Search results for: estimation of properties of the model
20793 Model for Introducing Products to New Customers through Decision Tree Using Algorithm C4.5 (J-48)
Authors: Komol Phaisarn, Anuphan Suttimarn, Vitchanan Keawtong, Kittisak Thongyoun, Chaiyos Jamsawang
Abstract:
This article is intended to analyze insurance information which contains information on the customer decision when purchasing life insurance pay package. The data were analyzed in order to present new customers with Life Insurance Perfect Pay package to meet new customers’ needs as much as possible. The basic data of insurance pay package were collect to get data mining; thus, reducing the scattering of information. The data were then classified in order to get decision model or decision tree using Algorithm C4.5 (J-48). In the classification, WEKA tools are used to form the model and testing datasets are used to test the decision tree for the accurate decision. The validation of this model in classifying showed that the accurate prediction was 68.43% while 31.25% were errors. The same set of data were then tested with other models, i.e. Naive Bayes and Zero R. The results showed that J-48 method could predict more accurately. So, the researcher applied the decision tree in writing the program used to introduce the product to new customers to persuade customers’ decision making in purchasing the insurance package that meets the new customers’ needs as much as possible.Keywords: decision tree, data mining, customers, life insurance pay package
Procedia PDF Downloads 43320792 Effect on Occupational Health Safety and Environment at Work from Metal Handicraft Using Rattanakosin Local Wisdom
Authors: Witthaya Mekhum, Waleerak Sittisom
Abstract:
This research investigated the effect on occupational health safety and environment at work from metal handicraft using Rattanakosin local wisdom focusing on pollution, accidents, and injuries from work. The sample group in this study included 48 metal handicraft workers in 5 communities by using questionnaires and interview to collect data. The evaluation form TISI 18001 was used to analyze job safety analysis (JSA). The results showed that risk at work reduced after applying the developed model. Banbu Community produces alloy bowl rubbed with stone. The high risk process is melting and hitting process. Before the application, the work risk was 82.71%. After the application of the developed model, the work risk was reduced to 50.61%. Banbart Community produces monk’s food bowl. The high risk process is blow pipe welding. Before the application, the work risk was 93.59%. After the application of the developed model, the work risk was reduced to 48.14%. Bannoen Community produces circle gong. The high risk process is milling process. Before the application, the work risk was 85.18%. After the application of the developed model, the work risk was reduced to 46.91%. Teethong Community produces gold leaf. The high risk process is hitting and spreading process. Before the application, the work risk was 86.42%. After the application of the developed model, the work risk was reduced to 64.19%. Ban Changthong Community produces gold ornament. The high risk process is gold melting process. Before the application, the work risk was 67.90%. After the application of the developed model, the work risk was reduced to 37.03%. It can be concluded that with the application of the developed model, the work risk of 5 communities was reduced in the 3 main groups: (1) Work illness reduced by 16.77%; (2) Pollution from work reduced by 10.31%; (3) Accidents and injuries from work reduced by 15.62%.Keywords: occupational health, safety, local wisdom, Rattanakosin
Procedia PDF Downloads 44520791 Facial Emotion Recognition Using Deep Learning
Authors: Ashutosh Mishra, Nikhil Goyal
Abstract:
A 3D facial emotion recognition model based on deep learning is proposed in this paper. Two convolution layers and a pooling layer are employed in the deep learning architecture. After the convolution process, the pooling is finished. The probabilities for various classes of human faces are calculated using the sigmoid activation function. To verify the efficiency of deep learning-based systems, a set of faces. The Kaggle dataset is used to verify the accuracy of a deep learning-based face recognition model. The model's accuracy is about 65 percent, which is lower than that of other facial expression recognition techniques. Despite significant gains in representation precision due to the nonlinearity of profound image representations.Keywords: facial recognition, computational intelligence, convolutional neural network, depth map
Procedia PDF Downloads 23520790 Theoretical and Experimental Study of Iron Oxide Thin Film
Authors: Fahima Djefaflia, M. Loutfi Benkhedir
Abstract:
The aim of this work was to development and characterisation of iron oxide thin films by spray pyrolysis technique. Influences of deposition parameters pile temperature on structural and optical properties have been studied Thin films are analysed by various techniques of materials. The structural characterization of films by analysis of spectra of X-ray diffraction showed that the films prepared at T=350,400,450 are crystalline and amorphous at T=300C. For particular condition, two phases hematiteFe2O3 and magnetite Fe3O4 have been observed.The UV-Visible spectrophotometer of this films confirms that it is possible to obtain films with a transmittance of about 15-30% in the visible range. In addition, this analysis allowed us to determine the optical gap and disorder of films. We conclude that the increase in temperature is accompanied by a reduction in the optical gap with increasing in disorder. An ab initio calculation for this phase shows that the results are in good agreement with the experimental results.Keywords: spray pyrolysis technique, iron oxide, ab initio calculation, optical properties
Procedia PDF Downloads 56120789 Production of Cellulose Nanowhiskers from Red Algae Waste and Its Application in Polymer Composite Development
Authors: Z. Kassab, A. Aboulkas, A. Barakat, M. El Achaby
Abstract:
The red algae are available enormously around the world and their exploitation for the production of agar product has become as an important industry in recent years. However, this industrial processing of red algae generated a large quantity of solid fibrous wastes, which constitute a source of a serious environmental problem. For this reason, the exploitation of this solid waste would help to i) produce new value-added materials and ii) to improve waste disposal from environment. In fact, this solid waste can be fully utilized for the production of cellulose microfibers and nanocrystals because it consists of large amount of cellulose component. For this purpose, the red algae waste was chemically treated via alkali, bleaching and acid hydrolysis treatments with controlled conditions, in order to obtain pure cellulose microfibers and cellulose nanocrystals. The raw product and the as-extracted cellulosic materials were successively characterized using serval analysis techniques, including elemental analysis, X-ray diffraction, thermogravimetric analysis, infrared spectroscopy and transmission electron microscopy. As an application, the as extracted cellulose nanocrystals were used as nanofillers for the production of polymer-based composite films with improved thermal and tensile properties. In these composite materials, the adhesion properties and the large number of functional groups that are presented in the CNC’s surface and the macromolecular chains of the polymer matrix are exploited to improve the interfacial interactions between the both phases, improving the final properties. Consequently, the high performances of these composite materials can be expected to have potential in packaging material applications.Keywords: cellulose nanowhiskers, food packaging, polymer composites, red algae waste
Procedia PDF Downloads 23120788 Design Optimization of a Micro Compressor for Micro Gas Turbine Using Computational Fluid Dynamics
Authors: Kamran Siddique, Hiroyuki Asada, Yoshifumi Ogami
Abstract:
The use of Micro Gas Turbine (MGT) as the engine in Unmanned Aerobic Vehicles (UAVs) and power source in Robotics is widespread these days. Research has been conducted in the past decade or so to improve the performance of different components of MGT. This type of engine has interrelated components which have non-linear characteristics. Therefore, the overall engine performance depends on the individual engine element’s performance. Computational Fluid Dynamics (CFD) is one of the simulation method tools used to analyze or even optimize MGT system performance. In this study, the compressor of the MGT is designed, and performance optimization is being done using CFD. Performance of the micro compressor is improved in order to increase the overall performance of MGT. A high value of pressure ratio is to be achieved by studying the effect of change of different operating parameters like mass flow rate and revolutions per minute (RPM) and aerodynamical and geometrical parameters on the pressure ratio of the compressor. Two types of compressor designs are considered in this study; 3D centrifugal and ‘planar’ designs. For a 10 mm impeller, the planar model is the simplest compressor model with the ease in manufacturability. On the other hand, 3D centrifugal model, although more efficient, is very difficult to manufacture using current microfabrication resources. Therefore, the planar model is the best-suited model for a micro compressor. So. a planar micro compressor has been designed that has a good pressure ratio, and it is easy to manufacture using current microfabrication technologies. Future work is to fabricate the compressor to get experimental results and validate the theoretical model.Keywords: computational fluid dynamics, microfabrication, MEMS, unmanned aerobic vehicles
Procedia PDF Downloads 14820787 Refractive Index, Excess Molar Volume and Viscometric Study of Binary Liquid Mixture of Morpholine with Cumene at 298.15 K, 303.15 K, and 308.15 K
Authors: B. K. Gill, Himani Sharma, V. K. Rattan
Abstract:
Experimental data of refractive index, excess molar volume and viscosity of binary mixture of morpholine with cumene over the whole composition range at 298.15 K, 303.15 K, 308.15 K and normal atmospheric pressure have been measured. The experimental data were used to compute the density, deviation in molar refraction, deviation in viscosity and excess Gibbs free energy of activation as a function of composition. The experimental viscosity data have been correlated with empirical equations like Grunberg- Nissan, Herric correlation and three body McAllister’s equation. The excess thermodynamic properties were fitted to Redlich-Kister polynomial equation. The variation of these properties with composition and temperature of the binary mixtures are discussed in terms of intermolecular interactions.Keywords: cumene, excess Gibbs free energy, excess molar volume, morpholine
Procedia PDF Downloads 33120786 Mechanical Properties and Crack Extension Mechanism of Rock Contained Blocks Under Uniaxial Compression
Authors: Ruiyang Bi
Abstract:
Natural rock masses are cut into rock blocks of different shapes and sizes by intersecting joints. These rock blocks often determine the mechanical properties of the rock mass. In this study, fine sandstone cube specimens were produced, and three intersecting joint cracks were cut inside the specimen. Uniaxial compression tests were conducted using mechanical tests and numerical simulation methods to study the mechanical properties and crack propagation mechanism of triangular blocks within the rock. During the test, the mechanical strength, acoustic emission characteristics and strain field evolution of the specimen were analyzed. Discrete element software was used to study the expansion of microcracks during the specimen failure process, and the crack types were divided. The simulation results show that as the inclination angles of the three joints increase simultaneously, the mechanical strength of the specimen first decreases and then increases, and the crack type is mainly shear. As the inclination angle of a single joint increases, the strength of the specimen gradually decreases. When the inclination angles of the two joints increase at the same time, the strength of the specimen gradually decreases. The research results show that the stability of the rock mass is affected by the joint inclination angle and the size of the cut blocks. The greater the joint dip and block size, the more significant the development of micro-cracks in the rock mass, and the worse the stability.Keywords: rock joints, uniaxial compression, crack extension, discrete element simulation
Procedia PDF Downloads 7020785 Sol-Gel Synthesis and Photoluminescent Properties of YPO4: Pr3+ Nanophosphors
Authors: Badis Kahouadji, Lakhdar Guerbous, Lyes Lamiri
Abstract:
For many years, the luminescent materials were investigated principally in the infrared and visible areas, because the ultraviolet (UV) and especially in vacuum Ultraviolet (VUV) are technically more difficult to explore, especially absence of applications requiring of materials suitable to short wavelengths.Recent necessary, related to the development of certain technologies, encouraged research in these spectra domains. It is in this context that the 4Fn-4Fn-1 5d transitions of rare earth in insulating materials, lying in the UV and VUV, are the aim of large number of studies. These studies relate in particular to search for new scintillator materials used for spectroscopy and X-ray, ɤ, as well as medical imaging. The 4Fn- 4Fn-15d transitions of the rare earth dependent to the host-matrix, several matrices ions were used to study these transitions, in this work we are suggeting to study on a very specific class of inorganic scintillators that are orthophosphate doped with rare earth ions, this study focused on the Pr3+ concentration on the structural and optical properties of Pr3+ doped YPO4 (yttriumorthophosphate) with powder form prepared by the Sol Gel method.Keywords: rare earth, scintillator, YPO4:Pr3+ nanophosphors, sol gel, 4Fn-4Fn-15d transitions
Procedia PDF Downloads 60620784 Detection of Cardiac Arrhythmia Using Principal Component Analysis and Xgboost Model
Authors: Sujay Kotwale, Ramasubba Reddy M.
Abstract:
Electrocardiogram (ECG) is a non-invasive technique used to study and analyze various heart diseases. Cardiac arrhythmia is a serious heart disease which leads to death of the patients, when left untreated. An early-time detection of cardiac arrhythmia would help the doctors to do proper treatment of the heart. In the past, various algorithms and machine learning (ML) models were used to early-time detection of cardiac arrhythmia, but few of them have achieved better results. In order to improve the performance, this paper implements principal component analysis (PCA) along with XGBoost model. The PCA was implemented to the raw ECG signals which suppress redundancy information and extracted significant features. The obtained significant ECG features were fed into XGBoost model and the performance of the model was evaluated. In order to valid the proposed technique, raw ECG signals obtained from standard MIT-BIH database were employed for the analysis. The result shows that the performance of proposed method is superior to the several state-of-the-arts techniques.Keywords: cardiac arrhythmia, electrocardiogram, principal component analysis, XGBoost
Procedia PDF Downloads 12520783 An Overview of the Porosity Classification in Carbonate Reservoirs and Their Challenges: An Example of Macro-Microporosity Classification from Offshore Miocene Carbonate in Central Luconia, Malaysia
Authors: Hammad T. Janjuhah, Josep Sanjuan, Mohamed K. Salah
Abstract:
Biological and chemical activities in carbonates are responsible for the complexity of the pore system. Primary porosity is generally of natural origin while secondary porosity is subject to chemical reactivity through diagenetic processes. To understand the integrated part of hydrocarbon exploration, it is necessary to understand the carbonate pore system. However, the current porosity classification scheme is limited to adequately predict the petrophysical properties of different reservoirs having various origins and depositional environments. Rock classification provides a descriptive method for explaining the lithofacies but makes no significant contribution to the application of porosity and permeability (poro-perm) correlation. The Central Luconia carbonate system (Malaysia) represents a good example of pore complexity (in terms of nature and origin) mainly related to diagenetic processes which have altered the original reservoir. For quantitative analysis, 32 high-resolution images of each thin section were taken using transmitted light microscopy. The quantification of grains, matrix, cement, and macroporosity (pore types) was achieved using a petrographic analysis of thin sections and FESEM images. The point counting technique was used to estimate the amount of macroporosity from thin section, which was then subtracted from the total porosity to derive the microporosity. The quantitative observation of thin sections revealed that the mouldic porosity (macroporosity) is the dominant porosity type present, whereas the microporosity seems to correspond to a sum of 40 to 50% of the total porosity. It has been proven that these Miocene carbonates contain a significant amount of microporosity, which significantly complicates the estimation and production of hydrocarbons. Neglecting its impact can increase uncertainty about estimating hydrocarbon reserves. Due to the diversity of geological parameters, the application of existing porosity classifications does not allow a better understanding of the poro-perm relationship. However, the classification can be improved by including the pore types and pore structures where they can be divided into macro- and microporosity. Such studies of microporosity identification/classification represent now a major concern in limestone reservoirs around the world.Keywords: overview of porosity classification, reservoir characterization, microporosity, carbonate reservoir
Procedia PDF Downloads 15920782 Stability of the Wellhead in the Seabed in One of the Marine Reservoirs of Iran
Authors: Mahdi Aghaei, Saeid Jamshidi, Mastaneh Hajipour
Abstract:
Effective factors on the mechanical wellbore stability are divided in to two categories: 1) Controllable factors, 2) Uncontrollable factors. The purpose of geo-mechanical modeling of wells is to determine the limit of controlled parameters change based on the stress regime at each point and by solving the governing equations the pore-elastic environment around the well. In this research, the mechanical analysis of wellbore stability was carried out for Soroush oilfield. For this purpose, the geo-mechanical model of the field is made using available data. This model provides the necessary parameters for obtaining the distribution of stress around the wellbore. Initially, a basic model was designed to perform various analysis, based on obtained data, using Abaqus software. All of the subsequent sensitivity analysis such as sensitivity analysis on porosity, permeability, etc. was done on the same basic model. The results obtained from these analysis gives various result such as: with the constant geomechanical parameters, and sensitivity analysis on porosity permeability is ineffective. After the most important parameters affecting the wellbore stability and instability are geo-mechanical parameters.Keywords: wellbore stability, movement, stress, instability
Procedia PDF Downloads 20720781 Model Development for Real-Time Human Sitting Posture Detection Using a Camera
Authors: Jheanel E. Estrada, Larry A. Vea
Abstract:
This study developed model to detect proper/improper sitting posture using the built in web camera which detects the upper body points’ location and distances (chin, manubrium and acromion process). It also established relationships of human body frames and proper sitting posture. The models were developed by training some well-known classifiers such as KNN, SVM, MLP, and Decision Tree using the data collected from 60 students of different body frames. Decision Tree classifier demonstrated the most promising model performance with an accuracy of 95.35% and a kappa of 0.907 for head and shoulder posture. Results also showed that there were relationships between body frame and posture through Body Mass Index.Keywords: posture, spinal points, gyroscope, image processing, ergonomics
Procedia PDF Downloads 33320780 Confidence Intervals for Quantiles in the Two-Parameter Exponential Distributions with Type II Censored Data
Authors: Ayman Baklizi
Abstract:
Based on type II censored data, we consider interval estimation of the quantiles of the two-parameter exponential distribution and the difference between the quantiles of two independent two-parameter exponential distributions. We derive asymptotic intervals, Bayesian, as well as intervals based on the generalized pivot variable. We also include some bootstrap intervals in our comparisons. The performance of these intervals is investigated in terms of their coverage probabilities and expected lengths.Keywords: asymptotic intervals, Bayes intervals, bootstrap, generalized pivot variables, two-parameter exponential distribution, quantiles
Procedia PDF Downloads 41920779 Investigation of Polypropylene Composite Films With Carbon Nanotubes and the Role of β Nucleating Agents for the Improvement of Their Water Vapor Permeability
Authors: Glykeria A. Visvini, George N. Mathioudakis, Amaia Soto Beobide, Aris E. Giannakas, George A. Voyiatzis
Abstract:
Polymeric nanocomposites have generated considerable interest in both academic research and industry because their properties can be tailored by adjusting the type & concentration of nano-inclusions, resulting in complementary and adaptable characteristics. The exceptional and/or unique properties of the nanocomposites, including the high mechanical strength and stiffness, the ease of processing, and their lightweight nature, are attributed to the high surface area, the electrical and/or thermal conductivity of the nano-fillers, which make them appealing materials for a wide range of engineering applications. Polymeric «breathable» membranes enabling water vapor permeability (WVP) can be designed either by using micro/nano-fillers with the ability to interrupt the continuity of the polymer phase generating micro/nano-porous structures or/and by creating micro/nano-pores into the composite material by uniaxial/biaxial stretching. Among the nanofillers, carbon nanotubes (CNTs) exhibit particular high WVP and for this reason, they have already been proposed for gas separation membranes. In a similar context, they could prove to be promising alternative/complementary filler nano-materials, for the development of "breathable" products. Polypropylene (PP) is a commonly utilized thermoplastic polymer matrix in the development of composite films, due to its easy processability and low price, combined with its good chemical & physical properties. PP is known to present several crystalline phases (α, β and γ), depending on the applied treatment process, which have a significant impact on its final properties, particularly in terms of WVP. Specifically, the development of the β-phase in PP in combination with stretching is anticipated to modify the crystalline behavior and extend the microporosity of the polymer matrix exhibiting enhanced WVP. The primary objective of this study is to develop breathable nano-carbon based (functionalized MWCNTs) PP composite membranes, potentially also avoiding the stretching process. This proposed alternative is expected to have a better performance/cost ratio over current stretched PP/CaCO3 composite benchmark membranes. The focus is to investigate the impact of both β-nucleator(s) and nano-carbon fillers on water vapor transmission rate properties of relevant PP nanocomposites.Keywords: carbon nanotubes, nanocomposites, nucleating agents, polypropylene, water vapor permeability
Procedia PDF Downloads 7820778 Electrochemical Study of Ti-O Modified Electrode towards Tyrosinase Catalytic Activity
Authors: Riya Thomas, Denis Music, Tautgirdas Ruzgas
Abstract:
The detection of tyrosinase holds considerable interest in the domains of food nutrition and human health due to its significant role in causing a detrimental effect on the colour, flavour, and nutritional value of food as well as in the synthesis of melanin causing skin melanoma. Compared to other conventional analytical techniques, electrochemical (EC) sensors are highly promising owing to their quick response, great sensitivity, ease of use, and low cost. Particularly, titania nanoparticle-based electrochemical sensors have drawn special attention in identifying several biomolecules including enzymes, antibodies, and receptors, owing to their enhanced electrocatalytic activity and electron-accepting properties. In this study, Ti-O film-modified electrode is fabricated using reactive magnetron sputtering, and its affinity towards tyrosinase is examined via electrochemical methods. To comprehend the physiochemical and surface properties-governed electrocatalytic activity of modified electrodes, Ti-O films are grown under various compositional ranges and deposition temperature, and their corresponding electrochemical activity towards tyrosinase is studied. Further, to understand the underlying atomistic mechanisms and electronic-scale electrochemical characteristics, density functional theory (DFT) is employed. The main goal of the current work is to determine the correlation between macroscopic measurements and the underlying atomic properties to improve the tyrosinase activity on Ti-O surfaces. Moreover, this work offers an intriguing new perspective on the use of Ti-O-modified electrodes to detect tyrosinase in the areas of clinical diagnosis, skincare, and food science.Keywords: density functional theory, electrochemical sensor, Ti-O film, tyrosinase
Procedia PDF Downloads 2720777 GUI Design of Mathematical Model of Cardiovascular-Respiratory System
Authors: Ntaganda J.M., Maniraguha J.D., Mukeshimana S., Harelimana D, Bizimungu T., Ruataganda E.
Abstract:
This paper presents the design of Graphic User Interface (GUI) in Matlab as interaction tool between human and machine. The designed GUI can be used by medical doctors and other experts particularly the physiologists. Matlab packages and estimated parameters of the mathematical model of cardiovascular-respiratory system developed in Rwandan context are used in GUI. The ordinary differential equations (ODE’s) govern a mathematical model in designing GUI in Matlab and a window that sets model estimated parameters and the measured parameters by any user. For healthy subject, these measured parameters include heart rate, systolic blood and diastolic blood pressure, partial pressure of oxygen in arterial blood, partial pressure of carbon dioxide in arterial blood, concentration of bound and dissolved oxygen in the mixed venous blood entering the lungs, and concentration of bound and dissolved carbon dioxide in the mixed venous blood entering the lungs. The results of numerical test give a consistent appearance as empirically known results.Keywords: Graphic User Interface, mathematical model, cardiovascur-respiratory system, walking physical activity, blood pressure, oxygen
Procedia PDF Downloads 12120776 Self-Organized TiO₂–Nb₂O₅–ZrO₂ Nanotubes on β-Ti Alloy by Anodization
Authors: Muhammad Qadir, Yuncang Li, Cuie Wen
Abstract:
Surface properties such as topography and physicochemistry of metallic implants determine the cell behavior. The surface of titanium (Ti)-based implant can be modified to enhance the bioactivity and biocompatibility. In this study, a self-organized titania–niobium pentoxide–zirconia (TiO₂–Nb₂O₅–ZrO₂) nanotubular layer on β phase Ti35Zr28Nb alloy was fabricated via electrochemical anodization. Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and water contact angle measurement techniques were used to investigate the nanotubes dimensions (i.e., the inner and outer diameters, and wall thicknesses), microstructural features and evolution of the hydrophilic properties. The in vitro biocompatibility of the TiO₂–Nb₂O₅–ZrO₂ nanotubes (NTs) was assessed by using osteoblast cells (SaOS2). Influence of anodization parameters on the morphology of TiO₂–Nb₂O₅–ZrO₂ NTs has been studied. The results indicated that the average inner diameter, outer diameter and the wall thickness of the TiO₂–Nb₂O₅–ZrO₂ NTs were ranged from 25–70 nm, 45–90 nm and 5–13 nm, respectively, and were directly influenced by the applied voltage during anodization. The average inner and outer diameters of NTs increased with increasing applied voltage, and the length of NTs increased with increasing anodization time and water content of the electrolyte. In addition, the size distribution of the NTs noticeably affected the hydrophilic properties and enhanced the biocompatibility as compared with the uncoated substrate. The results of this study could be considered for developing nano-scale coatings for a wide range of biomedical applications.Keywords: Titanium alloy, TiO₂–Nb₂O₅–ZrO₂ nanotubes, anodization, surface wettability, biocompatibility
Procedia PDF Downloads 15820775 A Method for Evaluating Gender Equity of Cycling from Rawls Justice Perspective
Authors: Zahra Hamidi
Abstract:
Promoting cycling, as an affordable environmentally friendly mode of transport to replace private car use has been central to sustainable transport policies. Cycling is faster than walking and combined with public transport has the potential to extend the opportunities that people can access. In other words, cycling, besides direct positive health impacts, can improve people mobility and ultimately their quality of life. Transport literature well supports the close relationship between mobility, quality of life, and, well being. At the same time inequity in the distribution of access and mobility has been associated with the key aspects of injustice and social exclusion. The pattern of social exclusion and inequality in access are also often related to population characteristics such as age, gender, income, health, and ethnic background. Therefore, while investing in transport infrastructure it is important to consider the equity of provided access for different population groups. This paper proposes a method to evaluate the equity of cycling in a city from Rawls egalitarian perspective. Since this perspective is concerned with the difference between individuals and social groups, this method combines accessibility measures and Theil index of inequality that allows capturing the inequalities ‘within’ and ‘between’ groups. The paper specifically focuses on two population characteristics as gender and ethnic background. Following Rawls equity principles, this paper measures accessibility by bikes to a selection of urban activities that can be linked to the concept of the social primary goods. Moreover, as growing number of cities around the world have launched bike-sharing systems (BSS) this paper incorporates both private and public bikes networks in the estimation of accessibility levels. Additionally, the typology of bike lanes (separated from or shared with roads), the presence of a bike sharing system in the network, as well as bike facilities (e.g. parking racks) have been included in the developed accessibility measures. Application of this proposed method to a real case study, the city of Malmö, Sweden, shows its effectiveness and efficiency. Although the accessibility levels were estimated only based on gender and ethnic background characteristics of the population, the author suggests that the analysis can be applied to other contexts and further developed using other properties, such as age, income, or health.Keywords: accessibility, cycling, equity, gender
Procedia PDF Downloads 40620774 Self-Attention Mechanism for Target Hiding Based on Satellite Images
Authors: Hao Yuan, Yongjian Shen, Xiangjun He, Yuheng Li, Zhouzhou Zhang, Pengyu Zhang, Minkang Cai
Abstract:
Remote sensing data can provide support for decision-making in disaster assessment or disaster relief. The traditional processing methods of sensitive targets in remote sensing mapping are mainly based on manual retrieval and image editing tools, which are inefficient. Methods based on deep learning for sensitive target hiding are faster and more flexible. But these methods have disadvantages in training time and cost of calculation. This paper proposed a target hiding model Self Attention (SA) Deepfill, which used self-attention modules to replace part of gated convolution layers in image inpainting. By this operation, the calculation amount of the model becomes smaller, and the performance is improved. And this paper adds free-form masks to the model’s training to enhance the model’s universal. The experiment on an open remote sensing dataset proved the efficiency of our method. Moreover, through experimental comparison, the proposed method can train for a longer time without over-fitting. Finally, compared with the existing methods, the proposed model has lower computational weight and better performance.Keywords: remote sensing mapping, image inpainting, self-attention mechanism, target hiding
Procedia PDF Downloads 14320773 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads
Authors: Salah R. Al Zaidee, Ali S. Mahdi
Abstract:
Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.Keywords: meta-modal, objective function, steel frames, seismic analysis, design
Procedia PDF Downloads 24820772 Use of Benin Laterites for the Mix Design of Structural Concrete
Authors: Yemalin D. Agossou, Andre Lecomte, Remi Boissiere, Edmond C. Adjovi, Abdelouahab Khelil
Abstract:
This paper presents a mixed design trial of structural concretes with laterites from Benin. These materials are often the only granular resources readily available in many tropical regions. In the first step, concretes were designed with raw laterites, but the performances obtained were rather disappointing in spite of high cement dosages. A detailed physical characterization of these materials then showed that they contained a significant proportion of fine clays and that the coarsest fraction (gravel) contained a variety of facies, some of which were not very dense or indurated. Washing these laterites, and even the elimination of the most friable grains of the gravel fraction, made it possible to obtain concretes with satisfactory properties in terms of workability, density and mechanical strength. However, they were found to be slightly less stiff than concretes made with more traditional aggregates. It is, therefore, possible to obtain structural concretes with only laterites and cement but at the cost of eliminating some of their granular constituents.Keywords: laterites, aggregates, concretes, mix design, mechanical properties
Procedia PDF Downloads 16420771 Computation of Induction Currents in a Set of Dendrites
Authors: R. B. Mishra, Sudhakar Tripathi
Abstract:
In this paper, the cable model of dendrites have been considered. The dendrites are cylindrical cables of various segments having variable length and reducing radius from start point at synapse and end points. For a particular event signal being received by a neuron in response only some dendrite are active at a particular instance. Initial current signals with different current flows in dendrite are assumed. Due to overlapping and coupling of active dendrite, they induce currents in the dendrite segments of each other at a particular instance. But how these currents are induced in the various segments of active dendrites due to coupling between these dendrites, It is not presented in the literature. Here the paper presents a model for induced currents in active dendrite segments due to mutual coupling at the starting instance of an activity in dendrite. The model is as discussed further.Keywords: currents, dendrites, induction, simulation
Procedia PDF Downloads 39720770 Biophotovoltaics in 3D: Simplifying Concepts
Authors: Mary Booth
Abstract:
Biophotovoltaics is a method of green energy generation derived from exposing plants to lights. Its vast potential is hampered by the public’s relative ignorance of its existence. This work aims to formalize the principles of the physical processes of biophotovoltaics into a comprehensible visual software model, thus amplifying the human thought process. The methods used involve initially crafting a scale model of a working biophotovoltaic system from household materials inspired by the work of Paolo Bombelli. The scale model is then programmed into a system-level simulation, wherein a 3D animation dissects the system and its general energy generation process. The completed 3D system-level simulation ultimately creates a simplified visual understanding of the complex principles of the biophotovoltaic system.Keywords: 3D, biophotovoltaics, render
Procedia PDF Downloads 8620769 Preparation and Evaluation of Gelatin-Hyaluronic Acid-Polycaprolactone Membrane Containing 0.5 % Atorvastatin Loaded Nanostructured Lipid Carriers as a Nanocomposite Scaffold for Skin Tissue Engineering
Authors: Mahsa Ahmadi, Mehdi Mehdikhani-Nahrkhalaji, Jaleh Varshosaz, Shadi Farsaei
Abstract:
Gelatin and hyaluronic acid are commonly used in skin tissue engineering scaffolds, but because of their low mechanical properties and high biodegradation rate, adding a synthetic polymer such as polycaprolactone could improve the scaffold properties. Therefore, we developed a gelatin-hyaluronic acid-polycaprolactone scaffold, containing 0.5 % atorvastatin loaded nanostructured lipid carriers (NLCs) for skin tissue engineering. The atorvastatin loaded NLCs solution was prepared by solvent evaporation method and freeze drying process. Synthesized atorvastatin loaded NLCs was added to the gelatin and hyaluronic acid solution, and a membrane was fabricated with solvent evaporation method. Thereafter it was coated by a thin layer of polycaprolactone via spine coating set. The resulting scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. Moreover, mechanical properties, in vitro degradation in 7 days period, and in vitro drug release of scaffolds were also evaluated. SEM images showed the uniform distributed NLCs with an average size of 100 nm in the scaffold structure. Mechanical test indicated that the scaffold had a 70.08 Mpa tensile modulus which was twofold of tensile modulus of normal human skin. A Franz-cell diffusion test was performed to investigate the scaffold drug release in phosphate buffered saline (pH=7.4) medium. Results showed that 72% of atorvastatin was released during 5 days. In vitro degradation test demonstrated that the membrane was degradated approximately 97%. In conclusion, suitable physicochemical and biological properties of membrane indicated that the developed gelatin-hyaluronic acid-polycaprolactone nanocomposite scaffold containing 0.5 % atorvastatin loaded NLCs could be used as a good candidate for skin tissue engineering applications.Keywords: atorvastatin, gelatin, hyaluronic acid, nano lipid carriers (NLCs), polycaprolactone, skin tissue engineering, solvent casting, solvent evaporation
Procedia PDF Downloads 25620768 Experimental Study of Mechanical and Durability Properties of HPC Made with Binary Blends of Cement
Authors: Vatsal Patel, Niraj Shah
Abstract:
The aim of the research reported in this paper is to assess the Strength and durability performance of High Performance Concrete containing different percentages of waste marble powder produced from marble industry. Concrete mixes possessing a target mean compressive strength of 70MPa were prepared with 0%,5%,10%,15% and 20% cement replacement by waste marble powder with W/B =0.33. More specifically, the compressive strength, flexural strength, chloride penetration, sorptivity and accelerated corrosion were determined. Concrete containing 10% waste marble powder proved to have best Mechanical and durability properties than other mixtures made with binary blends. However, poorer performance was noticeable when replacement percentage was higher. The replacement of Waste Marble Powder will have major environmental benefits.Keywords: durability, high performance concrete, marble waste powder, sorptivity, accelerated corrosion
Procedia PDF Downloads 34920767 Microstructure and Electrochemical Properties of LiNi1/3Co1/3Mn1/3-xAlxO2 Cathode Material for Lithium Ion Batteries
Authors: Wei-Bo Hua, Zhuo Zheng, Xiao-Dong Guo, Ben-He Zhong
Abstract:
The layered structure LiNi1/3Co1/3Mn1/3-xAlxO2 (x = 0 ~ 0.04) series cathode materials were synthesized by a carbonate co-precipitation method, followed by a high temperature calcination process. The influence of Al substitution on the microstructure and electrochemical performances of the prepared materials was investigated by X-Ray diffraction (XRD), scanning electron microscopy (SEM), and galvanostatic charge/discharge test. The results show that the LiNi1/3Co1/3Mn1/3-xAlxO2 has a well-ordered hexagonal "α" -NaFeO2 structure. Although the discharge capacity of Al-doped samples decreases as x increases, LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 exhibits superior capacity retention at high voltage (4.6 V). Therefore, LiNi1/3Co1/3Mn1/3-0.02Al0.02O2 is a promising material for “green” vehicles.Keywords: lithium ion battery, carbonate co-precipitation, doping, microstructure, electrochemical properties
Procedia PDF Downloads 33420766 Use Multiphysics Simulations and Resistive Pulse Sensing to Study the Effect of Metal and Non-Metal Nanoparticles in Different Salt Concentration
Authors: Chun-Lin Chiang, Che-Yen Lee, Yu-Shan Yeh, Jiunn-Haur Shaw
Abstract:
Wafer fabrication is a critical part of the semiconductor process, when the finest linewidth with the improvement of technology continues to decline and the structure development from 2D towards to 3D. The nanoparticles contained in the slurry or in the ultrapure water which used for cleaning have a large influence on the manufacturing process. Therefore, semiconductor industry is hoping to find a viable method for on-line detection the nanoparticles size and concentration. The resistive pulse sensing technology is one of the methods that may cover this question. As we know that nanoparticles properties of material differ significantly from their properties at larger length scales. So, we want to clear that the metal and non-metal nanoparticles translocation dynamic when we use the resistive pulse sensing technology. In this study we try to use the finite element method that contains three governing equations to do multiphysics coupling simulations. The Navier-Stokes equation describes the laminar motion, the Nernst-Planck equation describes the ion transport, and the Poisson equation describes the potential distribution in the flow channel. To explore that the metal nanoparticles and the non-metal nanoparticles in different concentration electrolytes, through the nanochannel caused by ion current changes. Then the reliability of the simulation results was verified by resistive pulse sensing test. The existing results show that the lower ion concentration, the greater effect of nanoparticles on the ion concentration in the nanochannel. The conductive spikes are correlated with nanoparticles surface charge. Then we can be concluded that in the resistive pulse sensing technique, the ion concentration in the nanochannel and nanoparticle properties are important for the translocation dynamic, and they have the interactions.Keywords: multiphysics simulations, resistive pulse sensing, nanoparticles, nanochannel
Procedia PDF Downloads 35220765 Modeling of Bed Level Changes in Larak Island
Authors: Saeed Zeinali, Nasser Talebbeydokhti, Mehdi Saeidian, Shahrad Vosough
Abstract:
In this article, bathymetry changes have been studied as a case study for Larak Island, located in The South of Iran. The advanced 2D model of Mike21 has been used for this purpose. A simple procedure has been utilized in this model. First, the hydrodynamic (HD) module of Mike21 has been used to obtain the required output for sediment transport model (ST module). The ST module modeled the area for tidal currents only. Bed level changes are resulted by series of modeling for both HD and ST module in 3 months time step. The final bathymetry in each time step is used as the primary bathymetry for next time step. This consecutive procedure been continued until bathymetry for the year 2020 is obtained.Keywords: bed level changes, Larak Island, hydrodynamic, sediment transport
Procedia PDF Downloads 26920764 Classification of Foliar Nitrogen in Common Bean (Phaseolus Vulgaris L.) Using Deep Learning Models and Images
Authors: Marcos Silva Tavares, Jamile Raquel Regazzo, Edson José de Souza Sardinha, Murilo Mesquita Baesso
Abstract:
Common beans are a widely cultivated and consumed legume globally, serving as a staple food for humans, especially in developing countries, due to their nutritional characteristics. Nitrogen (N) is the most limiting nutrient for productivity, and foliar analysis is crucial to ensure balanced nitrogen fertilization. Excessive N applications can cause, either isolated or cumulatively, soil and water contamination, plant toxicity, and increase their susceptibility to diseases and pests. However, the quantification of N using conventional methods is time-consuming and costly, demanding new technologies to optimize the adequate supply of N to plants. Thus, it becomes necessary to establish constant monitoring of the foliar content of this macronutrient in plants, mainly at the V4 stage, aiming at precision management of nitrogen fertilization. In this work, the objective was to evaluate the performance of a deep learning model, Resnet-50, in the classification of foliar nitrogen in common beans using RGB images. The BRS Estilo cultivar was sown in a greenhouse in a completely randomized design with four nitrogen doses (T1 = 0 kg N ha-1, T2 = 25 kg N ha-1, T3 = 75 kg N ha-1, and T4 = 100 kg N ha-1) and 12 replications. Pots with 5L capacity were used with a substrate composed of 43% soil (Neossolo Quartzarênico), 28.5% crushed sugarcane bagasse, and 28.5% cured bovine manure. The water supply of the plants was done with 5mm of water per day. The application of urea (45% N) and the acquisition of images occurred 14 and 32 days after sowing, respectively. A code developed in Matlab© R2022b was used to cut the original images into smaller blocks, originating an image bank composed of 4 folders representing the four classes and labeled as T1, T2, T3, and T4, each containing 500 images of 224x224 pixels obtained from plants cultivated under different N doses. The Matlab© R2022b software was used for the implementation and performance analysis of the model. The evaluation of the efficiency was done by a set of metrics, including accuracy (AC), F1-score (F1), specificity (SP), area under the curve (AUC), and precision (P). The ResNet-50 showed high performance in the classification of foliar N levels in common beans, with AC values of 85.6%. The F1 for classes T1, T2, T3, and T4 was 76, 72, 74, and 77%, respectively. This study revealed that the use of RGB images combined with deep learning can be a promising alternative to slow laboratory analyses, capable of optimizing the estimation of foliar N. This can allow rapid intervention by the producer to achieve higher productivity and less fertilizer waste. Future approaches are encouraged to develop mobile devices capable of handling images using deep learning for the classification of the nutritional status of plants in situ.Keywords: convolutional neural network, residual network 50, nutritional status, artificial intelligence
Procedia PDF Downloads 27