with MetS.

Keywords: blood pressure, child, height, metabolic syndrome, waist circumference

Procedia PDF Downloads 44
4360 Hybrid Polymer Microfluidic Platform for Studying Endothelial Cell Response to Micro Mechanical Environment

Authors: Mitesh Rathod, Jungho Ahn, Noo Li Jeon, Junghoon Lee

Abstract:

Endothelial cells respond to cues from both biochemical as well as micro mechanical environment. Significant effort has been directed to understand the effects of biochemical signaling, however, relatively little is known about regulation of endothelial cell biology by the micro mechanical environment. Numerous studies have been performed to understand how physical forces regulate endothelial cell behavior. In this regard, past studies have majorly focused on exploring how fluid shear stress governs endothelial cell behavior. Parallel plate flow chambers and rectangular microchannels are routinely employed for applying fluid shear force on endothelial cells. However, these studies fall short in mimicking the in vivo like micro environment from topological aspects. Few studies have only used circular microchannels to replicate in vivo like condition. Seldom efforts have been directed to elucidate the combined effect of topology, substrate rigidity and fluid shear stress on endothelial cell response. In this regard, we demonstrate a facile fabrication process to develop a hybrid polydimethylsiloxane microfluidic platform to study endothelial cell biology. On a single chip microchannels with different cross sections i.e., circular, rectangular and square have been fabricated. In addition, our fabrication approach allows variation in the substrate rigidity along the channel length. Two different variants of polydimethylsiloxane, namely Sylgard 184 and Sylgard 527, were utilized to achieve the variation in rigidity. Moreover, our approach also enables in creating Y bifurcation circular microchannels. Our microfluidic platform thus facilitates for conducting studies pertaining to endothelial cell morphology with respect to change in topology, substrate rigidity and fluid flow on a single chip. The hybrid platform was tested by culturing Human Umbilical Vein Endothelial Cells in circular microchannels with varying substrate rigidity, and exposed to fluid shear stress of 12 dynes/cm² and static conditions. Results indicate the cell area response to flow induced shear stress was governed by the underlying substrate mechanics.

Keywords: hybrid, microfluidic platform, PDMS, shear flow, substrate rigidity

Procedia PDF Downloads 264
4359 The Measurement of the Multi-Period Efficiency of the Turkish Health Care Sector

Authors: Erhan Berk

Abstract:

The purpose of this study is to examine the efficiency and productivity of the health care sector in Turkey based on four years of health care cross-sectional data. Efficiency measures are calculated by a nonparametric approach known as Data Envelopment Analysis (DEA). Productivity is measured by the Malmquist index. The research shows how DEA-based Malmquist productivity index can be operated to appraise the technology and productivity changes resulted in the Turkish hospitals which are located all across the country.

Keywords: data envelopment analysis, efficiency, health care, Malmquist Index

Procedia PDF Downloads 320
4358 Performance Improvement of UWB Corrugated Antipodal Vivaldi Antenna Using Spiral Shape Negative Index Metamaterial

Authors: Rahul Singha, D. Vakula

Abstract:

This paper presents a corrugated antipodal vivaldi antenna with improved performance by using negative index metamaterial (NIM) of the Archimedean spiral design. A single layer NIM piece is placed perpendicular middle of the two arm of the proposed antenna. The antenna size is 30×60×0.787 mm3 operating at 8GHz. The simulated results of NIM corrugated antipodal vivaldi antenna show that the gain and directivity has increased up to 1.2dB and 1dB respectively. The HPBW is increased by 90 with the reflection coefficient less than ‒10 dB from 4.7 GHz to 11 GHz for UWB application.

Keywords: Negative Index Metamaterial (NIM), Ultra Wide Band (UWB), Half Power Beam Width (HPBW), vivaldi antenna

Procedia PDF Downloads 606
4357 A Study on FWD Deflection Bowl Parameters for Condition Assessment of Flexible Pavement

Authors: Ujjval J. Solanki, Prof.(Dr.) P.J. Gundaliya, Prof.M.D. Barasara

Abstract:

The application of Falling Weight Deflectometer is to evaluate structural performance of the flexible pavement. The exercise of back calculation is required to know the modulus of elasticity of existing in-service pavement. The process of back calculation needs in-depth field experience for the input of range of modulus of elasticity of bituminous, granular and subgrade layer, and its required number of trial to find such matching moduli with the observed FWD deflection on the field. The study carried out at Barnala-Mansa State Highway Punjab-India using FWD before and after overlay; the deflections obtained at 0 on the load cell, 300, 600, 900,1200, 1500 and 1800 mm interval from the load cell these seven deflection results used to calculate Surface Curvature Index (SCI), Base damage Index (BDI), Base curvature index (BCI). This SCI, BCI and BDI indices are useful to predict the structural performance of in-service pavement and also useful to identify homogeneous section for condition assessment. The SCI, BCI and BDI range are determined for before and after overlay the range of SCI 520 to 51 BDI 294 to 63 BCI 83 to 0.27 for old pavement and SCI 272 to 23 BDI 228 to 28, BCI 25.85 to 4.60 for new pavement. It also shows good correlation with back calculated modulus of elasticity of all the three layer.

Keywords: back calculation, base damage index, base curvature index, FWD (Falling Weight Deflectometer), surface curvature index

Procedia PDF Downloads 323
4356 Thermo-Aeraulic Studies of a Multizone Building Influence of the Compactness Index

Authors: S. M. A. Bekkouche, T. Benouaz, M. K. Cherier, M. Hamdani, M. R. Yaiche, N. Benamrane

Abstract:

Most codes of building energy simulation neglect the humidity or well represent it with a very simplified method. It is for this reason that we have developed a new approach to the description and modeling of multizone buildings in Saharan climate. The thermal nodal method was used to apprehend thermoaeraulic behavior of air subjected to varied solicitations. In this contribution, analyzing the building geometry introduced the concept of index compactness as "quotient of external walls area and volume of the building". Physical phenomena that we have described in this paper, allow to build the model of the coupled thermoaeraulic behavior. The comparison shows that the found results are to some extent satisfactory. The result proves that temperature and specific humidity depending on compactness and geometric shape. Proper use of compactness index and building geometry parameters will noticeably minimize building energy.

Keywords: multizone model, nodal method, compactness index, specific humidity, temperature

Procedia PDF Downloads 400
4355 Groundwater Vulnerability of Halabja-Khurmal Sub-Basin

Authors: Lanja F. Rauf, Salahalddin S. Ali, Nadhir Al-Ansari

Abstract:

Evolving groundwater vulnerability from DRASTIC to modified DRASTIC methods helps choose the most accurate areas that are most delicate toward pollution. This study aims to modify DRASTIC with land use and water quality index for groundwater vulnerability assessment in the Halabja-Khurmal sub-basin, NE/Iraq. The Halabja- Khurmal sub-basin groundwater vulnerability index is calculated from nine hydrogeological parameters by the overlay weighting method. As a result, 1.3 % of the total area has a very high vulnerability value and 46.1 % with high vulnerability. The regions with high groundwater vulnerability have a high water table and groundwater recharge. Nitrate concentration was used to validate the result, and the Pearson correlation and recession analysis between the modified DRASTIC index and nitrate concentration depicted a strong relation with 0.76 and 0.7, respectively.

Keywords: groundwater vulnerability, modified DRASTIC, land-use, nitrate pollution, water quality index

Procedia PDF Downloads 83
4354 Vibration Damping Properties of Electrorheological Materials Based on Chitosan/Perlite Composite

Authors: M. Cabuk, M. Yavuz, T. A. Yesil, H. I. Unal

Abstract:

Electrorheological (ER) fluids are a class of smart materials exhibiting reversible changes in their rheological and mechanical properties under an applied electric field (E). ER fluids generally are composed of polarisable solid particles dispersed in non-conducting oil. ER fluids are fluids which exhibit. The resistance to motion of the ER fluid can be controlled by adjusting the applied E, due to their fast and reversible changes in their rheological properties presence of E. In this study, a series of chitosan/expanded perlite (CS/EP) composites with different chitosan mass fractions (10%, 20%, and 50%) was used. Characterizations of the composites were carried out by Fourier Transform Infrared (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) techniques. Antisedimentation stability and dielectric properties of the composites were also determined. The effects of volume fraction, electric field strength, shear rate, shear stress, and temperature onto ER properties of the CS/EP composite particles dispersed in silicone oil (SO) were investigated in detail. Vibration damping behavior of the CS/EP composites were determined as a function of frequence, storage (Gʹ) and loss (Gʹ ʹ) moduli. It was observed that ER response of the CS/EP/SO ER fluids increased with increasing electric field strength and exhibited the typical shear thinning non-Newtonian viscoelastic behaviors with increasing shear rate. The maximum yield stress was obtained with 1250 Pa under E = 3 kV/mm. Further, the CS/EP/SO ER fluids were observed to sensitive to vibration control by showing reversible viscosity enhancements (Gʹ > Gʹ ʹ). Acknowledgements: The authors thank the TÜBİTAK (214Z199) for the financial support of this work.

Keywords: chitosan, electrorheology, perlite, vibration control

Procedia PDF Downloads 227
4353 Effects of Different Thermal Processing Routes and Their Parameters on the Formation of Voids in PA6 Bonded Aluminum Joints

Authors: Muhammad Irfan, Guillermo Requena, Jan Haubrich

Abstract:

Adhesively bonded aluminum joints are common in automotive and aircraft industries and are one of the enablers of lightweight construction to minimize the carbon emissions during transportation for a sustainable life. This study is focused on the effects of two thermal processing routes, i.e., by direct and induction heating, and their parameters on void formation in PA6 bonded aluminum EN-AW6082 joints. The joints were characterized microanalytically as well as by lap shear experiments. The aging resistance of the joints was studied by accelerated aging tests at 80°C hot water. It was found that the processing of single lap joints by direct heating in a convection oven causes the formation of a large number of voids in the bond line. The formation of voids in the convection oven was due to longer processing times and was independent of any surface pretreatments of the metal as well as the processing temperature. However, when processing at low temperatures, a large number of small-sized voids were observed under the optical microscope, and they were larger in size but reduced in numbers at higher temperatures. An induction heating process was developed, which not only successfully reduced or eliminated the voids in PA6 bonded joints but also reduced the processing times for joining significantly. Consistent with the trend in direct heating, longer processing times and higher temperatures in induction heating also led to an increased formation of voids in the bond line. Subsequent single lap shear tests revealed that the increasing void contents led to a 21% reduction in lap shear strengths (i.e., from ~47 MPa for induction heating to ~37 MPa for direct heating). Also, there was a 17% reduction in lap shear strengths when the consolidation temperature was raised from 220˚C to 300˚C during induction heating. However, below a certain threshold of void contents, there was no observable effect on the lap shear strengths as well as on hydrothermal aging resistance of the joints consolidated by the induction heating process.

Keywords: adhesive, aluminium, convection oven, induction heating, mechanical properties, nylon6 (PA6), pretreatment, void

Procedia PDF Downloads 108
4352 Fatigue Life Estimation Using N-Code for Drive Shaft of Passenger Vehicle

Authors: Tae An Kim, Hyo Lim Kang, Hye Won Han, Seung Ho Han

Abstract:

The drive shaft of passenger vehicle has its own function such as transmitting the engine torque from the gearbox and differential gears to the wheels. It must also compensate for all variations in angle or length resulting from manoeuvring and deflection for perfect synchronization between joints. Torsional fatigue failures occur frequently at the connection parts of the spline joints in the end of the drive shaft. In this study, the fatigue life of a drive shaft of passenger vehicle was estimated by using the finite element analysis. A commercial software of n-Code was applied under twisting load conditions, i.e. 0~134kgf•m and 0~188kgf•m, in which the shear strain range-fatigue life relationship considering Signed Shear method, Smith-Watson-Topper equation, Neuber-Hoffman Seeger method, size sensitivity factor and surface roughness effect was taken into account. The estimated fatigue life was verified by a twisting load test of the real drive shaft in a test rig. (Human Resource Training Project for Industry Matched R & D, KIAT, N036200004).

Keywords: drive shaft, fatigue life estimation, passenger vehicle, shear strain range-fatigue life relationship, torsional fatigue failure

Procedia PDF Downloads 265
4351 Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling

Authors: Erfan Niazi, Marianne Fenech

Abstract:

Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as 2.7x103(±0.3 x103) 1/s.

Keywords: red blood cell, rouleaux, microfluidics, image processing, population balance modeling

Procedia PDF Downloads 345
4350 Defect-Based Urgency Index for Bridge Maintenance Ranking and Prioritization

Authors: Saleh Abu Dabous, Khaled Hamad, Rami Al-Ruzouq

Abstract:

Bridge condition assessment and rating provide essential information needed for bridge management. This paper reviews bridge inspection and condition rating practices and introduces a defect-based urgency index. The index is estimated at the element-level based on the extent and severity of the different defects typical to the bridge element. The urgency index approach has the following advantages: (1) It facilitates judgment submission, i.e. instead of rating the bridge element with a specific linguistic overall expression (which can be subjective and used differently by different people), the approach is based on assessing the defects; (2) It captures multiple defects that can be present within a deteriorated element; and (3) It reflects how critical the element is through quantifying critical defects and their severity. The approach can be further developed and validated. It is expected to be useful for practical purposes as an early-warning system for critical bridge elements.

Keywords: condition rating, deterioration, inspection, maintenance

Procedia PDF Downloads 435
4349 Bracing Applications for Improving the Earthquake Performance of Reinforced Concrete Structures

Authors: Diyar Yousif Ali

Abstract:

Braced frames, besides other structural systems, such as shear walls or moment resisting frames, have been a valuable and effective technique to increase structures against seismic loads. In wind or seismic excitations, diagonal members react as truss web elements which would afford tension or compression stresses. This study proposes to consider the effect of bracing diagonal configuration on values of base shear and displacement of building. Two models were created, and nonlinear pushover analysis was implemented. Results show that bracing members enhance the lateral load performance of the Concentric Braced Frame (CBF) considerably. The purpose of this article is to study the nonlinear response of reinforced concrete structures which contain hollow pipe steel braces as the major structural elements against earthquake loads. A five-storey reinforced concrete structure was selected in this study; two different reinforced concrete frames were considered. The first system was an un-braced frame, while the last one was a braced frame with diagonal bracing. Analytical modelings of the bare frame and braced frame were realized by means of SAP 2000. The performances of all structures were evaluated using nonlinear static analyses. From these analyses, the base shear and displacements were compared. Results are plotted in diagrams and discussed extensively, and the results of the analyses showed that the braced frame was seemed to capable of more lateral load carrying and had a high value for stiffness and lower roof displacement in comparison with the bare frame.

Keywords: reinforced concrete structures, pushover analysis, base shear, steel bracing

Procedia PDF Downloads 80
4348 Effect of Hybridization of Composite Material on Buckling Analysis with Elastic Foundation Using the High Order Theory

Authors: Benselama Khadidja, El Meiche Noureddine

Abstract:

This paper presents the effect of hybridization material on the variation of non-dimensional critical buckling load with different cross-ply laminates plate resting on elastic foundations of Winkler and Pasternak types subjected to combine uniaxial and biaxial loading by using two variable refined plate theories. Governing equations are derived from the Principle of Virtual Displacement; the formulation is based on a new function of shear deformation theory taking into account transverse shear deformation effects vary parabolically across the thickness satisfying shear stress-free surface conditions. These equations are solved analytically using the Navier solution of a simply supported. The influence of the various parameters geometric and material, the thickness ratio, and the number of layers symmetric and antisymmetric hybrid laminates material has been investigated to find the critical buckling loads. The numerical results obtained through the present study with several examples are presented to verify and compared with other models with the ones available in the literature.

Keywords: buckling, hybrid cross-ply laminates, Winkler and Pasternak, elastic foundation, two variables plate theory

Procedia PDF Downloads 472
4347 Heat Transfer Dependent Vortex Shedding of Thermo-Viscous Shear-Thinning Fluids

Authors: Markus Rütten, Olaf Wünsch

Abstract:

Non-Newtonian fluid properties can change the flow behaviour significantly, its prediction is more difficult when thermal effects come into play. Hence, the focal point of this work is the wake flow behind a heated circular cylinder in the laminar vortex shedding regime for thermo-viscous shear thinning fluids. In the case of isothermal flows of Newtonian fluids the vortex shedding regime is characterised by a distinct Reynolds number and an associated Strouhal number. In the case of thermo-viscous shear thinning fluids the flow regime can significantly change in dependence of the temperature of the viscous wall of the cylinder. The Reynolds number alters locally and, consequentially, the Strouhal number globally. In the present CFD study the temperature dependence of the Reynolds and Strouhal number is investigated for the flow of a Carreau fluid around a heated cylinder. The temperature dependence of the fluid viscosity has been modelled by applying the standard Williams-Landel-Ferry (WLF) equation. In the present simulation campaign thermal boundary conditions have been varied over a wide range in order to derive a relation between dimensionless heat transfer, Reynolds and Strouhal number. Together with the shear thinning due to the high shear rates close to the cylinder wall this leads to a significant decrease of viscosity of three orders of magnitude in the nearfield of the cylinder and a reduction of two orders of magnitude in the wake field. Yet the shear thinning effect is able to change the flow topology: a complex K´arm´an vortex street occurs, also revealing distinct characteristic frequencies associated with the dominant and sub-dominant vortices. Heating up the cylinder wall leads to a delayed flow separation and narrower wake flow, giving lesser space for the sequence of counter-rotating vortices. This spatial limitation does not only reduce the amplitude of the oscillating wake flow it also shifts the dominant frequency to higher frequencies, furthermore it damps higher harmonics. Eventually the locally heated wake flow smears out. Eventually, the CFD simulation results of the systematically varied thermal flow parameter study have been used to describe a relation for the main characteristic order parameters.

Keywords: heat transfer, thermo-viscous fluids, shear thinning, vortex shedding

Procedia PDF Downloads 287
4346 Material Characterization of Medical Grade Woven Bio-Fabric for Use in ABAQUS *FABRIC Material Model

Authors: Lewis Wallace, William Dempster, David Nash, Alexandros Boukis, Craig Maclean

Abstract:

This paper, through traditional test methods and close adherence to international standards, presents a characterization study of a woven Polyethylene Terephthalate (PET). Testing is undergone in the axial, shear, and out-of-plane (bend) directions, and the results are fitted to the *FABRIC material model with ABAQUS FEA. The non-linear behaviors of the fabric in the axial and shear directions and behaviors on the macro scale are explored at the meso scale level. The medical grade bio-fabric is tested in untreated and heat-treated forms, and deviations are closely analyzed at the micro, meso, and macro scales to determine the effects of the process. The heat-treatment process was found to increase the stiffness of the fabric during axial and bending stiffness testing but had a negligible effect on the shear response. The ability of *FABRIC to capture behaviors unique to fabric deformation is discussed, whereby the unique phenomenological input can accurately represent the experimentally derived inputs.

Keywords: experimental techniques, FEA modelling, materials characterization, post-processing techniques

Procedia PDF Downloads 83
4345 Temperature Coefficients of the Refractive Index for Ge Film

Authors: Lingmao Xu, Hui Zhou

Abstract:

Ge film is widely used in infrared optical systems. Because of the special requirements of space application, it is usually used in low temperature. The refractive index of Ge film is always changed with the temperature which has a great effect on the manufacture of high precision infrared optical film. Specimens of Ge single film were deposited at ZnSe substrates by EB-PVD method. During temperature range 80K ~ 300K, the transmittance of Ge single film within 2 ~ 15 μm were measured every 20K by PerkinElmer FTIR cryogenic testing system. By the full spectrum inversion method fitting, the relationship between refractive index and wavelength within 2 ~ 12μm at different temperatures was received. It can be seen the relationship consistent with the formula Cauchy, which can be fitted. Then the relationship between refractive index of the Ge film and temperature/wavelength was obtained by fitting method based on formula Cauchy. Finally, the designed value obtained by the formula and the measured spectrum were compared to verify the accuracy of the formula.

Keywords: infrared optical film, low temperature, thermal refractive coefficient, Ge film

Procedia PDF Downloads 287
4344 Shear Surface and Localized Waves in Functionally Graded Piezoactive Electro-Magneto-Elastic Media

Authors: Karen B. Ghazaryan

Abstract:

Recently, the propagation of coupled electromagnetic and elastic waves in magneto-electro-elastic (MEE) structures attracted much attention due to the wide range of application of these materials in smart structures. MEE materials are a class of new artificial composites that consist of simultaneous piezoelectric and piezomagnetic phases. Magneto-electro-elastic composites are built up by combining piezoelectric and piezomagnetic phases to obtain a smart composite that presents not only the electromechanical and magneto-mechanical coupling but also a strong magnetoelectric coupling, which makes such materials highly valuable in technological usage. In the framework of quasi-static approach shear surface and localized waves are considered in magneto-electro-elastic piezo-active structure consisting of functionally graded 6mm hexagonal symmetry group crystals. Assuming that in a functionally graded material the elastic and electromagnetic properties vary in the same proportion in direction perpendicular to the MEE polling direction, special classes of inhomogeneity functions were found, admitting exact solutions for coupled electromagnetic and elastic wave fields. Based on these exact solutions, defining the coupled shear wave field in magneto-electro-elastic composites several modal problems are considered: shear surface waves propagation along surface of a MEE half-space, interfacial wave propagation in a MEE oppositely polarized bi-layer, Love type waves in a functionally graded MEE layer overlying a homogeneous elastic half-space. For the problems under consideration corresponding dispersion equations are deduced analytically in an explicit form and for the BaTiO₃–CoFe₂O₄ crystal numerical results estimating effects of inhomogeneity and piezo effect are carried out.

Keywords: surface shear waves, magneto-electro-elastic composites, piezoactive crystals, functionally graded elastic materials

Procedia PDF Downloads 206
4343 An Investigation into Why Liquefaction Charts Work: A Necessary Step toward Integrating the States of Art and Practice

Authors: Tarek Abdoun, Ricardo Dobry

Abstract:

This paper is a systematic effort to clarify why field liquefaction charts based on Seed and Idriss’ Simplified Procedure work so well. This is a necessary step toward integrating the states of the art (SOA) and practice (SOP) for evaluating liquefaction and its effects. The SOA relies mostly on laboratory measurements and correlations with void ratio and relative density of the sand. The SOP is based on field measurements of penetration resistance and shear wave velocity coupled with empirical or semi-empirical correlations. This gap slows down further progress in both SOP and SOA. The paper accomplishes its objective through: a literature review of relevant aspects of the SOA including factors influencing threshold shear strain and pore pressure buildup during cyclic strain-controlled tests; a discussion of factors influencing field penetration resistance and shear wave velocity; and a discussion of the meaning of the curves in the liquefaction charts separating liquefaction from no liquefaction, helped by recent full-scale and centrifuge results. It is concluded that the charts are curves of constant cyclic strain at the lower end (Vs1 < 160 m/s), with this strain being about 0.03 to 0.05% for earthquake magnitude, Mw ≈ 7. It is also concluded, in a more speculative way, that the curves at the upper end probably correspond to a variable increasing cyclic strain and Ko, with this upper end controlled by over consolidated and preshaken sands, and with cyclic strains needed to cause liquefaction being as high as 0.1 to 0.3%. These conclusions are validated by application to case histories corresponding to Mw ≈ 7, mostly in the San Francisco Bay Area of California during the 1989 Loma Prieta earthquake.

Keywords: permeability, lateral spreading, liquefaction, centrifuge modeling, shear wave velocity charts

Procedia PDF Downloads 282
4342 Multichannel Analysis of the Surface Waves of Earth Materials in Some Parts of Lagos State, Nigeria

Authors: R. B. Adegbola, K. F. Oyedele, L. Adeoti

Abstract:

We present a method that utilizes Multi-channel Analysis of Surface Waves, which was used to measure shear wave velocities with a view to establishing the probable causes of road failure, subsidence and weakening of structures in some Local Government Area, Lagos, Nigeria. Multi channel Analysis of Surface waves (MASW) data were acquired using 24-channel seismograph. The acquired data were processed and transformed into two-dimensional (2-D) structure reflective of depth and surface wave velocity distribution within a depth of 0–15m beneath the surface using SURFSEIS software. The shear wave velocity data were compared with other geophysical/borehole data that were acquired along the same profile. The comparison and correlation illustrates the accuracy and consistency of MASW derived-shear wave velocity profiles. Rigidity modulus and N-value were also generated. The study showed that the low velocity/very low velocity are reflective of organic clay/peat materials and thus likely responsible for the failed, subsidence/weakening of structures within the study areas.

Keywords: seismograph, road failure, rigidity modulus, N-value, subsidence

Procedia PDF Downloads 350
4341 The Emergence of a Hexagonal Pattern in Shear-Thickening Suspension under Orbital Shaking

Authors: Li-Xin Shi, Meng-Fei Hu, Song-Chuan Zhao

Abstract:

Dense particle suspensions composed of mixtures of particles and fluid are omnipresent in natural phenomena and in industrial processes. Dense particle suspension under shear may lose its uniform state to large local density and stress fluctuations which challenge the mean-field description of the suspension system. However, it still remains largely debated and far from fully understood of the internal mechanism. Here, a dynamics of a non-Brownian suspension is explored under horizontal swirling excitations, where high-density patches appear when the excitation frequency is increased beyond a threshold. These density patches are self-assembled into a hexagonal pattern across the system with further increases in frequency. This phenomenon is underlined by the spontaneous growth of density waves (instabilities) along the flow direction, and the motion of these density waves preserves the circular path and the frequency of the oscillation. To investigate the origin of the phenomena, the constitutive relationship calibrated by independent rheological measurements is implemented into a simplified two-phase flow model. And the critical instability frequency in theory calculation matches the experimental measurements quantitatively without free parameters. By further analyzing the model, the instability is found to be closely related to the discontinuous shear thickening transition of the suspension. In addition, the long-standing density waves degenerate into random fluctuations when replacing the free surface with rigid confinement. It indicates that the shear-thickened state is intrinsically heterogeneous, and the boundary conditions are crucial for the development of local disturbance.

Keywords: dense suspension, instability, self-organization, density wave

Procedia PDF Downloads 73
4340 Spectrophotometric Evaluation of Custom Microalgae-Based Bioink Formulations for Optimized Green Bioprinting

Authors: Olubusuyi Ayowole, Bashir Khoda

Abstract:

Green bioprinting, from the context of merging 3D bioprinting with microalgae cell organization, holds promise for industrial-scale optimization. This study employs spectrophotometric analysis to explore post-bioprinting cell growth density variation within hybrid hydrogel biomaterial scaffolds. Three hydrogel biomaterials—Alginic acid sodium salt (ALGINATE), Nanofibrillated Cellulose (NFC) – TEMPO, and CarboxyMethyl Cellulose (CMC)—are chosen for their scaffolding capabilities. Bioink development and analysis of their impact on cell proliferation and morphology are conducted. Chlorella microalgae cell growth within hydrogel compositions is probed using absorbance measurements, with additional assessment of shear thinning properties. Notably, NFC exhibits reduced shear thinning compared to CMC. Results reveal that while mono-hydrogel substrates with pronounced adhesion inhibit Chlorella cell proliferation, Alginate fosters increased cell concentration alongside a slight viscosity rise.

Keywords: green bioprinting, 3d bioprinting, microalgae cell, hybrid hydrogel scaffolds, spectrophotometric analysis, bioink development, shear thinning properties

Procedia PDF Downloads 11
4339 Numerical Study on the Hazards of Gravitational Forces on Cerebral Aneurysms

Authors: Hashem M. Alargha, Mohammad O. Hamdan, Waseem H. Aziz

Abstract:

Aerobatic and military pilots are subjected to high gravitational forces that could cause blackout, physical injuries or death. A CFD simulation using fluid-solid interactions scheme has been conducted to investigate the gravitational effects and hazards inside cerebral aneurysms. Medical data have been used to derive the size and geometry of a simple aneurysm on a T-shaped bifurcation. The results show that gravitational force has no effect on maximum Wall Shear Stress (WSS); hence, it will not cause aneurysm initiation/formation. However, gravitational force cause causes hypertension which could contribute to aneurysm rupture.

Keywords: aneurysm, cfd, wall shear stress, gravity, fluid dynamics, bifurcation artery

Procedia PDF Downloads 358
4338 Seismic Microzonation Analysis for Damage Mapping of the 2006 Yogyakarta Earthquake, Indonesia

Authors: Fathul Mubin, Budi E. Nurcahya

Abstract:

In 2006, a large earthquake ever occurred in the province of Yogyakarta, which caused considerable damage. This is the basis need to investigate the seismic vulnerability index in around of the earthquake zone. This research is called microzonation of earthquake hazard. This research has been conducted at the site and surrounding of Prambanan Temple, includes homes and civil buildings. The reason this research needs to be done because in the event of an earthquake in 2006, there was damage to the temples at Prambanan temple complex and its surroundings. In this research, data collection carried out for 60 minutes using three component seismograph measurements at 165 points with spacing of 1000 meters. The data recorded in time function were analyzed using the spectral ratio method, known as the Horizontal to Vertical Spectral Ratio (HVSR). Results from this analysis are dominant frequency (Fg) and maximum amplification factor (Ag) are used to obtain seismic vulnerability index. The results of research showed the dominant frequency range from 0.5 to 30 Hz and the amplification is in interval from 0.5 to 9. Interval value for seismic vulnerability index is 0.1 to 50. Based on distribution maps of seismic vulnerability index and impact of buildings damage seemed for suitability. For further research, it needs to survey to the east (klaten) and south (Bantul, DIY) to determine a full distribution maps of seismic vulnerability index.

Keywords: amplification factor, dominant frequency, microzonation analysis, seismic vulnerability index

Procedia PDF Downloads 189
4337 A Quick Prediction for Shear Behaviour of RC Membrane Elements by Fixed-Angle Softened Truss Model with Tension-Stiffening

Authors: X. Wang, J. S. Kuang

Abstract:

The Fixed-angle Softened Truss Model with Tension-stiffening (FASTMT) has a superior performance in predicting the shear behaviour of reinforced concrete (RC) membrane elements, especially for the post-cracking behaviour. Nevertheless, massive computational work is inevitable due to the multiple transcendental equations involved in the stress-strain relationship. In this paper, an iterative root-finding technique is introduced to FASTMT for solving quickly the transcendental equations of the tension-stiffening effect of RC membrane elements. This fast FASTMT, which performs in MATLAB, uses the bisection method to calculate the tensile stress of the membranes. By adopting the simplification, the elapsed time of each loop is reduced significantly and the transcendental equations can be solved accurately. Owing to the high efficiency and good accuracy as compared with FASTMT, the fast FASTMT can be further applied in quick prediction of shear behaviour of complex large-scale RC structures.

Keywords: bisection method, FASTMT, iterative root-finding technique, reinforced concrete membrane

Procedia PDF Downloads 260
4336 The Result of Suggestion for Low Energy Diet (1,000-1,200 kcal) in Obese Women to the Effect on Body Weight, Waist Circumference, and BMI

Authors: S. Kumchoo

Abstract:

The result of suggestion for low energy diet (1,000-1,200 kcal) in obese women to the effect on body weight, waist circumference and body mass index (BMI) in this experiment. Quisi experimental research was used for this study and it is a One-group pretest-posttest designs measurement method. The aim of this study was body weight, waist circumference and body mass index (BMI) reduction by using low energy diet (1,000-1,200 kcal) in obese women, the result found that in 15 of obese women that contained their body mass index (BMI) ≥ 30, after they obtained low energy diet (1,000-1,200 kcal) within 2 weeks. The data were collected before and after of testing the results showed that the average of body weight decrease 3.4 kilogram, waist circumference value decrease 6.1 centimeter and the body mass index (BMI) decrease 1.3 kg.m2 from their previous body weight, waist circumference and body mass index (BMI) before experiment started. After this study, the volunteers got healthy and they can choose or select some food for themselves. For this study, the research can be improved for data development for forward study in the future.

Keywords: body weight, waist circumference, low energy diet, BMI

Procedia PDF Downloads 378
4335 Seismic Assessment of Flat Slab and Conventional Slab System for Irregular Building Equipped with Shear Wall

Authors: Muhammad Aji Fajari, Ririt Aprilin Sumarsono

Abstract:

Particular instability of structural building under lateral load (e.g earthquake) will rise due to irregularity in vertical and horizontal direction as stated in SNI 03-1762-2012. The conventional slab has been considered for its less contribution in increasing the stability of the structure, except special slab system such as flat slab turned into account. In this paper, the analysis of flat slab system at Sequis Tower located in South Jakarta will be assessed its performance under earthquake. It consists of 6 floors of the basement where the flat slab system is applied. The flat slab system will be the main focus in this paper to be compared for its performance with conventional slab system under earthquake. Regarding the floor plan of Sequis Tower basement, re-entrant corner signed for this building is 43.21% which exceeded the allowable re-entrant corner is 15% as stated in ASCE 7-05 Based on that, the horizontal irregularity will be another concern for analysis, otherwise vertical irregularity does not exist for this building. Flat slab system is a system where the slabs use drop panel with shear head as their support instead of using beams. Major advantages of flat slab application are decreasing dead load of structure, removing beams so that the clear height can be maximized, and providing lateral resistance due to lateral load. Whilst, deflection at middle strip and punching shear are problems to be detail considered. Torsion usually appears when the structural member under flexure such as beam or column dimension is improper in ratio. Considering flat slab as alternative slab system will keep the collapse due to torsion down. Common seismic load resisting system applied in the building is a shear wall. Installation of shear wall will keep the structural system stronger and stiffer affecting in reduced displacement under earthquake. Eccentricity of shear wall location of this building resolved the instability due to horizontal irregularity so that the earthquake load can be absorbed. Performing linear dynamic analysis such as response spectrum and time history analysis due to earthquake load is suitable as the irregularity arise so that the performance of structure can be significantly observed. Utilization of response spectrum data for South Jakarta which PGA 0.389g is basic for the earthquake load idealization to be involved in several load combinations stated on SNI 03-1726-2012. The analysis will result in some basic seismic parameters such as period, displacement, and base shear of the system; besides the internal forces of the critical member will be presented. Predicted period of a structure under earthquake load is 0.45 second, but as different slab system applied in the analysis then the period will show a different value. Flat slab system will probably result in better performance for the displacement parameter compare to conventional slab system due to higher contribution of stiffness to the whole system of the building. In line with displacement, the deflection of the slab will result smaller for flat slab than a conventional slab. Henceforth, shear wall will be effective to strengthen the conventional slab system than flat slab system.

Keywords: conventional slab, flat slab, horizontal irregularity, response spectrum, shear wall

Procedia PDF Downloads 179
4334 Implied Adjusted Volatility by Leland Option Pricing Models: Evidence from Australian Index Options

Authors: Mimi Hafizah Abdullah, Hanani Farhah Harun, Nik Ruzni Nik Idris

Abstract:

With the implied volatility as an important factor in financial decision-making, in particular in option pricing valuation, and also the given fact that the pricing biases of Leland option pricing models and the implied volatility structure for the options are related, this study considers examining the implied adjusted volatility smile patterns and term structures in the S&P/ASX 200 index options using the different Leland option pricing models. The examination of the implied adjusted volatility smiles and term structures in the Australian index options market covers the global financial crisis in the mid-2007. The implied adjusted volatility was found to escalate approximately triple the rate prior the crisis.

Keywords: implied adjusted volatility, financial crisis, Leland option pricing models, Australian index options

Procedia PDF Downloads 362
4333 Frontal Oscillatory Activity and Phase–Amplitude Coupling during Chan Meditation

Authors: Arthur C. Tsai, Chii-Shyang Kuo, Vincent S. C. Chien, Michelle Liou, Philip E. Cheng

Abstract:

Meditation enhances mental abilities and it is an antidote to anxiety. However, very little is known about brain mechanisms and cortico-subcortical interactions underlying meditation-induced anxiety relief. In this study, the changes of phase-amplitude coupling (PAC) in which the amplitude of the beta frequency band were modulated in phase with delta rhythm were investigated after eight-week of meditation training. The study hypothesized that through a concentrate but relaxed mental training the delta-beta coupling in the frontal regions is attenuated. The delta-beta coupling analysis was applied to within and between maximally-independent component sources returned from the extended infomax independent components analysis (ICA) algorithm on the continuous EEG data during mediation. A unique meditative concentration task through relaxing body and mind was used with a constant level of moderate mental effort, so as to approach an ‘emptiness’ meditative state. A pre-test/post-test control group design was used in this study. To evaluate cross-frequency phase-amplitude coupling of component sources, the modulation index (MI) with statistics to calculate circular phase statistics were estimated. Our findings reveal that a significant delta-beta decoupling was observed in a set of frontal regions bilaterally. In addition, beta frequency band of prefrontal component were amplitude modulated in phase with the delta rhythm of medial frontal component.

Keywords: phase-amplitude coupling, ICA, meditation, EEG

Procedia PDF Downloads 413