Search results for: 40-storied RC core wall building
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6708

Search results for: 40-storied RC core wall building

6258 Application of Life Cycle Assessment “LCA” Approach for a Sustainable Building Design under Specific Climate Conditions

Authors: Djeffal Asma, Zemmouri Noureddine

Abstract:

In order for building designer to be able to balance environmental concerns with other performance requirements, they need clear and concise information. For certain decisions during the design process, qualitative guidance, such as design checklists or guidelines information may not be sufficient for evaluating the environmental benefits between different building materials, products and designs. In this case, quantitative information, such as that generated through a life cycle assessment, provides the most value. LCA provides a systematic approach to evaluating the environmental impacts of a product or system over its entire life. In the case of buildings life cycle includes the extraction of raw materials, manufacturing, transporting and installing building components or products, operating and maintaining the building. By integrating LCA into building design process, designers can evaluate the life cycle impacts of building design, materials, components and systems and choose the combinations that reduce the building life cycle environmental impact. This article attempts to give an overview of the integration of LCA methodology in the context of building design, and focuses on the use of this methodology for environmental considerations concerning process design and optimization. A multiple case study was conducted in order to assess the benefits of the LCA as a decision making aid tool during the first stages of the building design under specific climate conditions of the North East region of Algeria. It is clear that the LCA methodology can help to assess and reduce the impact of a building design and components on the environment even if the process implementation is rather long and complicated and lacks of global approach including human factors. It is also demonstrated that using LCA as a multi objective optimization of building process will certainly facilitates the improvement in design and decision making for both new design and retrofit projects.

Keywords: life cycle assessment, buildings, sustainability, elementary schools, environmental impacts

Procedia PDF Downloads 515
6257 Accurate Positioning Method of Indoor Plastering Robot Based on Line Laser

Authors: Guanqiao Wang, Hongyang Yu

Abstract:

There is a lot of repetitive work in the traditional construction industry. These repetitive tasks can significantly improve production efficiency by replacing manual tasks with robots. There- fore, robots appear more and more frequently in the construction industry. Navigation and positioning are very important tasks for construction robots, and the requirements for accuracy of positioning are very high. Traditional indoor robots mainly use radiofrequency or vision methods for positioning. Compared with ordinary robots, the indoor plastering robot needs to be positioned closer to the wall for wall plastering, so the requirements for construction positioning accuracy are higher, and the traditional navigation positioning method has a large error, which will cause the robot to move. Without the exact position, the wall cannot be plastered, or the error of plastering the wall is large. A new positioning method is proposed, which is assisted by line lasers and uses image processing-based positioning to perform more accurate positioning on the traditional positioning work. In actual work, filter, edge detection, Hough transform and other operations are performed on the images captured by the camera. Each time the position of the laser line is found, it is compared with the standard value, and the position of the robot is moved or rotated to complete the positioning work. The experimental results show that the actual positioning error is reduced to less than 0.5 mm by this accurate positioning method.

Keywords: indoor plastering robot, navigation, precise positioning, line laser, image processing

Procedia PDF Downloads 124
6256 From By-product To Brilliance: Transforming Adobe Brick Construction Using Meat Industry Waste-derived Glycoproteins

Authors: Amal Balila, Maria Vahdati

Abstract:

Earth is a green building material with very low embodied energy and almost zero greenhouse gas emissions. However, it lacks strength and durability in its natural state. By responsibly sourcing stabilisers, it's possible to enhance its strength. This research draws inspiration from the robustness of termite mounds, where termites incorporate glycoproteins from their saliva during construction. Biomimicry explores the potential of these termite stabilisers in producing bio-inspired adobe bricks. The meat industry generates significant waste during slaughter, including blood, skin, bones, tendons, gastrointestinal contents, and internal organs. While abundant, many meat by-products raise concerns regarding human consumption, religious orders, cultural and ethical beliefs, and also heavily contribute to environmental pollution. Extracting and utilising proteins from this waste is vital for reducing pollution and increasing profitability. Exploring the untapped potential of meat industry waste, this research investigates how glycoproteins could revolutionize adobe brick construction. Bovine serum albumin (BSA) from cows' blood and mucin from porcine stomachs were the chosen glycoproteins used as stabilisers for adobe brick production. Despite their wide usage across various fields, they have very limited utilisation in food processing. Thus, both were identified as potential stabilisers for adobe brick production in this study. Two soil types were utilised to prepare adobe bricks for testing, comparing controlled unstabilised bricks with glycoprotein-stabilised ones. All bricks underwent testing for unconfined compressive strength and erosion resistance. The primary finding of this study is the efficacy of BSA, a glycoprotein derived from cows' blood and a by-product of the beef industry, as an earth construction stabiliser. Adding 0.5% by weight of BSA resulted in a 17% and 41% increase in the unconfined compressive strength for British and Sudanese adobe bricks, respectively. Further, adding 5% by weight of BSA led to a 202% and 97% increase in the unconfined compressive strength for British and Sudanese adobe bricks, respectively. Moreover, using 0.1%, 0.2%, and 0.5% by weight of BSA resulted in erosion rate reductions of 30%, 48%, and 70% for British adobe bricks, respectively, with a 97% reduction observed for Sudanese adobe bricks at 0.5% by weight of BSA. However, mucin from the porcine stomach did not significantly improve the unconfined compressive strength of adobe bricks. Nevertheless, employing 0.1% and 0.2% by weight of mucin resulted in erosion rate reductions of 28% and 55% for British adobe bricks, respectively. These findings underscore BSA's efficiency as an earth construction stabiliser for wall construction and mucin's efficacy for wall render, showcasing their potential for sustainable and durable building practices.

Keywords: biomimicry, earth construction, industrial waste management, sustainable building materials, termite mounds.

Procedia PDF Downloads 20
6255 Development of Soft-Core System for Heart Rate and Oxygen Saturation

Authors: Caje F. Pinto, Jivan S. Parab, Gourish M. Naik

Abstract:

This paper is about the development of non-invasive heart rate and oxygen saturation in human blood using Altera NIOS II soft-core processor system. In today's world, monitoring oxygen saturation and heart rate is very important in hospitals to keep track of low oxygen levels in blood. We have designed an Embedded System On Peripheral Chip (SOPC) reconfigurable system by interfacing two LED’s of different wavelengths (660 nm/940 nm) with a single photo-detector to measure the absorptions of hemoglobin species at different wavelengths. The implementation of the interface with Finger Probe and Liquid Crystal Display (LCD) was carried out using NIOS II soft-core system running on Altera NANO DE0 board having target as Cyclone IVE. This designed system is used to monitor oxygen saturation in blood and heart rate for different test subjects. The designed NIOS II processor based non-invasive heart rate and oxygen saturation was verified with another Operon Pulse oximeter for 50 measurements on 10 different subjects. It was found that the readings taken were very close to the Operon Pulse oximeter.

Keywords: heart rate, NIOS II, oxygen saturation, photoplethysmography, soft-core, SOPC

Procedia PDF Downloads 170
6254 Digital Transformation: Actionable Insights to Optimize the Building Performance

Authors: Jovian Cheung, Thomas Kwok, Victor Wong

Abstract:

Buildings are entwined with smart city developments. Building performance relies heavily on electrical and mechanical (E&M) systems and services accounting for about 40 percent of global energy use. By cohering the advancement of technology as well as energy and operation-efficient initiatives into the buildings, people are enabled to raise building performance and enhance the sustainability of the built environment in their daily lives. Digital transformation in the buildings is the profound development of the city to leverage the changes and opportunities of digital technologies To optimize the building performance, intelligent power quality and energy management system is developed for transforming data into actions. The system is formed by interfacing and integrating legacy metering and internet of things technologies in the building and applying big data techniques. It provides operation and energy profile and actionable insights of a building, which enables to optimize the building performance through raising people awareness on E&M services and energy consumption, predicting the operation of E&M systems, benchmarking the building performance, and prioritizing assets and energy management opportunities. The intelligent power quality and energy management system comprises four elements, namely the Integrated Building Performance Map, Building Performance Dashboard, Power Quality Analysis, and Energy Performance Analysis. It provides predictive operation sequence of E&M systems response to the built environment and building activities. The system collects the live operating conditions of E&M systems over time to identify abnormal system performance, predict failure trends and alert users before anticipating system failure. The actionable insights collected can also be used for system design enhancement in future. This paper will illustrate how intelligent power quality and energy management system provides operation and energy profile to optimize the building performance and actionable insights to revitalize an existing building into a smart building. The system is driving building performance optimization and supporting in developing Hong Kong into a suitable smart city to be admired.

Keywords: intelligent buildings, internet of things technologies, big data analytics, predictive operation and maintenance, building performance

Procedia PDF Downloads 130
6253 Numerical Analysis of Supersonic Impinging Jets onto Resonance Tube

Authors: Shinji Sato, M. M. A. Alam, Manabu Takao

Abstract:

In recent, investigation of an unsteady flow inside the resonance tube have become a strongly motivated research field for their potential application as high-frequency actuators. By generating a shock wave inside the resonance tube, a high temperature and pressure can be achieved inside the tube, and this high temperature can also be used to ignite a jet engine. In the present research, a computational fluid dynamics (CFD) analysis was carried out to investigate the flow inside the resonance tube. The density-based solver of rhoCentralFoam in OpenFOAM was used to numerically simulate the flow. The supersonic jet that was driven by a cylindrical nozzle with a nominal exit diameter of φd = 20.3 mm impinged onto the resonance tube. The jet pressure ratio was varied between 2.6 and 7.8. The gap s between the nozzle exit and tube entrance was changed between 1.5d and 3.0d. The diameter and length of the tube were taken as D = 1.25d and L=3.0D, respectively. As a result, when a supersonic jet has impinged onto the resonance tube, a compression wave was found generating inside the tube and propagating towards the tube end wall. This wave train resulted in a rise in the end wall gas temperature and pressure. While, in an outflow phase, the gas near tube enwall was found cooling back isentropically to its initial temperature. Thus, the compression waves repeated a reciprocating motion in the tube like a piston, and a fluctuation in the end wall pressures and temperatures were observed. A significant change was found in the end wall pressures and temperatures with a change of jet flow conditions. In this study, the highest temperature was confirmed at a jet pressure ratio of 4.2 and a gap of s=2.0d

Keywords: compressible flow, OpenFOAM, oscillations, a resonance tube, shockwave

Procedia PDF Downloads 128
6252 An Experimental Study of the Influence of Flow Rate on Formation Damage at Different pH

Authors: Khabat M. Ahmad

Abstract:

This experiment focuses on the reduction of permeability (formation damage) as a result of fines migration by changing pH and flow rate on core plugs selected from sandstone reservoir of Pannonian basin (Upper Miocene, East Hungary). The main objective of coreflooding experiments was to investigate the influence of both high and low pH fluids and the flow rate on stability of clay minerals. The selected core samples were examined by X-ray powder diffraction (XRD) for bulk mineralogical and clay mineral composition. The shape, position, distribution and type of clay minerals within the core samples were diagnosed by scanning electron microscopy and energy dispersive spectroscopy (SEM- EDS). The basic petrophysical properties such as porosity and initial permeability were determined prior to experiments. The special core analysis (influence of pH and flow rate) on permeability reduction was examined through a series of laboratory coreflooding experiments, testing for acidic (3) and alkaline (11) solutions at different flow rates (50, 100 and 200 ml/h). Permeability in continuously reduced for pH 11 to more than 50 % of initial permeability. However, at pH 3 after a slow decrease, a significant increase is observed, to more than 40 % of initial permeability. The variation is also influenced by flow rate.

Keywords: flow rate, pH, permeability, fine migration, formation damage, XRD, SEM- EDS

Procedia PDF Downloads 31
6251 Multi-Scale Modelling of the Cerebral Lymphatic System and Its Failure

Authors: Alexandra K. Diem, Giles Richardson, Roxana O. Carare, Neil W. Bressloff

Abstract:

Alzheimer's disease (AD) is the most common form of dementia and although it has been researched for over 100 years, there is still no cure or preventive medication. Its onset and progression is closely related to the accumulation of the neuronal metabolite Aβ. This raises the question of how metabolites and waste products are eliminated from the brain as the brain does not have a traditional lymphatic system. In recent years the rapid uptake of Aβ into cerebral artery walls and its clearance along those arteries towards the lymph nodes in the neck has been suggested and confirmed in mice studies, which has led to the hypothesis that interstitial fluid (ISF), in the basement membranes in the walls of cerebral arteries, provides the pathways for the lymphatic drainage of Aβ. This mechanism, however, requires a net reverse flow of ISF inside the blood vessel wall compared to the blood flow and the driving forces for such a mechanism remain unknown. While possible driving mechanisms have been studied using mathematical models in the past, a mechanism for net reverse flow has not been discovered yet. Here, we aim to address the question of the driving force of this reverse lymphatic drainage of Aβ (also called perivascular drainage) by using multi-scale numerical and analytical modelling. The numerical simulation software COMSOL Multiphysics 4.4 is used to develop a fluid-structure interaction model of a cerebral artery, which models blood flow and displacements in the artery wall due to blood pressure changes. An analytical model of a layer of basement membrane inside the wall governs the flow of ISF and, therefore, solute drainage based on the pressure changes and wall displacements obtained from the cerebral artery model. The findings suggest that an active role in facilitating a reverse flow is played by the components of the basement membrane and that stiffening of the artery wall during age is a major risk factor for the impairment of brain lymphatics. Additionally, our model supports the hypothesis of a close association between cerebrovascular diseases and the failure of perivascular drainage.

Keywords: Alzheimer's disease, artery wall mechanics, cerebral blood flow, cerebral lymphatics

Procedia PDF Downloads 503
6250 Seismic Evaluation of Multi-Plastic Hinge Design Approach on RC Shear Wall-Moment Frame Systems against Near-Field Earthquakes

Authors: Mohsen Tehranizadeh, Mahboobe Forghani

Abstract:

The impact of higher modes on the seismic response of dual structural system consist of concrete moment-resisting frame and with RC shear walls is investigated against near-field earthquakes in this paper. a 20 stories reinforced concrete shear wall-special moment frame structure is designed in accordance with ASCE7 requirements and The nonlinear model of the structure was performed on OpenSees platform. Nonlinear time history dynamic analysis with 3 near-field records are performed on them. In order to further understand the structural collapse behavior in the near field, the response of the structure at the moment of collapse especially the formation of plastic hinges is explored. The results revealed that the amplification of moment at top of the wall due to higher modes, the plastic hinge can form in the upper part of wall, even when designed and detailed for plastic hinging at the base only (according to ACI code).on the other hand, shear forces in excess of capacity design values can develop due to the contribution of the higher modes of vibration to dynamic response due to the near field can cause brittle shear or sliding failure modes. The past investigation on shear walls clearly shows the dual-hinge design concept is effective at reducing the effects of the second mode of response. An advantage of the concept is that, when combined with capacity design, it can result in relaxation of special reinforcing detailing in large portions of the wall. In this study, to investigate the implications of multi-design approach, 4 models with varies arrangement of hinge plastics at the base and height of the shear wall are considered. results base on time history analysis showed that the dual or multi plastic hinges approach can be useful in order to control the high moment and shear demand of higher mode effect.

Keywords: higher mode effect, Near-field earthquake, nonlinear time history analysis, multi plastic hinge design

Procedia PDF Downloads 405
6249 Risks of Climate Change on Buildings

Authors: Yahya N. Alfraidi, Abdel Halim Boussabaine

Abstract:

Climate change risk impacts are one of the most challenging aspects that faces the built environment now and the near future. The impacts of climate change on buildings are considered in four different dimensions: physical, economic, social, and management. For each of these, the risks are discussed as they arise from various effects linked to climate change, including windstorms, precipitation, temperature change, flooding, and sea-level rise. For example, building assets in cities will be exposed to extreme hot summer days and nights due to the urban heat island effect and pollution. Buildings also could be vulnerable to water, electricity, gas, etc., scarcity. Building materials, fabric and systems could also be stressed by the emerging climate risks. More impotently the building users might experience extreme internal and extern comfort conditions leading to lower productivity, wellbeing and health problems. Thus, the main aim of this paper to document the emerging risks from climate change on building assets. An in-depth discussion on the consequences of these climate change risk is provided. It is expected that the outcome of this research will be a set of risk design indicators for developing and procuring resilient building assets.

Keywords: climate change, risks of climate change, risks on building from climate change, buildings

Procedia PDF Downloads 600
6248 Performance Analysis of Ferrocement Retrofitted Masonry Wall Units under Cyclic Loading

Authors: Raquib Ahsan, Md. Mahir Asif, Md. Zahidul Alam

Abstract:

A huge portion of old masonry buildings in Bangladesh are vulnerable to earthquake. In most of the cases these buildings contain unreinforced masonry wall which are most likely to be subjected to earthquake damages. Due to deterioration of mortar joint and aging, shear resistance of these unreinforced masonry walls dwindle. So, retrofitting of these old buildings has become an important issue. Among many researched and experimented techniques, ferrocement retrofitting can be a low cost technique in context of the economic condition of Bangladesh. This study aims at investigating the behavior of ferrocement retrofitted unconfined URM walls under different types of cyclic loading. Four 725 mm × 725 mm masonry wall units were prepared with bricks jointed by stretcher bond with 12.5 mm mortar between two adjacent layers of bricks. To compare the effectiveness of ferrocement retrofitting a particular type wire mesh was used in this experiment which is 20 gauge woven wire mesh with 12.5 mm × 12.5 mm square opening. After retrofitting with ferrocement these wall units were tested by applying cyclic deformation along the diagonals of the specimens. Then a comparative study was performed between the retrofitted specimens and control specimens for both partially reversed cyclic load condition and cyclic compression load condition. The experiment results show that ultimate load carrying capacities of ferrocement retrofitted specimens are 35% and 27% greater than the control specimen under partially reversed cyclic loading and cyclic compression respectively. And before failure the deformations of ferrocement retrofitted specimens are 43% and 33% greater than the control specimen under reversed cyclic loading and cyclic compression respectively. Therefore, the test results show that the ultimate load carrying capacity and ductility of ferrocement retrofitted specimens have improved.

Keywords: cyclic compression, cyclic loading, ferrocement, masonry wall, partially reversed cyclic load, retrofitting

Procedia PDF Downloads 214
6247 Three Dimensional Dynamic Analysis of Water Storage Tanks Considering FSI Using FEM

Authors: S. Mahdi S. Kolbadi, Ramezan Ali Alvand, Afrasiab Mirzaei

Abstract:

In this study, to investigate and analyze the seismic behavior of concrete in open rectangular water storage tanks in two-dimensional and three-dimensional spaces, the Finite Element Method has been used. Through this method, dynamic responses can be investigated together in fluid storages system. Soil behavior has been simulated using tanks boundary conditions in linear form. In this research, in addition to flexibility of wall, the effects of fluid-structure interaction on seismic response of tanks have been investigated to account for the effects of flexible foundation in linear boundary conditions form, and a dynamic response of rectangular tanks in two-dimensional and three-dimensional spaces using finite element method has been provided. The boundary conditions of both rigid and flexible walls in two-dimensional finite element method have been considered to investigate the effect of wall flexibility on seismic response of fluid and storage system. Furthermore, three-dimensional model of fluid-structure interaction issue together with wall flexibility has been analyzed under the three components of earthquake. The obtained results show that two-dimensional model is also accurately near to the results of three-dimension as well as flexibility of foundation leads to absorb received energy and relative reduction of responses.

Keywords: dynamic behavior, flexible wall, fluid-structure interaction, water storage tank

Procedia PDF Downloads 156
6246 Clay Palm Press: A Technique of Hand Building in Ceramics for Developing Conceptual Forms

Authors: Okewu E. Jonathan

Abstract:

There are several techniques of production in the field of ceramics. These different techniques overtime have been categorised under three methods of production which includes; casting, throwing and hand building. Hand building method of production is further broken down into other techniques and they include coiling, slabbing and pinching. Ceramic artists find the different hand building techniques to be very interesting, practicable and rewarding. This has encouraged ceramic artist in their various studios at different levels to experiment for further hand building techniques that could be unique and unusual. The art of “Clay Palm Press” is a development from studio experiment in a quest for uniqueness in conceptual ceramic practise. Clay palm press is a technique that requires no formal tutelage but at the same time, it is not easily comprehensible when viewed. It is a practice of putting semi-solid clay in the palm and inserting a closed fist pressure so as to take the imprint of the human palm. This clay production from the palm when dried, fired and explored into an art, work reveals an absolute awesomeness of what the palm imprint could result in.

Keywords: ceramics, clay palm press, conceptual forms, hand building, technique

Procedia PDF Downloads 249
6245 A Study on the Wind Energy Produced in the Building Skin Using Piezoelectricity

Authors: Sara Mota Carmo

Abstract:

Nowadays, there is an increasing demand for buildings to be energetically autonomous through energy generation systems from renewable sources, according to the concept of a net zero energy building (NZEB). In this sense, the present study aims to study the integration of wind energy through piezoelectricity applied to the building skin. As a methodology, a reduced-scale prototype of a building was developed and tested in a wind tunnel, with the four façades monitored by recording the energy produced by each. The applied wind intensities varied between 2m/s and 8m/s and the four façades were compared with each other regarding the energy produced according to the intensity of wind and position in the wind. The results obtained concluded that it was not a sufficient system to generate sources to cover family residential buildings' energy needs. However, piezoelectricity is expanding and can be a promising path for a wind energy system in architecture as a complement to other renewable energy sources.

Keywords: adaptative building skin, kinetic façade, wind energy in architecture, NZEB

Procedia PDF Downloads 45
6244 A Design Decision Framework for Net-Zero Carbon Buildings in Hot Climates: A Modeled Approach and Expert’s Feedback

Authors: Eric Ohene, Albert P. C. Chan, Shu-Chien HSU

Abstract:

The rising building energy consumption and related carbon emissions make it necessary to construct net-zero carbon buildings (NZCBs). The objective of net-zero buildings has raised the benchmark for building performance and will alter how buildings are designed and constructed. However, there have been growing concerns about uncertainty in net-zero building design and cost implications in decision-making. Lessons from practice have shown that a robust net-zero building design is complex, expensive, and time-consuming. Moreover, climate conditions have an enormous implication for choosing the best-optimal passive and active solutions to ensure building energy performance while ensuring the indoor comfort performance of occupants. It is observed that 20% of the design decisions made in the initial design phase influence 80% of all design decisions. To design and construct NZCBs, it is crucial to ensure adequate decision-making during the early design phases. Therefore, this study aims to explore practical strategies to design NZCBs and to offer a design framework that could help decision-making during the design stage of net-zero buildings. A parametric simulation approach was employed, and experts (i.e., architects, building designers) perspectives on the decision framework were solicited. The study could be helpful to building designers and architects to guide their decision-making during the design stage of NZCBs.

Keywords: net-zero, net-zero carbon building, energy efficiency, parametric simulation, hot climate

Procedia PDF Downloads 74
6243 Innovative Pump Design Using the Concept of Viscous Fluid Sinusoidal Excitation

Authors: Ahmed H. Elkholy

Abstract:

The concept of applying a prescribed oscillation to viscous fluids to aid or increase flow is used to produce a maintenance free pump. Application of this technique to fluids presents unique problems such as physical separation; control of heat and mass transfer in certain industrial applications; and improvement of some fluid process methods. The problem as stated is to obtain the velocity distribution, wall shear stress and energy expended when a pipe containing a stagnant viscous fluid is externally excited by a sinusoidal pulse, one end of the pipe being pinned. On the other hand, the effect of different parameters on the results are presented. Such parameters include fluid viscosity, frequency of oscillations and pipe geometry. It was found that the flow velocity through the pump is maximum at the pipe wall, and it decreases rapidly towards the pipe centerline. The frequency of oscillation should be above a certain value in order to obtain meaningful flow velocity. The amount of energy absorbed in the system is mainly due to pipe wall strain energy, while the fluid pressure and kinetic energies are comparatively small.

Keywords: sinusoidal excitation, pump, shear stress, flow

Procedia PDF Downloads 295
6242 Contributing Factors to Building Failures and Defects in the Nigerian Construction Industry

Authors: Ndibarafinia Tobin

Abstract:

Building defect and failure are common phenomena in the Nigerian construction industry. The activities of the inexperienced labor force in the Nigerian construction industry have tarnished the image of practicing construction professionals in recent past. Defects and collapse can cause unnecessary expenditure, delays, loss of lives, property and left many people injured. They are also generating controversies among parties involved. Also, if this situation is left unanswered and untreated, it will lead to more serious problems in the future upcoming construction projects in Nigeria. Quite a number of factors are responsible for collapse of high-rise, reinforced concrete buildings in Nigeria. Government, professional bodies and stakeholders are asking countless questions as to who should be responsible and how solutions could be proffered. Therefore this study is aimed to identify the contributing factors to high-rise buildings defects and failures in Nigeria, which frequently occur in construction project in order to minimize time and cost and also the roles of professionals and other participants play in the industry in terms of the use of building materials, placement and curing of concrete, modification in the use of a building, collapse of building induced by fire and other causes. The data is collected from questionnaire from various players in construction industry in Nigeria. This study is succeeds in identifying the causes of building failure and also suggesting possible measures to be taken by government and other regulatory bodies in the building industry to avert this and also improve the effectiveness of managing appraisal process of failures and defects in the future.

Keywords: building defects, building failures, Nigerian construction industry, professionals

Procedia PDF Downloads 273
6241 The Effect of Collapse Structure on Economic Growth and Influence of Soil Investigation

Authors: Fatai Shola Afolabi

Abstract:

The study identified and evaluates the causes of building failure and examined the effects of building failure with respect to cost in Lagos State, Nigeria. The method employed in the collection of data includes the administration of questionnaire to professionals in the construction industry and case studies for the sites. A purposive sampling technique was used for selecting the sites visited, and selecting the construction professionals. Descriptive statistical techniques such as frequency distribution and percentages and mean response analysis were used to analyze data. The study revealed that the major causes of building failures were bad design, faulty construction, over loading, non-possession of approved drawings, Possession of approved drawings but non-compliance, and the use of quarks. In the two case studies considered, the total direct loss to the building owners was thirty eight million three hundred and eight five thousand, seven hundred and twenty one naira (38,385,721) which is about One hundred and ninety four thousand, eighty hundred and fifty one dollars ($194,851) at one hundred and ninety seven naira to one US dollars, central bank Nigeria of exchange rate as at 14th March, 2015.

Keywords: building structures, building failure, building collapse, structural failure, cost, direct loss

Procedia PDF Downloads 236
6240 Applying ASHRAE Standards on the Hospital Buildings of UAE

Authors: Hanan M. Taleb

Abstract:

Energy consumption associated with buildings has a significant impact on the environment. To that end, and as a transaction between the inside and outside and between the building and urban space, the building skin plays an especially important role. It provides protection from the elements; demarcates private property and creates privacy. More importantly, it controls the admission of solar radiation. Therefore, designing the building skin sustainably will help to achieve optimal performance in terms of both energy consumption and thermal comfort. Unfortunately, with accelerating construction expansion, many recent buildings do not pay attention to the importance of the envelope design. This piece of research will highlight the importance of this part of the creation of buildings by providing evidence of a significant reduction in energy consumption if the envelopes are redesigned. Consequently, the aim of this paper is to enhance the performance of the hospital envelope in order to achieve sustainable performance. A hospital building sited in Abu Dhabi, in the UAE, has been chosen to act as a case study. A detailed analysis of the annual energy performance of the case study will be performed with the use of a computerised simulation; this is in order to explore their energy performance shortcomings. The energy consumption of the base case will then be compared with that resulting from the new proposed building skin. The results will inform architects and designers of the savings potential from various strategies.

Keywords: ASHREA, building skin, building envelopes, hospitals, Abu Dhabi, UAE, IES software

Procedia PDF Downloads 334
6239 3D Visualization for the Relationship of the Urban Rule and Building Form by Using CityEngine

Authors: Chin Ku, Han liang Lin

Abstract:

The purpose of this study is to visualize how the rule related to urban design influences the building form by 3D modeling software CityEngine. In order to make the goal of urban design clearly connect to urban form, urban planner or designer should understand how the rule affects the form, especially the building form. In Taiwan, the rule pertained to urban design includes traditional zoning, urban design review and building codes. However, zoning cannot precisely expect the outcome of building form and lack of thinking about public realm and 3D form. In addition to that, urban design review is based on case by case, do not have a comprehensive regulation plan and the building code is just for general regulation. Therefore, rule cannot make the urban form reach the vision or goal of the urban design. Consequently, another kind of zoning called Form-based code (FBC) has arisen. This study uses the component of FBC which pertained to urban fabric such as street width, block and plot size, etc., to be the variants of building form, and find out the relationship between the rule and building form. There are three stages of this research, it will start from a field survey of Taichung City in Taiwan to induce the rule-building form relationship by using cluster analysis and descriptive Statistics. Second, visualize the relationship through the parameterized and codified process in CityEngine which is the procedural modeling, and can analyze, monitor and visualize the 3D world. Last, compare the CityEngine result with real world to examine how extent do this model represent the real world appearance.

Keywords: 3D visualization, CityEngine, form-based code, urban form

Procedia PDF Downloads 524
6238 A Study of a Plaque Inhibition Through Stenosed Bifurcation Artery considering a Biomagnetic Blood Flow and Elastic Walls

Authors: M. A. Anwar, K. Iqbal, M. Razzaq

Abstract:

Background and Objectives: This numerical study reflects the magnetic field's effect on the reduction of plaque formation due to stenosis in a stenosed bifurcated artery. The entire arterythe wall is assumed as linearly elastic, and blood flow is modeled as a Newtonian, viscous, steady, incompressible, laminar, biomagnetic fluid. Methods: An Arbitrary Lagrangian-Eulerian (ALE) technique is employed to formulate the hemodynamic flow in a bifurcated artery under the effect of the asymmetric magnetic field by two-way Fluid-structure interaction coupling. A stable P2P1 finite element pair is used to discretize thenonlinear system of partial differential equations. The resulting nonlinear system of algebraic equations is solved by the Newton Raphson method. Results: The numerical results for displacement, velocity magnitude, pressure, and wall shear stresses for Reynolds numbers, Re = 500, 1000, 1500, 2000, in the presence of magnetic fields are presented graphically. Conclusions: The numerical results show that the presence of the magnetic field influences the displacement and flows velocity magnitude considerably. The magnetic field reduces the flow separation, recirculation area adjacent to stenosis and gives rise to wall shear stress.

Keywords: bifurcation, elastic walls, finite element, wall shear stress,

Procedia PDF Downloads 146
6237 Challenges in Adopting 3R Concept in the Heritage Building Restoration

Authors: H. H. Goh, K. C. Goh, T. W. Seow, N. S. Said, S. E. P. Ang

Abstract:

Malaysia is rich with historic buildings, particularly in Penang and Malacca states. Restoration activities are increasingly important as these states are recognized under UNESCO World Heritage Sites. Restoration activities help to maintain the uniqueness and value of a heritage building. However, increasing in restoration activities has resulted in large quantities of waste. To cope with this problem, the 3R concept (reduce, reuse and recycle) is introduced. The 3R concept is one of the waste management hierarchies. This concept is still yet to apply in the building restoration industry compared to the construction industry. Therefore, this study aims to promote the 3R concept in the heritage building restoration industry. This study aims to examine the importance of 3R concept and to identify challenges in applying the 3R concept in the heritage building restoration industry. This study focused on contractors and consultants who are involved in heritage restoration projects in Penang. Literature review and interviews helps to reach the research objective. Data that obtained is analyzed by using content analysis. For the research, application of 3R concept is important to conserve natural resources and reduce pollution problems. However, limited space to organise waste is the obstruction during the implementation of this concept. In conclusion, the 3R concept plays an important role in promoting environmental conservation and helping in reducing the construction waste

Keywords: 3R Concept, heritage building, restoration activities, building science

Procedia PDF Downloads 291
6236 Failure Analysis of a Hydrocarbon Carrying/Piping System

Authors: Esteban Morales Murillo, Ephraim Mokgothu

Abstract:

This paper presents the findings of a study conducted to investigate the wall thinning in a piping system carrying a mix of hydrocarbons in a petrochemical plant. A detailed investigation including optical inspection and several characterisation techniques such as optical microscopy, SEM/EDX, and XRF/C-S analyses was conducted. The examinations revealed that the wall thinning in the piping system was a result of high-temperature H2/H2S corrosion caused by a susceptible material for this mechanism and operating parameters and effluent concentrations beyond the prescribed limits. The sulfide layers found to testify to the large amounts of H2S that led to material degradation. Deposit analysis revealed that it consisted primarily of carbon, oxygen, iron, chromium and sulfur. Metallographic examinations revealed that the attack initiated from the internal surface and that spheroidization of carbides did occur. The article discusses in detail the contribution failure factors on the Couper-Gorman H2/H2S curves to draw conclusions. Recommendations based on the above findings are also discussed.

Keywords: corrosion, Couper-Gorman, high-temperature corrosion, sulfidation, wall thinning, piping system

Procedia PDF Downloads 364
6235 Conception of Increasing the Efficiency of Excavation Shoring by Prestressing Diaphragm Walls

Authors: Mateusz Frydrych

Abstract:

The construction of diaphragm walls as excavation shoring as well as part of deep foundations is widely used in geotechnical engineering. Today's design challenges lie in the optimal dimensioning of the cross-section, which is demanded by technological considerations. Also in force is the issue of optimization and sustainable use of construction materials, including reduction of carbon footprint, which is currently a relevant challenge for the construction industry. The author presents the concept of an approach to achieving increased efficiency of diaphragm wall excavation shoring by using structural compression technology. The author proposes to implement prestressed tendons in a non-linear manner in the reinforcement cage. As a result bending moment is reduced, which translates into a reduction in the amount of steel needed in the section, a reduction in displacements, and a reduction in the scratching of the casing, including the achievement of better tightness. This task is rarely seen and has not yet been described in a scientific way in the literature. The author has developed a dynamic numerical model that allows the dimensioning of the cross-section of a prestressed shear wall, as well as the study of casing displacements and cross-sectional forces in any defined computational situation. Numerical software from the Sofistik - open source development environment - was used for the study, and models were validated in Plaxis software . This is an interesting idea that allows for optimizing the execution of construction works and reducing the required resources by using fewer materials and saving time. The author presents the possibilities of a prestressed diaphragm wall, among others, using. The example of a diaphragm wall working as a cantilever at the height of two underground floors without additional strutting or stability protection by using ground anchors. This makes the execution of the work more criminal for the contractor and, as a result, cheaper for the investor.

Keywords: prestressed diaphragm wall, Plaxis, Sofistik, innovation, FEM, optimisation

Procedia PDF Downloads 49
6234 Electrical Resistivity of Solid and Liquid Pt: Insight into Electrical Resistivity of ε-Fe

Authors: Innocent C. Ezenwa, Takashi Yoshino

Abstract:

Knowledge of the transport properties of Fe and its alloys at extreme high pressure (P), temperature (T) conditions are essential for understanding the generation and sustainability of the magnetic field of the rocky planets with a metallic core. Since Pt, an unfilled d-band late transition metal with an electronic structure of Xe4f¹⁴5d⁹6s¹, is paramagnetic and remains close-packed structure at ambient conditions and high P-T, it is expected that its transport properties at these conditions would be similar to those of ε-Fe. We investigated the T-dependent electrical resistivity of solid and liquid Pt up to 8 GPa and found it constant along its melting curve both on the liquid and solid sides in agreement with theoretical prediction and experimental results estimated from thermal conductivity measurements. Our results suggest that the T-dependent resistivity of ε-Fe is linear and would not saturate at high P, T conditions. This, in turn, suggests that the thermal conductivity of liquid Fe at Earth’s core conditions may not be as high as previously suggested by models employing saturation resistivity. Hence, thermal convection could have powered the geodynamo before the birth of the inner core. The electrical resistivity and thermal conductivity on the liquid and solid sides of the inner core boundary of the Earth would be significantly different in values.

Keywords: electrical resistivity, thermal conductivity, transport properties, geodynamo and geomagnetic field

Procedia PDF Downloads 114
6233 Combined Surface Tension and Natural Convection of Nanofluids in a Square Open Cavity

Authors: Habibis Saleh, Ishak Hashim

Abstract:

Combined surface tension and natural convection heat transfer in an open cavity is studied numerically in this article. The cavity is filled with water-{Cu} nanofluids. The left wall is kept at low temperature, the right wall at high temperature and the bottom and top walls are adiabatic. The top free surface is assumed to be flat and non--deformable. Finite difference method is applied to solve the dimensionless governing equations. It is found that the insignificant effect of adding the nanoparticles were obtained about $Ma_{bf}=250$.

Keywords: natural convection, marangoni convection, nanofluids, square open cavity

Procedia PDF Downloads 526
6232 Recommendation of Semi Permanent Buildings for Tsunami Prone Areas

Authors: Fitri Nugraheni, Adwitya Bhaskara, N. Faried Hanafi

Abstract:

Coastal is one area that can be a place to live. Various buildings can be built in the area around the beach. Many Indonesians use beaches as housing and work, but we know that coastal areas are identical to tsunami and wind. Costs incurred due to permanent damage caused by tsunamis and wind disasters in Indonesia can be minimized by replacing permanent buildings into semi-permanent buildings. Semi-permanent buildings can be realized by using cold-formed steel as a building. Thus, the purpose of this research is to provide efficient semi-permanent building recommendations for residents around the coast. The research is done by first designing the building model by using sketch-up software, then the validation phase is done in consultation with the expert consultant of cold form steel structure. Based on the results of the interview there are several revisions on several sides of the building by adding some bracing rods on the roof, walls and floor frame. The result of this research is recommendation of semi-permanent building model, where the nature of the building; easy to disassemble and install (knockdown), tsunami-friendly (continue the tsunami load), cost and time efficient (using cold-formed-steel and prefabricated GRC), zero waste, does not require many workers (less labor). The recommended building design concept also keeps the architecture side in mind thus it remains a comfortable occupancy for the residents.

Keywords: construction method, cold-formed steel, efficiency, semi-permanent building, tsunami

Procedia PDF Downloads 259
6231 Uncertainty in Building Energy Performance Analysis at Different Stages of the Building’s Lifecycle

Authors: Elham Delzendeh, Song Wu, Mustafa Al-Adhami, Rima Alaaeddine

Abstract:

Over the last 15 years, prediction of energy consumption has become a common practice and necessity at different stages of the building’s lifecycle, particularly, at the design and post-occupancy stages for planning and maintenance purposes. This is due to the ever-growing response of governments to address sustainability and reduction of CO₂ emission in the building sector. However, there is a level of uncertainty in the estimation of energy consumption in buildings. The accuracy of energy consumption predictions is directly related to the precision of the initial inputs used in the energy assessment process. In this study, multiple cases of large non-residential buildings at design, construction, and post-occupancy stages are investigated. The energy consumption process and inputs, and the actual and predicted energy consumption of the cases are analysed. The findings of this study have pointed out and evidenced various parameters that cause uncertainty in the prediction of energy consumption in buildings such as modelling, location data, and occupant behaviour. In addition, unavailability and insufficiency of energy-consumption-related inputs at different stages of the building’s lifecycle are classified and categorized. Understanding the roots of uncertainty in building energy analysis will help energy modellers and energy simulation software developers reach more accurate energy consumption predictions in buildings.

Keywords: building lifecycle, efficiency, energy analysis, energy performance, uncertainty

Procedia PDF Downloads 110
6230 Constitutive Flo1p Expression on Strains Bearing Deletions in Genes Involved in Cell Wall Biogenesis

Authors: Lethukuthula Ngobese, Abin Gupthar, Patrick Govender

Abstract:

The ability of yeast cell wall-derived mannoproteins (glycoproteins) to positively contribute to oenological properties has been a key factor that stimulates research initiatives into these industrially important glycoproteins. In addition, and from a fundamental research perspective, yeast cell wall glycoproteins are involved in a wide range of biological interactions. To date, and to the best of our knowledge, our understanding of the fine molecular structure of these mannoproteins is fairly limited. Generally, the amino acid sequences of their protein moieties have been established from structural and functional analysis of the genomic sequence of these yeasts whilst far less information is available on the glycosyl moieties of these mannoproteins. A novel strategy was devised in this study that entails the genetic engineering of yeast strains that over-express and release cell wall-associated glycoproteins into the liquid growth medium. To this end, the Flo1p mannoprotein was overexpressed in Saccharomyces cerevisiae laboratory strains bearing a specific deletion in KNR4 and GPI7 genes involved in cell wall biosynthesis that have been previously shown to extracellularly hyper-secrete cell wall-associated glycoproteins. A polymerase chain reaction (PCR) -based cloning strategy was employed to generate transgenic yeast strains in which the native cell wall FLO1 glycoprotein-encoding gene is brought under transcriptional control of the constitutive PGK1 promoter. The modified Helm’s flocculation assay was employed to assess flocculation intensities of a Flo1p over-expressing wild type and deletion mutant as an indirect measure of their abilities to release the desired mannoprotein. The flocculation intensities of the transformed strains were assessed and all the strains showed similar intensities (>98% flocculation). To assess if mannoproteins were released into the growth medium, the supernatant of each strain was subjected to the BCA protein assay and the transformed Δknr4 strain showed a considerable increase in protein levels. This study has the potential to produce mannoproteins in sufficient quantities that may be employed in future investigations to understand their molecular structures and mechanisms of interaction to the benefit of both fundamental and industrial applications.

Keywords: glycoproteins, genetic engineering, flocculation, over-expression

Procedia PDF Downloads 387
6229 Turbulence Modeling of Source and Sink Flows

Authors: Israt Jahan Eshita

Abstract:

Flows developed between two parallel disks have many engineering applications. Two types of non-swirling flows can be generated in such a domain. One is purely source flow in disc type domain (outward flow). Other is purely sink flow in disc type domain (inward flow). This situation often appears in some turbo machinery components such as air bearings, heat exchanger, radial diffuser, vortex gyroscope, disc valves, and viscosity meters. The main goal of this paper is to show the mesh convergence, because mesh convergence saves time, and economical to run and increase the efficiency of modeling for both sink and source flow. Then flow field is resolved using a very fine mesh near-wall, using enhanced wall treatment. After that we are going to compare this flow using standard k-epsilon, RNG k-epsilon turbulence models. Lastly compare some experimental data with numerical solution for sink flow. The good agreement of numerical solution with the experimental works validates the current modeling.

Keywords: hydraulic diameter, k-epsilon model, meshes convergence, Reynolds number, RNG model, sink flow, source flow, wall y+

Procedia PDF Downloads 508