Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2476

Search results for: depth map

2476 Numerical Modeling of the Depth-Averaged Flow over a Hill

Authors: Anna Avramenko, Heikki Haario

Abstract:

This paper reports the development and application of a 2D depth-averaged model. The main goal of this contribution is to apply the depth averaged equations to a wind park model in which the treatment of the geometry, introduced on the mathematical model by the mass and momentum source terms. The depth-averaged model will be used in future to find the optimal position of wind turbines in the wind park. K-E and 2D LES turbulence models were consider in this article. 2D CFD simulations for one hill was done to check the depth-averaged model in practise.

Keywords: depth-averaged equations, numerical modeling, CFD, wind park model

Procedia PDF Downloads 494
2475 RGB-D SLAM Algorithm Based on pixel level Dense Depth Map

Authors: Hao Zhang, Hongyang Yu

Abstract:

Scale uncertainty is a well-known challenging problem in visual SLAM. Because RGB-D sensor provides depth information, RGB-D SLAM improves this scale uncertainty problem. However, due to the limitation of physical hardware, the depth map output by RGB-D sensor usually contains a large area of missing depth values. These missing depth information affect the accuracy and robustness of RGB-D SLAM. In order to reduce these effects, this paper completes the missing area of the depth map output by RGB-D sensor and then fuses the completed dense depth map into ORB SLAM2. By adding the process of obtaining pixel-level dense depth maps, a better RGB-D visual SLAM algorithm is finally obtained. In the process of obtaining dense depth maps, a deep learning model of indoor scenes is adopted. Experiments are conducted on public datasets and real-world environments of indoor scenes. Experimental results show that the proposed SLAM algorithm has better robustness than ORB SLAM2.

Keywords: RGB-D, SLAM, dense depth, depth map

Procedia PDF Downloads 38
2474 Analytical Solution for End Depth Ratio in Rectangular Channels

Authors: Abdulrahman Abdulrahman, Abir Abdulrahman

Abstract:

Free over-fall is an instrument for measuring discharge in open channels by measuring end depth. A comprehensive researchers investigated theoretically and experimentally brink phenomenon with various approaches for different cross-sectional shapes. Anderson's method, based on Boussinq's approximation and energy approach was used to derive a pressure distribution factor at end depth. Applying the one-dimensional momentum equation and the principles of limit slope analysis, a relevant analytical solution may be derived for brink depth ratio (EDR) in prismatic rectangular channel. Also relationships between end depth ratio and slope ratio for a given non-dimensional normal or critical depth with upstream supercritical flow regime are presented. Simple indirect procedure is used to estimate the end depth discharge ratio (EDD) for subcritical and supercritical flow using measured end depth. The comparison of this analysis with all previous theoretical and experimental studies showed an excellent agreement.

Keywords: analytical solution, brink depth, end depth, flow measurement, free over fall, hydraulics, rectangular channel

Procedia PDF Downloads 90
2473 Spectral Re-Evaluation of the Magnetic Basement Depth over Yola Arm of Upper Benue Trough Nigeria Using Aeromagnetic Data

Authors: Emberga Terhemb Opara Alexander, Selemo Alexader, Onyekwuru Samuel

Abstract:

The aeromagnetic data have been used to re-evaluate parts of the Upper Benue Trough Nigeria using spectral analysis technique in order to appraise the mineral accumulation potential of the area. The regional field was separated with a first order polynomial using polyfit program. The residual data was subdivided into 24 spectral blocks using OASIS MONTAJ software program. Two prominent magnetic depth source layers were identified. The deeper source depth values obtained ranges from 1.56km to 2.92km with an average depth of 2.37km as the magnetic basement depth while for the shallower sources, the depth values ranges from -1.17km to 0.98km with an average depth of 0.55km. The shallow depth source is attributed to the volcanic rocks that intruded the sedimentary formation and this could possibly be responsible for the mineralization found in parts of the study area.

Keywords: spectral analysis, Upper Benue Trough, magnetic basement depth, aeromagnetic

Procedia PDF Downloads 374
2472 Effect of Fault Depth on Near-Fault Peak Ground Velocity

Authors: Yanyan Yu, Haiping Ding, Pengjun Chen, Yiou Sun

Abstract:

Fault depth is an important parameter to be determined in ground motion simulation, and peak ground velocity (PGV) demonstrates good application prospect. Using numerical simulation method, the variations of distribution and peak value of near-fault PGV with different fault depth were studied in detail, and the reason of some phenomena were discussed. The simulation results show that the distribution characteristics of PGV of fault-parallel (FP) component and fault-normal (FN) component are distinctly different; the value of PGV FN component is much larger than that of FP component. With the increase of fault depth, the distribution region of the FN component strong PGV moves forward along the rupture direction, while the strong PGV zone of FP component becomes gradually far away from the fault trace along the direction perpendicular to the strike. However, no matter FN component or FP component, the strong PGV distribution area and its value are both quickly reduced with increased fault depth. The results above suggest that the fault depth have significant effect on both FN component and FP component of near-fault PGV.

Keywords: fault depth, near-fault, PGV, numerical simulation

Procedia PDF Downloads 253
2471 Depth Estimation in DNN Using Stereo Thermal Image Pairs

Authors: Ahmet Faruk Akyuz, Hasan Sakir Bilge

Abstract:

Depth estimation using stereo images is a challenging problem in computer vision. Many different studies have been carried out to solve this problem. With advancing machine learning, tackling this problem is often done with neural network-based solutions. The images used in these studies are mostly in the visible spectrum. However, the need to use the Infrared (IR) spectrum for depth estimation has emerged because it gives better results than visible spectra in some conditions. At this point, we recommend using thermal-thermal (IR) image pairs for depth estimation. In this study, we used two well-known networks (PSMNet, FADNet) with minor modifications to demonstrate the viability of this idea.

Keywords: thermal stereo matching, deep neural networks, CNN, Depth estimation

Procedia PDF Downloads 145
2470 Scour Depth Prediction around Bridge Piers Using Neuro-Fuzzy and Neural Network Approaches

Authors: H. Bonakdari, I. Ebtehaj

Abstract:

The prediction of scour depth around bridge piers is frequently considered in river engineering. One of the key aspects in efficient and optimum bridge structure design is considered to be scour depth estimation around bridge piers. In this study, scour depth around bridge piers is estimated using two methods, namely the Adaptive Neuro-Fuzzy Inference System (ANFIS) and Artificial Neural Network (ANN). Therefore, the effective parameters in scour depth prediction are determined using the ANN and ANFIS methods via dimensional analysis, and subsequently, the parameters are predicted. In the current study, the methods’ performances are compared with the nonlinear regression (NLR) method. The results show that both methods presented in this study outperform existing methods. Moreover, using the ratio of pier length to flow depth, ratio of median diameter of particles to flow depth, ratio of pier width to flow depth, the Froude number and standard deviation of bed grain size parameters leads to optimal performance in scour depth estimation.

Keywords: adaptive neuro-fuzzy inference system (ANFIS), artificial neural network (ANN), bridge pier, scour depth, nonlinear regression (NLR)

Procedia PDF Downloads 128
2469 Experimental Study of Local Scour Depth around Cylindrical Bridge Pier

Authors: Mohammed T. Shukri

Abstract:

The failure of bridges due to excessive local scour during floods poses a challenging problem to hydraulic engineers. The failure of bridges piers is due to many reasons such as localized scour combined with general riverbed degradation. In this paper, we try to estimate the temporal variation of scour depth at nonuniform cylindrical bridge pier, by experimental work conducted in hydraulic laboratories of Gaziantep University Civil Engineering Department on a flume having dimensions of 8.3 m length, 0.8 m width and 0.9 m depth. The experiments will be carried on 20 cm depth of sediment layer having d50=0.4 mm. Three bridge pier shapes having different scaled models will be constructed in a 1.5m of test section in the channel.

Keywords: scour, local scour, bridge piers, scour depth

Procedia PDF Downloads 171
2468 Influence of Channel Depth on the Performance of Wavy Fin Absorber Solar Air Heater

Authors: Abhishek Priyam, Prabha Chand

Abstract:

Channel depth is an important design parameter to be fixed in designing a solar air heater. In this paper, a mathematical model has been developed to study the influence of channel duct on the thermal performance of solar air heaters. The channel depth has been varied from 1.5 cm to 3.5 cm for the mass flow range 0.01 to 0.11 kg/s. Based on first law of thermodynamics, the channel depth of 1.5 cm shows better thermal performance for all the mass flow range. Also, better thermohydraulic performance has been found up to 0.05 kg/s, and beyond this, thermohydraulic efficiency starts decreasing. It has been seen that, with the increase in the mass flow rate, the difference between thermal and thermohydraulic efficiency increases because of the increase in pressure drop. At lower mass flow rate, 0.01 kg/s, the thermal and thermohydraulic efficiencies for respective channel depth remain the same.

Keywords: channel depth, thermal efficiency, wavy fin, thermohydraulic efficiency

Procedia PDF Downloads 265
2467 Variation with Depth of Physico-Chemical, Mineralogical and Physical Properties of Overburden over Gneiss Basement Complex in Minna Metropolis, North Central Nigeria

Authors: M. M. Alhaji, M. Alhassan, A. M. Yahaya

Abstract:

Soil engineers pay very little or no attention to variation in the mineralogical and consequently, the geotechnical properties of overburden with depth on basement complexes, a situation which can lead to sudden failure of civil engineering structures. Soil samples collected at depths ranging from 0.5m to 4.0m at 0.5m intervals, from a trial pit dogged manually to depth of 4.0m on an overburden over gneiss basement complex, was evaluated for physico-chemical, mineralogical and physical properties. This is to determine the variation of these properties with depth within the profile of the strata. Results showed that sodium amphibolite and feldspar, which are both primary minerals dominate the overall profile of the overburden. Carbon which dominates the lower profile of the strata was observed to alter to gregorite at upper section of the profile. Organic matter contents and cation exchange capacity reduces with increase in depth while lost on ignition and pH were relatively constant with depth. The index properties, as well as natural moisture contents, increases from 0.5m to between 1.0m to 1.5m depth after which the values reduced to constant values at 3.0m depth. The grain size analysis shows high composition of sand sized particles with silts of low to non-plasticity. The maximum dry density (MDD) values are generally relatively high and increases from 2.262g/cm³ at 0.5m depth to 2.410g/cm³ at 4.0m depth while the optimum moisture content (OMC) reduced from 9.8% at 0.5m depth to 6.7% at 4.0m depth.

Keywords: Gneiss basement complex, mineralogical properties, North Central Nigeria, physico-chemical properties, physical properties, overburden soil

Procedia PDF Downloads 52
2466 Variations in the Frequency-Magnitude Distribution with Depth in Kalabsha Area, Aswan, South Egypt

Authors: Ezzat Mohamed El-Amin

Abstract:

Mapping the earthquake-size distribution in various tectonic regimes on a local to regional scale reveals statistically significant variations in the range of at least 0.4 to 2.0 for the b-value in the frequency-magnitude distribution. We map the earthquake frequency–magnitude distribution (b value) as a function of depth in the Reservoir Triggered Seismicity (RTS) region in Kalabsha region, in south Egypt. About 1680 well-located events recorded during 1981–2014 in the Kalabsha region are selected for the analysis. The earthquake data sets are separated in 5 km zones from 0 to 25 km depth. The result shows a systematic decrease in b value up to 12 km followed by an increase. The increase in b value is interpreted to be caused by the presence of fluids. We also investigate the spatial distribution of b value with depth. Significant variations in the b value are detected, with b ranging from b 0.7 to 1.19. Low b value areas at 5 km depth indicate localized high stresses which are favorable for future rupture.

Keywords: seismicity, frequency-magnitude, b-value, earthquake

Procedia PDF Downloads 489
2465 Numerical Solution of Manning's Equation in Rectangular Channels

Authors: Abdulrahman Abdulrahman

Abstract:

When the Manning equation is used, a unique value of normal depth in the uniform flow exists for a given channel geometry, discharge, roughness, and slope. Depending on the value of normal depth relative to the critical depth, the flow type (supercritical or subcritical) for a given characteristic of channel conditions is determined whether or not flow is uniform. There is no general solution of Manning's equation for determining the flow depth for a given flow rate, because the area of cross section and the hydraulic radius produce a complicated function of depth. The familiar solution of normal depth for a rectangular channel involves 1) a trial-and-error solution; 2) constructing a non-dimensional graph; 3) preparing tables involving non-dimensional parameters. Author in this paper has derived semi-analytical solution to Manning's equation for determining the flow depth given the flow rate in rectangular open channel. The solution was derived by expressing Manning's equation in non-dimensional form, then expanding this form using Maclaurin's series. In order to simplify the solution, terms containing power up to 4 have been considered. The resulted equation is a quartic equation with a standard form, where its solution was obtained by resolving this into two quadratic factors. The proposed solution for Manning's equation is valid over a large range of parameters, and its maximum error is within -1.586%.

Keywords: channel design, civil engineering, hydraulic engineering, open channel flow, Manning's equation, normal depth, uniform flow

Procedia PDF Downloads 137
2464 View Synthesis of Kinetic Depth Imagery for 3D Security X-Ray Imaging

Authors: O. Abusaeeda, J. P. O. Evans, D. Downes

Abstract:

We demonstrate the synthesis of intermediary views within a sequence of X-ray images that exhibit depth from motion or kinetic depth effect in a visual display. Each synthetic image replaces the requirement for a linear X-ray detector array during the image acquisition process. Scale invariant feature transform, SIFT, in combination with epipolar morphing is employed to produce synthetic imagery. Comparison between synthetic and ground truth images is reported to quantify the performance of the approach. Our work is a key aspect in the development of a 3D imaging modality for the screening of luggage at airport checkpoints. This programme of research is in collaboration with the UK Home Office and the US Dept. of Homeland Security.

Keywords: X-ray, kinetic depth, KDE, view synthesis

Procedia PDF Downloads 177
2463 Estimation of Slab Depth, Column Size and Rebar Location of Concrete Specimen Using Impact Echo Method

Authors: Y. T. Lee, J. H. Na, S. H. Kim, S. U. Hong

Abstract:

In this study, an experimental research for estimation of slab depth, column size and location of rebar of concrete specimen is conducted using the Impact Echo Method (IE) based on stress wave among non-destructive test methods. Estimation of slab depth had total length of 1800×300 and 6 different depths including 150 mm, 180 mm, 210 mm, 240 mm, 270 mm and 300 mm. The concrete column specimen was manufactured by differentiating the size into 300×300×300 mm, 400×400×400 mm and 500×500×500 mm. In case of the specimen for estimation of rebar, rebar of ∅22 mm was used in a specimen of 300×370×200 and arranged at 130 mm and 150 mm from the top to the rebar top. As a result of error rate of slab depth was overall mean of 3.1%. Error rate of column size was overall mean of 1.7%. Mean error rate of rebar location was 1.72% for top, 1.19% for bottom and 1.5% for overall mean showing relative accuracy.

Keywords: impact echo method, estimation, slab depth, column size, rebar location, concrete

Procedia PDF Downloads 256
2462 Cracks Detection and Measurement Using VLP-16 LiDAR and Intel Depth Camera D435 in Real-Time

Authors: Xinwen Zhu, Xingguang Li, Sun Yi

Abstract:

Crack is one of the most common damages in buildings, bridges, roads and so on, which may pose safety hazards. However, cracks frequently happen in structures of various materials. Traditional methods of manual detection and measurement, which are known as subjective, time-consuming, and labor-intensive, are gradually unable to meet the needs of modern development. In addition, crack detection and measurement need be safe considering space limitations and danger. Intelligent crack detection has become necessary research. In this paper, an efficient method for crack detection and quantification using a 3D sensor, LiDAR, and depth camera is proposed. This method works even in a dark environment, which is usual in real-world applications. The LiDAR rapidly spins to scan the surrounding environment and discover cracks through lasers thousands of times per second, providing a rich, 3D point cloud in real-time. The LiDAR provides quite accurate depth information. The precision of the distance of each point can be determined within around  ±3 cm accuracy, and not only it is good for getting a precise distance, but it also allows us to see far of over 100m going with the top range models. But the accuracy is still large for some high precision structures of material. To make the depth of crack is much more accurate, the depth camera is in need. The cracks are scanned by the depth camera at the same time. Finally, all data from LiDAR and Depth cameras are analyzed, and the size of the cracks can be quantified successfully. The comparison shows that the minimum and mean absolute percentage error between measured and calculated width are about 2.22% and 6.27%, respectively. The experiments and results are presented in this paper.

Keywords: LiDAR, depth camera, real-time, detection and measurement

Procedia PDF Downloads 76
2461 Kirchhoff’s Depth Migration over Heterogeneous Velocity Models with Ray Tracing Modeling Approach

Authors: Alok Kumar Routa, Priya Ranjan Mohanty

Abstract:

Complex seismic signatures are generated due to the complexity of the subsurface which is difficult to interpret. In the present study, an attempt has been made to model the complex subsurface using the Ray tracing modeling technique. Add to this, for the imaging of these geological features, Kirchhoff’s prestack depth migration is applied over the synthetic common shot gather dataset. It is found that the Kirchhoff’s migration technique in addition with the Ray tracing modeling concept has the flexibility towards the imaging of various complex geology which gives satisfactory results with proper delineation of the reflectors at their respective true depth position. The entire work has been carried out under the MATLAB environment.

Keywords: Kirchhoff's migration, Prestack depth migration, Ray tracing modelling, velocity model

Procedia PDF Downloads 209
2460 Effect of Depth on Texture Features of Ultrasound Images

Authors: M. A. Alqahtani, D. P. Coleman, N. D. Pugh, L. D. M. Nokes

Abstract:

In diagnostic ultrasound, the echo graphic B-scan texture is an important area of investigation since it can be analyzed to characterize the histological state of internal tissues. An important factor requiring consideration when evaluating ultrasonic tissue texture is the depth. The effect of attenuation with depth of ultrasound, the size of the region of interest, gain, and dynamic range are important variables to consider as they can influence the analysis of texture features. These sources of variability have to be considered carefully when evaluating image texture as different settings might influence the resultant image. The aim of this study is to investigate the effect of depth on the texture features in-vivo using a 3D ultrasound probe. The left leg medial head of the gastrocnemius muscle of 10 healthy subjects were scanned. Two regions A and B were defined at different depth within the gastrocnemius muscle boundary. The size of both ROI’s was 280*20 pixels and the distance between region A and B was kept constant at 5 mm. Texture parameters include gray level, variance, skewness, kurtosis, co-occurrence matrix; run length matrix, gradient, autoregressive (AR) model and wavelet transform were extracted from the images. The paired t –test was used to test the depth effect for the normally distributed data and the Wilcoxon–Mann-Whitney test was used for the non-normally distributed data. The gray level, variance, and run length matrix were significantly lowered when the depth increased. The other texture parameters showed similar values at different depth. All the texture parameters showed no significant difference between depths A and B (p > 0.05) except for gray level, variance and run length matrix (p < 0.05). This indicates that gray level, variance, and run length matrix are depth dependent.

Keywords: ultrasound image, texture parameters, computational biology, biomedical engineering

Procedia PDF Downloads 208
2459 A Comparative Study on Primary Productivity in Fish Cage Culture Unit and Fish Pond in Relation to Different Level of Water Depth

Authors: Pawan Kumar Sharma, J. Stephan Sampath Kumar, D. Manikandavelu, V. Senthil Kumar

Abstract:

The total amount of productivity in the system is the gross primary productivity. The present study was carried out to understand the relationship between productivity in the cages and water depth. The experiment was conducted in the fish cages installed in the pond at the Directorate of Sustainable Aquaculture, Thanjavur, Tamil Nadu Dr. J. Jayalalithaa Fisheries University, Tamil Nadu (10° 47' 13.1964'' N; 79° 8' 16.1700''E). Primary productivity was estimated by light and dark bottle method. The measurement of primary productivity was done at different depths viz., 20 cm, 40 cm, and 60 cm. Six Biological Oxygen Demand bottles of 300 ml capacity were collected and tagged. The productivity was obtained in mg O2/l/hr. The maximum dissolved oxygen level at 20 cm depth was observed 5.62 ± 0.22 mg/l/hr in the light bottle in pond water while the minimum dissolved oxygen level at 20 cm depth in a cage was observed 3.62 ± 0.18 mg/l/hr in dark bottle. In the same way, the maximum and minimum value of dissolved oxygen was observed at 40, and 60 cm depth and results were compared. A slight change in pH was observed in the cage and pond. The maximum gross primary productivity observed was 1.97 mg/l/hr in pond at 20 cm depth while minimum gross primary productivity observed was 0.82±0.16 mg/l/hr in a cage at 60 cm depth. The community respiration was also variable with the depth in both cage and pond. Maximum community respiration was found 1.50±0.19 mg/l/hr in pond at 20 cm depth. A strong positive linear relationship was observed between primary productivity and fish yields in ponds. The pond primary productivity can contribute substantially to the nutrition of farm-raised aquaculture species, including shrimp. The growth of phytoplankton’s is dependent on the sun light, availability of primary nutrients (N, P, and K) in the water body and transparency, so to increase the primary productivity fertilization through organic manure may be done that will clean to the pond environment also.

Keywords: cage aquaculture, water depth, net primary productivity, gross primary productivity, community respiration

Procedia PDF Downloads 90
2458 Optimization of Flip Bucket Dents in Order to Reduce Scour Hole Depth (Plunge Pool) Using a Comprehensive Physical Model

Authors: Majid Galoie, Khodadad Safavi, Abdolreza Karami Nejad, Reza Roshan

Abstract:

Scour downstream of a flip bucket in a plunge pool is caused by impingement of water jet force. In order to reduce this force and consequently reduce scour hole depth, flip buckets may equip by dents. The minimum scour hole depth might be occurred by optimization of dents (number, shape, placement) on flip buckets. In this study, a comprehensive physical model has been developed and various options for dents have been investigated. The experimental data for each dent option such as scour hole depth, angle of impingement jet, piezometric pressure in tail-water and jet trajectory have been measured for various discharges. Finally, the best option can be found by analysis of the experimental results which has been expressed in this paper.

Keywords: scouring process, plunge pool, scour hole depth, physical model, flip bucket

Procedia PDF Downloads 313
2457 Comparison of Depth of Cure and Degree of Conversion between Opus Bulk Fill and X-Tra Fill Bulk Fill Composites

Authors: Yasaman Samani, Ali Golmohammadi

Abstract:

Introduction: The degree of conversion and depth of cure affects the clinical success of resin composite restorations directly. One of the main challenges in achieving a successful composite restoration is the achievement of sufficient depth of cure. The insufficient polymerization may lead to a decrease in the physical/mechanical and biological properties of resin composites and, as a result of that, unsuccessful composite restoration. Thus, because of the importance of studying and evaluating the depth of cure and degree of conversion in bulk-fill composites, we decided to evaluate and compare the degree of conversion and depth of cure in two bulk-fill composites; x-tra fill (Voco, Germany) and Opus Bulk fill APS (FGM, Brazil). Materials and Methods: Composite resin specimens (n=10) per group were prepared as cylinder blocks (4×8 mm) with bulk-fill composites, x-tra fil (Voco, Germany) designated as Group A, and Opus Bulk fill APS (FGM, Brazil) designated as Group B. Depth of cure was determined according to “ISO 4049; Depth of Cure” method, In which each specimen were cured (iLED, Woodpecker, China) 40 seconds and FTIR spectroscopy method was used to estimate the degree of conversion of both the bulk-fill composites. The degree of conversion of monomer to polymer was estimated individually in the coronal half (Group A1 and B1) and pulpal half (Group A2 and Group B2) by dividing each specimen into two halves. The data were analyzed using a Student’s t-test and one-way ANOVA at a 5% level of significance. Results: The mean depth of cure in x-tra fil (Voco, Germany) was 3.99 (±0.16), and for Opus Bulk fill, APS (FGM, Brazil) was 2.14 (±0.3). The degree of conversion percentage in Group A1 was 82.7 (±6.1), in group A2 was 73.4 (±5.2), in group B1 was 63.3 (±4.7) and in Group B2 was 56.5 (±7.7). Statistical analysis revealed a significant difference in the depth of cure between the two bulk-fill composites with x-tra fil (Voco, Germany) higher than Opus Bulk fill APS (FGM, Brazil) (P<0.001). The degree of conversion percentage also showed a significant difference, Group A1 being higher than A2 (P=0.0085), B1, and B2 (P<0.001). Group A2 was also higher than B1 (P=0.003) and B2 (P<0.001). There was no significant difference between B1 and B2 (P=0.072). Conclusion: The results indicate that x-tra fill has more depth of cure and a higher percentage of the degree of conversion than Opus Bulk fill APS. The coronal half of x-tra fil had the highest depth of cure percentage (82.66%), and the pulpal half of Opus Bulk fill APS had the lowest percentage (56.45%). Even though both bulk-fill composite materials had an acceptable degree of conversion (55% and higher), x-tra fill has shown better results.

Keywords: depth of cure, degree of conversion, bulk-fill composite, FTIR

Procedia PDF Downloads 6
2456 Analytical Solution of Specific Energy Equation in Exponential Channels

Authors: Abdulrahman Abdulrahman

Abstract:

The specific energy equation has many applications in practical channels, such as exponential channels. In this paper, the governing equation of alternate depth ratio for exponential channels, in general, was investigated towards obtaining analytical solution for the alternate depth ratio in three exponential channel shapes, viz., rectangular, triangular, and parabolic channels. The alternate depth ratio for rectangular channels is quadratic; hence it is very simple to solve. While for parabolic and triangular channels, the alternate depth ratio is cubic and quartic equations, respectively, analytical solution for these equations may be achieved easily for a given Froud number. Different examples are solved to prove the efficiency of the proposed solution. Such analytical solution can be easily used in natural rivers and most of practical channels.

Keywords: alternate depth, analytical solution, specific energy, parabolic channel, rectangular channel, triangular channel, open channel flow

Procedia PDF Downloads 78
2455 Predictive Value of Primary Tumor Depth for Cervical Lymphadenopathy in Squamous Cell Carcinoma of Buccal Mucosa

Authors: Zohra Salim

Abstract:

Objective: To access the relationship of primary tumor thickness with cervical lymphadenopathy in squamous cell carcinoma of buccal mucosa. Methodology: A cross-sectional observational study was carried out on 80 Patients with biopsy-proven oral squamous cell carcinoma of buccal mucosa at Dow University of Health Sciences. All the study participants were treated with wide local excision of the primary tumor with elective neck dissection. Patients with prior head and neck malignancy or those with prior radiotherapy or chemotherapy were excluded from the study. Data was entered and analyzed on SPSS 21. Chi-squared test with 95% C.I and 80% power of the test was used to evaluate the relationship of tumor depth with cervical lymph nodes. Results: 50 participants were male, and 30 patients were female. 30 patients were in the age range of 20-40 years, 36 patients in the range of 40-60 years, while 14 patients were beyond age 60 years. Tumor size ranged from 0.3cm to 5cm with a mean of 2.03cm. Tumor depth ranged from 0.2cm to 5cm. 20% of the participants reported with tumor depth greater than 2.5cm, while 80% of patients reported with tumor depth less than 2.5cm. Out of 80 patients, 27 reported with negative lymph nodes, while 53 patients reported with positive lymph nodes. Conclusion: Our study concludes that relationship exists between the depth of primary tumor and cervical lymphadenopathy in squamous cell carcinoma of buccal mucosa.

Keywords: squamous cell carcinoma, tumor depth, cervical lymphadenopathy, buccal mucosa

Procedia PDF Downloads 176
2454 Influence of Pier Modification Techniques for Reducing Scour around Bridge Piers

Authors: Rashid Farooq, Abdul Razzaq Ghumman, Hashim Nisar Hashmi

Abstract:

Bridge piers often fail all over the world and the whole structure may be endangered due to scouring phenomena. Scouring has been linked to catastrophic failures that lead into the loss of human lives. Various techniques have been employed to extenuate the scouring process in order to assist the bridge designs. Pier modifications plays vital role to control scouring at the vicinity of the pier. This experimental study aims at monitoring the effectiveness of pier modification and temporal development of scour depth around a bridge pier by providing a collar, a cable or openings under the same flow conditions. Provision of a collar around the octagonal pier reduced more scour depth than that for other two configurations. Providing a collar around the octagonal pier found to be the best in reducing scour. The scour depth in front of pier was found to be 19.5% less than that at the octagonal pier without any modifications. Similarly, the scour depth around the octagonal pier having provision of a cable was less than that at pier with provision of openings. The scour depth around an octagonal pier was also compared with a plain circular pier and found to be 9.1% less.

Keywords: Scour, octagonal pier, collar, cable

Procedia PDF Downloads 194
2453 SIPINA Induction Graph Method for Seismic Risk Prediction

Authors: B. Selma

Abstract:

The aim of this study is to test the feasibility of SIPINA method to predict the harmfulness parameters controlling the seismic response. The approach developed takes into consideration both the focal depth and the peak ground acceleration. The parameter to determine is displacement. The data used for the learning of this method and analysis nonlinear seismic are described and applied to a class of models damaged to some typical structures of the existing urban infrastructure of Jassy, Romania. The results obtained indicate an influence of the focal depth and the peak ground acceleration on the displacement.

Keywords: SIPINA algorithm, seism, focal depth, peak ground acceleration, displacement

Procedia PDF Downloads 206
2452 2D-Numerical Modelling of Local Scour around a Circular Pier in Steady Current

Authors: Mohamed Rajab Peer Mohamed, Thiruvenkatasamy Kannabiran

Abstract:

In the present investigation, the scour around a circular pier subjected to a steady current were studied numerically using two-dimensional MIKE21 Flow Model (FM) and Sand Transport (ST)Modulewhich is developed by Danish Hydraulic Institute (DHI), Denmark. The unstructured flexible mesh generated with rectangular flume dimension of 10 m wide, 1 m deep, and 30 m long. The grain size of the sand was d50 = 0.16 mm, sediment size, sediment gradation=1.16, pier diameter D= 30 mm and depth-averaged current velocity, U = 0.449 m/s are considered in the model. The estimated scour depth obtained from this model is validated and it is observed that the results of the model have good agreement with flume experimental results.In order to estimate the scour depth, several simulations were made for three cases viz., Case I:change in sediment transport model description in the numerical model viz, i) Engelund-Hansen model, ii) Engelund-Fredsøe model, and iii) Van Rijn model, Case II: change in current velocity for keeping constant pile diameter D=0.03 m and Case III:change in pier diameter for constant depth averaged current speed U=0.449 m/s.In case I simulations, the results indicate that the scour depth S/D is the order of 1.73 for Engelund-Hansen model, 0.64 for Engelund-Fredsøe model and 0.46 for VanRijn model. The scour depth estimates using Engelund-Hansen method compares well the experimental results.In case II, simulations show that the scour depth increases with increasing current component of the flow.In case III simulations, the results indicate that the scour depth increases with increase in pier diameter and it stabilize attains steady value when the Froude number> 2.71.All the results of the numerical simulations are clearly matches with reported values of the experimental results. Hence, this MIKE21 FM –Sand Transport model can be used as a suitable tool to estimate the scour depth for field applications. Moreover, to provide suitable scour protection methods, the maximum scour depth is to be predicted, Engelund-Hansen method can be adopted to estimate the scour depth in the steady current region.

Keywords: circular pier, MIKE21, numerical model, scour, sediment transport

Procedia PDF Downloads 212
2451 Water Depth and Optical Attenuation Characteristics of Natural Water Reservoirs nearby Kolkata City Assessed from Hyperion Hyperspectral and LISS-3 Multispectral Images

Authors: Barun Raychaudhuri

Abstract:

A methodology is proposed for estimating the optical attenuation and proportional depth variation of shallow inland water. The process is demonstrated with EO-1 Hyperion hyperspectral and IRS-P6 LISS-3 multispectral images of Kolkata city nearby area centered around 22º33′ N 88º26′ E. The attenuation coefficient of water was found to change with fine resolution of wavebands and in presence of suspended organic matter in water.

Keywords: hyperion, hyperspectral, Kolkata, water depth

Procedia PDF Downloads 170
2450 A Comparative Application of Ground Penetrating Radar for Detection of Kariz (Ancient Aqueduct) Galleries

Authors: S. Ghanbari, M. Kh. Hafizi, A. Ebrahimi, M. Bano

Abstract:

In general, a quantitative interpretation of ground penetrating radar (GPR) data provides information on the properties of underground geological structures and the depth of sources. However, every geophysical method invariably encounters certain limitations, including GPR. Here, we present a comparative examination of the depth obtained from GPR signals by different methods at three sites of Kariz (ancient aqueduct), i.e., two active sites (currently carrying water) and one site dried, located in the city of Kashan, Iran. The results obtained are based on very common or recently defined techniques for application in GPR signal processing in the case of Kariz studies, such as the conventional processing approach, similar to commercial software, the Kirchhoff migration, time reversal (TR) imaging, and combination of CWT and TR that forms a recent processing approach, herein-after referred to as modified TR (MTR). The estimated depth from TR and MTR is very close to drilling depth and has shown a satisfactory comparison with the drilling depth, while conventional processing and Kirchhoff migration often failed to define a clear target. Therefore, the results of TR and MTR highlight that both techniques are also applicable to GPR signals for the estimation of depth to Kariz galleries and may be extended to other similar applications like the detection of underground cavities.

Keywords: ancient aqueduct, GPR, MTR, time reversal imaging

Procedia PDF Downloads 4
2449 Relative Depth Dose Profile and Peak Scatter Factors Measurement for Co-60 Teletherapy Machine Using Chemical Dosimetry

Authors: O. Moussous, T. Medjadj

Abstract:

The suitability of a Fricke dosimeter for the measurement of a relative depth dose profile and the peak scatter factors was studied. The measurements were carried out in the secondary standard dosimetry laboratory at CRNA Algiers using a collimated 60Co gamma source teletherapy machine. The measurements were performed for different field sizes at the phantom front face, at a fixed source-to-phantom distance of 80 cm. The dose measurements were performed by first placing the dosimeters free-in-air at the distance-source-detector (DSD) of 80.5 cm from the source. Additional measurements were made with the phantom in place. The water phantom type Med-Tec 40x40x40 cm for vertical beam was used in this work as scattering martial. The phantom was placed on the irradiation bench of the cobalt unit at the SSD of 80 cm from the beam focus and the centre of the field coincided with the geometric centre of the dosimeters placed at the depth in water of 5 mm Relative depth dose profile and Peak scatter factors measurements were carried out using our Fricke system. This was intercompared with similar measurements by ionization chamber under identical conditions. There is a good agreement between the relative percentage depth–dose profiles and the PSF values measured by both systems using a water phantom.

Keywords: Fricke dosimeter, depth–dose profiles, peak scatter factors, DSD

Procedia PDF Downloads 183
2448 Correlation between Initial Absorption of the Cover Concrete, the Compressive Strength and Carbonation Depth

Authors: Bouzidi Yassine

Abstract:

This experimental work was aimed to characterize the porosity of the concrete cover zone using the capillary absorption test, and establish the links between open porosity characterized by the initial absorption, the compressive strength and carbonation depth. Eight formulations of workability similar made from ordinary Portland cement (CEM I 42.5) and a compound cement (CEM II/B 42.5) four of each type are studied. The results allow us to highlight the effect of the cement type. Indeed, concretes-based cement CEM II/B 42.5 carbonatent approximately faster than concretes-based cement CEM I 42.5. This effect is attributed in part to the lower content of portlandite Ca(OH)2 of concretes-based cement CEM II/B 42.5, but also the impact of the cement type on the open porosity of the cover concrete. The open porosity of concretes-based cement CEM I 42.5 is lower than that of concretes-based cement CEM II/B 42.5. The carbonation depth is a decreasing function of the compressive strength at 28 days and increases with the initial absorption. Through the results obtained, correlations between the quantity of water absorbed in 1 h, the carbonation depth at 180 days and the compressive strength at 28 days were performed in an acceptable manner.

Keywords: initial absorption, cover concrete, compressive strength, carbonation depth

Procedia PDF Downloads 255
2447 Experimental Investigation of Soil Corrosion and Electrical Resistance in Depth by Geoelectrical Method

Authors: Seyed Abolhassan Naeini, Maedeh Akhavan Tavakkoli

Abstract:

Determining soil engineering properties is essential for geotechnical problems. In addition to high cost, invasive soil survey methods can be time-consuming, so geophysical methods can be an excellent choice to determine soil characteristics. In this study, geoelectric investigation using the Wenner arrangement method has been used to determine the amount of soil corrosion in soil layers in a project site as a case study. This study aims to assess the degree of corrosion of soil layers to a depth of 5 meters and find the variation of soil electrical resistance versus depth. For this purpose, the desired points in the study area were marked and specified, and all withdrawals were made within the specified points. The collected data have been processed by standard and accepted methods, and the results have been presented in the form of calculation tables and curves of electrical resistivity with depth.

Keywords: Wenner array, geoelectric, soil corrosion, electrical soil resistance

Procedia PDF Downloads 10