Search results for: renewable energy technologies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11544

Search results for: renewable energy technologies

7014 The Analysis of Exhaust Emission from Single Cylinder Non-Mobile Spark Ignition Engine Using Ethanol-Gasoline Blend as Fuel

Authors: Iyiola Olusola Oluwaleye, Ogbevire Umukoro

Abstract:

In view of the prevailing pollution problems and its consequences on the environment, efforts are being made to lower the concentration of toxic components in combustion products and decreasing fossil fuel consumption by using renewable alternative fuels. In this work, the impact of ethanol-gasoline blend on the exhaust emission of a single cylinder non-mobile spark ignition engine was investigated. Gasoline was blended with 5 – 20% of ethanol sourced from the open market (bought off the shelf) in an interval of 5%. The results of the emission characteristics of the exhaust gas from the combustion of the ethanol-gasoline blends showed that increasing the percentage of ethanol in the blend decreased CO emission by between 2.12% and 52.29% and HC emissions by between12.14% and 53.24%, but increased CO2 and NOx emissions by between 25% to 56% and 59% to 60% respectively. E15 blend is preferred above other blends at no-load and across all the load variations. However its NOx emission was the highest when compared with other samples. This will negatively affect human health and the environment but this drawback can be remedied by adequate treatment with appropriate additives.

Keywords: blends, emission, ethanol, gasoline, spark ignition engine

Procedia PDF Downloads 201
7013 Crystalline Structure of Starch Based Nano Composites

Authors: Farid Amidi Fazli, Afshin Babazadeh, Farnaz Amidi Fazli

Abstract:

In contrast with literal meaning of nano, researchers have been achieving mega adventures in this area and every day more nanomaterials are being introduced to the market. After long time application of fossil-based plastics, nowadays accumulation of their waste seems to be a big problem to the environment. On the other hand, mankind has more attention to safety and living environment. Replacing common plastic packaging materials with degradable ones that degrade faster and convert to non-dangerous components like water and carbon dioxide have more attractions; these new materials are based on renewable and inexpensive sources of starch and cellulose. However, the functional properties of them do not suitable for packaging. At this point, nanotechnology has an important role. Utilizing of nanomaterials in polymer structure will improve mechanical and physical properties of them; nanocrystalline cellulose (NCC) has this ability. This work has employed a chemical method to produce NCC and starch bio nanocomposite containing NCC. X-Ray Diffraction technique has characterized the obtained materials. Results showed that applied method is a suitable one as well as applicable one to NCC production.

Keywords: biofilm, cellulose, nanocomposite, starch

Procedia PDF Downloads 410
7012 Optimal Design of Friction Dampers for Seismic Retrofit of a Moment Frame

Authors: Hyungoo Kang, Jinkoo Kim

Abstract:

This study investigated the determination of the optimal location and friction force of friction dampers to effectively reduce the seismic response of a reinforced concrete structure designed without considering seismic load. To this end, the genetic algorithm process was applied and the results were compared with those obtained by simplified methods such as distribution of dampers based on the story shear or the inter-story drift ratio. The seismic performance of the model structure with optimally positioned friction dampers was evaluated by nonlinear static and dynamic analyses. The analysis results showed that compared with the system without friction dampers, the maximum roof displacement and the inter-story drift ratio were reduced by about 30% and 40%, respectively. After installation of the dampers about 70% of the earthquake input energy was dissipated by the dampers and the energy dissipated in the structural elements was reduced by about 50%. In comparison with the simplified methods of installation, the genetic algorithm provided more efficient solutions for seismic retrofit of the model structure.

Keywords: friction dampers, genetic algorithm, optimal design, RC buildings

Procedia PDF Downloads 246
7011 Plasma Gasification as a Sustainable Way for Energy Recovery from Scrap Tyre

Authors: Gloria James, S. K. Nema, T. S. Anantha Singh, P. Vadivel Murugan

Abstract:

The usage of tyre has increased enormously in day to day life. The used tyre and rubber products pose major threat to the environment. Conventional thermal techniques such as low temperature pyrolysis and incineration produce high molecular organic compounds (condensed and collected as aromatic oil) and carbon soot particles. Plasma gasification technique can dispose tyre waste and generate combustible gases and avoid the formation of high molecular aromatic compounds. These gases generated in plasma gasification process can be used to generate electricity or as fuel wherever required. Although many experiments have been done on plasma pyrolysis of tyres, very little work has been done on plasma gasification of tyres. In this work plasma gasification of waste tyres have been conducted in a fixed bed reactor having graphite electrodes and direct current (DC) arc plasma system. The output of this work has been compared with the previous work done on plasma pyrolysis of tyres by different authors. The aim of this work is to compare different process based on gas generation, efficiency of the process and explore the most effective option for energy recovery from waste tyres.

Keywords: plasma, gasification, syngas, tyre waste

Procedia PDF Downloads 185
7010 Controlling the Fluid Flow in Hydrogen Fuel Cells through Material Porosity Designs

Authors: Jamal Hussain Al-Smail

Abstract:

Hydrogen fuel cells (HFCs) are environmentally friendly, energy converter devices that convert the chemical energy of the reactants (oxygen and hydrogen) to electricity through electrochemical reactions. The level of the electricity production of HFCs mainly increases depending on the oxygen distribution in the HFC’s cathode gas diffusion layer (GDL). With a constant porosity of the GDL, the electrochemical reaction can have a great variation that reduces the cell’s productivity and stability. Our findings bring a methodology in finding porosity designs of the diffusion layer to improve the oxygen distribution such that it results in a stable oxygen-hydrogen reaction. We first introduce a mathematical model involving the mass and momentum transport equations, in which a porosity function of the GDL is incorporated as a control for the fluid flow. We then derive numerical methods for solving the mathematical model. In conclusion, we present our numerical results to show how to design the GDL porosity to result in a uniform oxygen distribution.

Keywords: fuel cells, material porosity design, mathematical modeling, porous media

Procedia PDF Downloads 157
7009 Seismic Behaviour of CFST-RC Columns

Authors: Raghabendra Yadav, Baochun Chen, Huihui Yuan, Zhibin Lian

Abstract:

Concrete Filled Steel Tube (CFST) columns are widely used in Civil Engineering Structures due to their abundant properties. CFST-RC column is a built up column in which CFST members are connected with RC web. The CFST-RC column has excellent static and earthquake resistant properties, such as high strength, high ductility and large energy absorption capacity. CFST-RC columns have been adopted as piers in Ganhaizi Bridge in high seismic risk zone with a highest pier of 107m. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. The experimental investigation on scaled models of similar type of the CFST-RC pier are carried out. Under cyclic loading, the hysteretic performance of CFST-RC columns, such as failure modes, ductility, load displacement hysteretic curves, energy absorption capacity, strength and stiffness degradation are studied in this paper.

Keywords: CFST, cyclic load, Ganhaizi bridge, seismic performance

Procedia PDF Downloads 250
7008 The Sustainability of Eco–City Model: Green and Energy Efficiency Technology-Related Framing and Selectivity Issues in Eco–City Projects in Stockholm

Authors: Simon Elias Bibri, Vera Minavere Bardici

Abstract:

In this article, we investigate framing, discursive and material selectivity as important issues that need to be addressed in the planning of eco–city as a model of sustainable urban form. Focusing on the Stockholm region in Sweden, we discuss issues of the contribution of eco–city model to sustainability and examine key themes associated with the construction of the discourse on eco–city projects, namely the integration of environmental, economic, and social sustainability as well as design and technology as solutions in urban projects documents pertaining specifically to Hammarby Sjöstad and Stockholm Royal Seaport. The article is divided into four sections. First, we elucidate the concept and problem of framing and discursive and material selectivity. Second, we briefly discuss the discourse of sustainability, sustainable urban forms, and eco–city, pointing out some key issues that need to be addressed in sustainable urban planning. In the third and main section of the article, we investigate plans and projects for sustainable urban development, focusing on framing and discursive and material selectivity issues in the construction of the discourse on eco–city projects in Stockholm and discussing the findings in terms of the integration of sustainability dimensions, the economic benefits of and the negative environmental effects of energy efficiency and green technology, the shaping influence of cultural frames, the links of eco–city to macro–processes of regulation, the technological orientation of eco–city projects and the associated selectivity aspects. The article concludes with a call for further research for the possibilities for a more environmentally sound and holistic approach to sustainable urban forms.

Keywords: framing, selectivity, sustainability, eco–city, sustainable urban form, design, energy efficiency, green technology, Hammarby Sjöstad, Stockholm Royal Seaport

Procedia PDF Downloads 425
7007 Kinematic Analysis of the Calf Raise Test Using a Mobile iOS Application: Validation of the Calf Raise Application

Authors: Ma. Roxanne Fernandez, Josie Athens, Balsalobre-Fernandez, Masayoshi Kubo, Kim Hébert-Losier

Abstract:

Objectives: The calf raise test (CRT) is used in rehabilitation and sports medicine to evaluate calf muscle function. For testing, individuals stand on one leg and go up on their toes and back down to volitional fatigue. The newly developed Calf Raise application (CRapp) for iOS uses computer-vision algorithms enabling objective measurement of CRT outcomes. We aimed to validate the CRapp by examining its concurrent validity and agreement levels against laboratory-based equipment and establishing its intra- and inter-rater reliability. Methods: CRT outcomes (i.e., repetitions, positive work, total height, peak height, fatigue index, and peak power) were assessed in thirteen healthy individuals (6 males, 7 females) on three occasions and both legs using the CRapp, 3D motion capture, and force plate technologies simultaneously. Data were extracted from two markers: one placed immediately below the lateral malleolus and another on the heel. Concurrent validity and agreement measures were determined using intraclass correlation coefficients (ICC₃,ₖ), typical errors expressed as coefficient of variations (CV), and Bland-Altman methods to assess biases and precision. Reliability was assessed using ICC3,1 and CV values. Results: Validity of CRapp outcomes was good to excellent across measures for both markers (mean ICC ≥0.878), with precision plots showing good agreement and precision. CV ranged from 0% (repetitions) to 33.3% (fatigue index) and were, on average better for the lateral malleolus marker. Additionally, inter- and intra-rater reliability were excellent (mean ICC ≥0.949, CV ≤5.6%). Conclusion: These results confirm the CRapp is valid and reliable within and between users for measuring CRT outcomes in healthy adults. The CRapp provides a tool to objectivise CRT outcomes in research and practice, aligning with recent advances in mobile technologies and their increased use in healthcare.

Keywords: calf raise test, mobile application, validity, reliability

Procedia PDF Downloads 169
7006 Optimization of Stevia Concentration in Rasgulla (Sweet Syrup Cheese Ball) Based on Quality

Authors: Gurveer Kaur, T. K. Goswami

Abstract:

Rasgulla (a sweet syrup cheese ball), a sweet, spongy dessert represents traditional sweet dish of an Indian subcontinent prepared by chhana. 100 g of Rasgulla contains 186 calories, and so it is a driving force behind obesity and diabetes. To reduce Rasgulla’s energy value sucrose mainly should be minimized, so instead of sucrose, stevia (zero calories natural sweetener) is used to prepare Rasgulla. In this study three samples were prepared with sucrose to stevia ratio taking 100:0 (as control sample), (i) 50:50 (T1); (ii) 25:75 (T2), and (iii) 0:100 (T3) from 4% fat milk. It was found that as the sucrose concentration decreases the percentage of fat increase in the Rasgulla slightly. Sample T2 showed < 0.1% (±0.06) sucrose content. But there was no significant difference on protein and ash content of the samples. Whitening index was highest (78.0 ± 0.13) for T2 and lowest (65.7 ± 0.21) for the control sample since less sucrose in syrup reduces the browning of the sample (T2). Energy value per 100 g was calculated to be 50, 72, 98, and 184 calories for T3, T2, T1 and control samples, respectively. According to optimization study, the preferred (high quality) order of samples was as follows: T1 > T1 > control > T3. Low sugar content Rasgulla with acceptable quality can be prepared with 25:75 ratio of sucrose to stevia.

Keywords: composition, rasgulla, sensory, stevia

Procedia PDF Downloads 207
7005 Photocatalytic Packed‐Bed Flow Reactor for Continuous Room‐Temperature Hydrogen Release from Liquid Organic Carriers

Authors: Malek Y. S. Ibrahim, Jeffrey A. Bennett, Milad Abolhasani

Abstract:

Despite the potential of hydrogen (H2) storage in liquid organic carriers to achieve carbon neutrality, the energy required for H2 release and the cost of catalyst recycling has hindered its large-scale adoption. In response, a photo flow reactor packed with rhodium (Rh)/titania (TiO2) photocatalyst was reported for the continuous and selective acceptorless dehydrogenation of 1,2,3,4-tetrahydroquinoline to H2 gas and quinoline under visible light irradiation at room temperature. The tradeoff between the reactor pressure drop and its photocatalytic surface area was resolved by selective in-situ photodeposition of Rh in the photo flow reactor post-packing on the outer surface of the TiO2 microparticles available to photon flux, thereby reducing the optimal Rh loading by 10 times compared to a batch reactor, while facilitating catalyst reuse and regeneration. An example of using quinoline as a hydrogen acceptor to lower the energy of the hydrogen production step was demonstrated via the water-gas shift reaction.

Keywords: hydrogen storage, flow chemistry, photocatalysis, solar hydrogen

Procedia PDF Downloads 102
7004 Comparing Occupants’ Satisfaction in LEED Certified Office Buildings and Non-LEED Certified Office Buildings: A Case Study of Office Buildings in Egypt and Turkey

Authors: Amgad A. Farghal, Dina I. El Desouki

Abstract:

Energy consumption and users’ satisfaction were compared in three LEED certified office buildings in turkey and an office building in Egypt. The field studies were conducted in summer 2012. The measured environmental parameters in the four buildings were indoor air temperature, relative humidity, CO2 percentage and light intensity. The traditional building is located in Smart Village in Abu Rawash, Cairo, Egypt. The building was studied for 7 days resulting in 84 responds. The three rated buildings are in Istanbul; Turkey. A Platinum LEED certified office building is owned by BASF and gained a platinum certificate for new construction and major renovation. The building was studied for 3 days resulting in 13 responds. A Gold LEED certified office building is owned by BASF and gained a gold certificate for new construction and major renovation. The building was studied for 2 days resulting in 10 responds. A silver LEED certified office building is owned by Unilever and gained a silver certificate for commercial interiors. The building was studied for 7 days resulting in 84 responds. The results showed that all buildings had no significant difference regarding occupants’ satisfaction with the amount of lighting, noise level, odor and access to the outdoor view. There was significant difference between occupants’ satisfaction in LEED certified buildings and the traditional building regarding the thermal environment and the perception of the general environment (colors, carpet and decoration. The findings suggest that careful design could lead to a certified building that enhances the thermal environment and the perception of the indoor environment leading to energy consumption without scarifying occupants’ satisfaction.

Keywords: energy consumption, occupants’ satisfaction, rating systems, office buildings

Procedia PDF Downloads 422
7003 From Industry 4.0 to Agriculture 4.0: A Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability

Authors: Angelo Corallo, Maria Elena Latino, Marta Menegoli

Abstract:

Agri-food value chain involves various stakeholders with different roles. All of them abide by national and international rules and leverage marketing strategies to advance their products. Food products and related processing phases carry with it a big mole of data that are often not used to inform final customer. Some data, if fittingly identified and used, can enhance the single company, and/or the all supply chain creates a math between marketing techniques and voluntary traceability strategies. Moreover, as of late, the world has seen buying-models’ modification: customer is careful on wellbeing and food quality. Food citizenship and food democracy was born, leveraging on transparency, sustainability and food information needs. Internet of Things (IoT) and Analytics, some of the innovative technologies of Industry 4.0, have a significant impact on market and will act as a main thrust towards a genuine ‘4.0 change’ for agriculture. But, realizing a traceability system is not simple because of the complexity of agri-food supply chain, a lot of actors involved, different business models, environmental variations impacting products and/or processes, and extraordinary climate changes. In order to give support to the company involved in a traceability path, starting from business model analysis and related business process a Framework to Manage Product Data in Agri-Food Supply Chain for Voluntary Traceability was conceived. Studying each process task and leveraging on modeling techniques lead to individuate information held by different actors during agri-food supply chain. IoT technologies for data collection and Analytics techniques for data processing supply information useful to increase the efficiency intra-company and competitiveness in the market. The whole information recovered can be shown through IT solutions and mobile application to made accessible to the company, the entire supply chain and the consumer with the view to guaranteeing transparency and quality.

Keywords: agriculture 4.0, agri-food suppy chain, industry 4.0, voluntary traceability

Procedia PDF Downloads 148
7002 Development of a Feedback Control System for a Lab-Scale Biomass Combustion System Using Programmable Logic Controller

Authors: Samuel O. Alamu, Seong W. Lee, Blaise Kalmia, Marc J. Louise Caballes, Xuejun Qian

Abstract:

The application of combustion technologies for thermal conversion of biomass and solid wastes to energy has been a major solution to the effective handling of wastes over a long period of time. Lab-scale biomass combustion systems have been observed to be economically viable and socially acceptable, but major concerns are the environmental impacts of the process and deviation of temperature distribution within the combustion chamber. Both high and low combustion chamber temperature may affect the overall combustion efficiency and gaseous emissions. Therefore, there is an urgent need to develop a control system which measures the deviations of chamber temperature from set target values, sends these deviations (which generates disturbances in the system) in the form of feedback signal (as input), and control operating conditions for correcting the errors. In this research study, major components of the feedback control system were determined, assembled, and tested. In addition, control algorithms were developed to actuate operating conditions (e.g., air velocity, fuel feeding rate) using ladder logic functions embedded in the Programmable Logic Controller (PLC). The developed control algorithm having chamber temperature as a feedback signal is integrated into the lab-scale swirling fluidized bed combustor (SFBC) to investigate the temperature distribution at different heights of the combustion chamber based on various operating conditions. The air blower rates and the fuel feeding rates obtained from automatic control operations were correlated with manual inputs. There was no observable difference in the correlated results, thus indicating that the written PLC program functions were adequate in designing the experimental study of the lab-scale SFBC. The experimental results were analyzed to study the effect of air velocity operating at 222-273 ft/min and fuel feeding rate of 60-90 rpm on the chamber temperature. The developed temperature-based feedback control system was shown to be adequate in controlling the airflow and the fuel feeding rate for the overall biomass combustion process as it helps to minimize the steady-state error.

Keywords: air flow, biomass combustion, feedback control signal, fuel feeding, ladder logic, programmable logic controller, temperature

Procedia PDF Downloads 132
7001 In situ Polymerization and Properties of Biobased Polyurethane/Epoxy Interpenetrating Network Nanocomposites

Authors: Aiswarea Mathew, Smita Mohanty, Jr., S. K. Nayak

Abstract:

Polyurethane networks based on castor oil (CO) as a renewable resource polyol were synthesized. Polyurethane/epoxy resin interpenetrating network nanocomposites containing modified montmorillonite organoclay (C30B-PU/EP nanocomposites) were prepared by an in situ intercalation method. The conventional spectroscopic characterization of the synthesized samples using FT-IR confirms the existence of the proposed castor oil based PU structure and also showed that strong interactions existed between C30B and EP/PU matrix. The dispersion degree of C30B in EP/PU matrix was characterized by X-Ray diffraction (XRD) method. Scanning electronic microscopy analysis showed that the interpenetrating process of PU and EP increases the exfoliation degree of C30B, and it improves the compatibility and the phase structure of polyurethane/epoxy resin interpenetrating polymer networks (PU/EP IPNs). The thermal stability improves compared to the polyurethane when the PU/EP IPN is formed. Mechanical properties including the Young’s modulus and tensile strength reflected marked improvement with addition of C30B.

Keywords: castor oil, epoxy, montmorillonite, polyurethane

Procedia PDF Downloads 403
7000 Modulating Photoelectrochemical Water-Splitting Activity by Charge-Storage Capacity of Electrocatalysts

Authors: Yawen Dai, Ping Cheng, Jian Ru Gong

Abstract:

Photoelctrochemical (PEC) water splitting using semiconductors (SCs) provides a convenient way to convert sustainable but intermittent solar energy into clean hydrogen energy, and it has been regarded as one of most promising technology to solve the energy crisis and environmental pollution in modern society. However, the record energy conversion efficiency of a PEC cell (~3%) is still far lower than the commercialization requirement (~10%). The sluggish kinetics of oxygen evolution reaction (OER) half reaction on photoanodes is a significant limiting factor of the PEC device efficiency, and electrocatalysts (ECs) are always deposited on SCs to accelerate the hole injection for OER. However, an active EC cannot guarantee enhanced PEC performance, since the newly emerged SC-EC interface complicates the interfacial charge behavior. Herein, α-Fe2O3 photoanodes coated with Co3O4 and CoO ECs are taken as the model system to glean fundamental understanding on the EC-dependent interfacial charge behavior. Intensity modulated photocurrent spectroscopy and electrochemical impedance spectroscopy were used to investigate the competition between interfacial charge transfer and recombination, which was found to be dominated by the charge storage capacities of ECs. The combined results indicate that both ECs can store holes and increase the hole density on photoanode surface. It is like a double-edged sword that benefit the multi-hole participated OER, as well as aggravate the SC-EC interfacial charge recombination due to the Coulomb attraction, thus leading to a nonmonotonic PEC performance variation trend with the increasing surface hole density. Co3O4 has low hole storage capacity which brings limited interfacial charge recombination, and thus the increased surface holes can be efficiently utilized for OER to generate enhanced photocurrent. In contrast, CoO has overlarge hole storage capacity that causes severe interfacial charge recombination, which hinders hole transfer to electrolyte for OER. Therefore, the PEC performance of α-Fe2O3 is improved by Co3O4 but decreased by CoO despite the similar electrocatalytic activity of the two ECs. First-principle calculation was conducted to further reveal how the charge storage capacity depends on the EC’s intrinsic property, demonstrating that the larger hole storage capacity of CoO than that of Co3O4 is determined by their Co valence states and original Fermi levels. This study raises up a new strategy to manipulate interfacial charge behavior and the resultant PEC performance by the charge storage capacity of ECs, providing insightful guidance for the interface design in PEC devices.

Keywords: charge storage capacity, electrocatalyst, interfacial charge behavior, photoelectrochemistry, water-splitting

Procedia PDF Downloads 143
6999 Coated Chromium Thin Film on Zirconium for Corrosion Resistance of Nuclear Fuel Rods by Plasma Focus Device

Authors: Amir Raeisdana, Davood Sohrabi, Mojtaba Nohekhan, Ameneh Kargarian, Maryam Ghapanvari, Alireza Aslezaeem

Abstract:

Improvement of zirconium properties by chromium coating and nitrogen implantation is ideal to protect the nuclear fuel rods against corrosion and secondary hydrogenation. Metallic chromium (Cr) has attracted attention as a potential coating material on zirconium alloys, to limit external cladding corrosion. In this research, high energy plasma focus device was used to coat the chromium and implant the nitrogen ions in the zirconium substrate. This device emits high-energy nitrogen ions of 10 keV-1 MeV and with a flux of 10^16 ions/cm^2 in each shot toward the target so it is attractive for implantation on the substrate materials at the room temperature. Six zirconium samples in 2cm×2cm dimensions with 1mm thickness were located at a distance of 20cm from the place where the pinch is formed. The experiments are carried out in 0.5 mbar of the nitrogen gas pressure and 15 kV of the charging voltage. Pure Cr disc was installed on the anode head for sputtering of the chromium and deposition on zirconium substrate. When the pinch plasma column decays due to various instabilities, intense and high-energy N2 ions are accelerated towards the zirconium substrate also sputtered Cr is deposited on the zirconium substrate. XRD and XRF analysis were used to study the structural properties of the samples. XRF analysis indicates 77.1% of Zr and 11.1% of Cr in the surface of the sample. XRD spectra shows the formation of ZrN, CrN and CrZr composites after nitrogen implantation and chromium coating. XRD spectra shows the chromium peak height equal to 152.80 a.u. for the major sample (θ=0֯) and 92.99 a.u. for the minor sample (θ=6֯), so implantation and coating along the main axis of the device is significantly more than other directions.

Keywords: ZrN and CrN and CrZr composites, angular distribution for Cr deposition rate, zirconium corrosion resistance, nuclear fuel rods, plasma focus device

Procedia PDF Downloads 32
6998 Exploring Digital Media’s Impact on Sports Sponsorship: A Global Perspective

Authors: Sylvia Chan-Olmsted, Lisa-Charlotte Wolter

Abstract:

With the continuous proliferation of media platforms, there have been tremendous changes in media consumption behaviors. From the perspective of sports sponsorship, while there is now a multitude of platforms to create brand associations, the changing media landscape and shift of message control also mean that sports sponsors will have to take into account the nature of and consumer responses toward these emerging digital media to devise effective marketing strategies. Utilizing the personal interview methodology, this study is qualitative and exploratory in nature. A total of 18 experts from European and American academics, sports marketing industry, and sports leagues/teams were interviewed to address three main research questions: 1) What are the major changes in digital technologies that are relevant to sports sponsorship; 2) How have digital media influenced the channels and platforms of sports sponsorship; and 3) How have these technologies affected the goals, strategies, and measurement of sports sponsorship. The study found that sports sponsorship has moved from consumer engagement, engagement measurement, and consequences of engagement on brand behaviors to micro-targeting one on one, engagement by context, time, and space, and activation and leveraging based on tracking and databases. From the perspective of platforms and channels, the use of mobile devices is prominent during sports content consumption. Increasing multiscreen media consumption means that sports sponsors need to optimize their investment decisions in leagues, teams, or game-related content sources, as they need to go where the fans are most engaged in. The study observed an imbalanced strategic leveraging of technology and digital infrastructure. While sports leagues have had less emphasis on brand value management via technology, sports sponsors have been much more active in utilizing technologies like mobile/LBS tools, big data/user info, real-time marketing and programmatic, and social media activation. Regardless of the new media/platforms, the study found that integration and contextualization are the two essential means of improving sports sponsorship effectiveness through technology. That is, how sponsors effectively integrate social media/mobile/second screen into their existing legacy media sponsorship plan so technology works for the experience/message instead of distracting fans. Additionally, technological advancement and attention economy amplify the importance of consumer data gathering, but sports consumer data does not mean loyalty or engagement. This study also affirms the benefit of digital media as they offer viral and pre-event activations through storytelling way before the actual event, which is critical for leveraging brand association before and after. That is, sponsors now have multiple opportunities and platforms to tell stories about their brands for longer time period. In summary, digital media facilitate fan experience, access to the brand message, multiplatform/channel presentations, storytelling, and content sharing. Nevertheless, rather than focusing on technology and media, today’s sponsors need to define what they want to focus on in terms of content themes that connect with their brands and then identify the channels/platforms. The big challenge for sponsors is to play to the venues/media’s specificity and its fit with the target audience and not uniformly deliver the same message in the same format on different platforms/channels.

Keywords: digital media, mobile media, social media, technology, sports sponsorship

Procedia PDF Downloads 298
6997 Flow Control around Bluff Bodies by Attached Permeable Plates

Authors: Gokturk Memduh Ozkan, Huseyin Akilli

Abstract:

The aim of present study is to control the unsteady flow structure downstream of a circular cylinder by use of attached permeable plates. Particle image velocimetry (PIV) technique and dye visualization experiments were performed in deep water and the flow characteristics were evaluated by means of time-averaged streamlines, Reynolds Shear Stress and Turbulent Kinetic Energy concentrations. The permeable plate was made of a chrome-nickel screen having a porosity value of β=0.6 and it was attached on the cylinder surface along its midspan. Five different angles were given to the plate (θ=0°, 15°, 30°, 45°, 60°) with respect to the centerline of the cylinder in order to examine its effect on the flow control. It was shown that the permeable plate is effective on elongating the vortex formation length and reducing the fluctuations in the wake region. Compared to the plain cylinder, the reductions in the values of maximum Reynolds shear stress and Turbulent Kinetic Energy were evaluated as 72.5% and 66%, respectively for the plate angles of θ=45° and 60° which were also found to be suggested for applications concerning the vortex shedding and consequent Vortex-Induced Vibrations.

Keywords: bluff body, flow control, permeable plate, PIV, VIV, vortex shedding

Procedia PDF Downloads 364
6996 Post Occupancy Evaluation of the Green Office Building with Different Air-Conditioning Systems

Authors: Ziwei Huang, Jian Ge, Jie Shen, Jiantao Weng

Abstract:

Retrofitting of existing buildings plays a critical role to achieve sustainable development. This is being considered as one of the approaches to achieving sustainability in the built environment. In order to evaluate the different air-conditioning systems effectiveness and user satisfaction of the existing building which had transformed into green building effectively and accurately. This article takes the green office building in Zhejiang province, China as an example, analyzing the energy consumption, occupant satisfaction and indoor environment quality (IEQ) from the perspective of the thermal environment. This building is special because it combines ground source heat pump system and Variable Refrigerant Flow (VRF) air-conditioning system. Results showed that the ground source heat pump system(EUIa≈25.6) consumes more energy than VRF(EUIb≈23.8). In terms of a satisfaction survey, the use of the VRF air-conditioning was more satisfactory in temperature. However, the ground source heat pump is more satisfied in air quality.

Keywords: post-occupancy evaluation, green office building, air-conditioning systems, ground source heat pump system

Procedia PDF Downloads 200
6995 Investigation of Permeate Flux Through Direct Contact Membrane Distillation Module by Inserting S-Ribs Carbon-Fiber Promoters with Ascending and Descending Hydraulic Diameters

Authors: Chii-Dong Ho, Jian-Har Chen

Abstract:

The decline in permeate flux across membrane modules is attributed to the increase in temperature polarization resistance in flat-plate direct contact membrane distillation (DCMD) modules for pure water productivity. Researchers have discovered that this effect can be diminished by embedding turbulence promoters, which augment turbulence intensity at the cost of increased power consumption, thereby improving vapor permeate flux. The device performance of DCMD modules for permeate flux was further enhanced by shrinking the hydraulic diameters of inserted S-ribs carbon-fiber promoters as well as considering the energy consumption increment. The mass-balance formulation, based on the resistance-in-series model by energy conservation in one-dimensional governing equations, was developed theoretically and conducted experimentally on a flat-plate polytetrafluoroethylene/polypropylene (PTFE/PP) membrane module to predict permeate flux and temperature distributions. The ratio of permeate flux enhancement to energy consumption increment, as referred to an assessment of an economic viewpoint and technical feasibilities, was calculated to determine the suitable design parameters for DCMD operations with the insertion of S-ribs carbon-fiber turbulence promoters. An economic analysis was also performed, weighing both permeate flux improvement and energy consumption increment on modules with promoter-filled channels by different array configurations and various hydraulic diameters of turbulence promoters. Results showed that the ratio of permeate flux improvement to energy consumption increment in descending hydraulic-diameter modules is higher than in uniform hydraulic-diameter modules. The fabrication details of the DCMD module filaments implementing the S-ribs carbon-fiber filaments and the schematic configuration of the flat-plate DCMD experimental setup with presenting acrylic plates as external walls were demonstrated in the present study. The S-ribs carbon fibers perform as turbulence promoters incorporated into the artificial hot saline feed stream, which was prepared by adding inorganic salts (NaCl) to distilled water. Theoretical predictions and experimental results exhibited a great accomplishment to considerably achieve permeate flux enhancement in such as new design of the DCMD module with inserting S-ribs carbon-fiber promoters. Additionally, the Nusselt number for the water vapor transferring membrane module with inserted S-ribs carbon-fiber promoters was generalized into a simplified expression to predict the heat transfer coefficient and permeate flux as well.

Keywords: permeate flux, Nusselt number, DCMD module, temperature polarization, hydraulic diameters

Procedia PDF Downloads 17
6994 On the Quantum Behavior of Nanoparticles: Quantum Theory and Nano-Pharmacology

Authors: Kurudzirayi Robson Musikavanhu

Abstract:

Nanophase particles exhibit quantum behavior by virtue of their small size, being particles of gamma to x-ray wavelength [atomic range]. Such particles exhibit high frequencies, high energy/photon, high penetration power, high ionization power [atomic behavior] and are stable at low energy levels as opposed to bulk phase matter [macro particles] which exhibit higher wavelength [radio wave end] properties, hence lower frequency, lower energy/photon, lower penetration power, lower ionizing power and are less stable at low temperatures. The ‘unique’ behavioral motion of Nano systems will remain a mystery as long as quantum theory remains a mystery, and for pharmacology, pharmacovigilance profiling of Nano systems becomes virtually impossible. Quantum theory is the 4 – 3 – 5 electromagnetic law of life and life motion systems on planet earth. Electromagnetic [wave-particle] properties of all particulate matter changes as mass [bulkiness] changes from one phase to the next [Nano-phase to micro-phase to milli-phase to meter-phase to kilometer phase etc.] and the subsequent electromagnetic effect of one phase particle on bulk matter [different phase] changes from one phase to another. All matter exhibit electromagnetic properties [wave-particle duality] in behavior and the lower the wavelength [and the lesser the bulkiness] the higher the gamma ray end properties exhibited and the higher the wavelength [and the greater the bulkiness], the more the radio-wave end properties are exhibited. Quantum theory is the 4 [moon] – 3[sun] – [earth] 5 law of the Electromagnetic spectrum [solar system]. 4 + 3 = 7; 4 + 3 + 5 = 12; 4 * 3 * 5 = 60; 42 + 32 = 52; 43 + 33 + 53 = 63. Quantum age is overdue.

Keywords: electromagnetic solar system, nano-material, nano pharmacology, pharmacovigilance, quantum theory

Procedia PDF Downloads 453
6993 Development and Structural Performance Evaluation on Slit Circular Shear Panel Damper

Authors: Daniel Y. Abebe, Jaehyouk Choi

Abstract:

There are several types of metal-based devices conceived as dampers for the seismic energy absorber whereby damages to the major structural components could be minimized for both new and existing structures. This paper aimed to develop and evaluate structural performance of slit circular shear panel damper for passive seismic energy protection by inelastic deformation. Structural evaluation was done using commercially available nonlinear FE simulation program. The main parameters considered are: diameter-to-thickness (D/t) ratio and slit length-to-width ratio (l/w). Depending on these parameters three different buckling modes and hysteretic behaviors were found: yielding prior to buckling without strength degradation, yielding prior to buckling with strength degradation, and yielding with buckling and strength degradation which forms pinching at initial displacement. The susceptible location at which the possible crack is initiated is also identified for selected specimens using rupture index.

Keywords: slit circular shear panel damper, hysteresis characteristics, slip length-to-width ratio, D/t ratio, FE analysis

Procedia PDF Downloads 405
6992 A Feminist/Queer Global Bioethics’Perspective on Reproduction: Abortion, MAR and Surrogacy

Authors: Tamara Roma, Emma Capulli

Abstract:

Pregnancy and fertility, in other words, reproduction, has become, in the last half of the century, increasingly and globally controlled, medicalized, and regulated. The reflection proposed starts from the consequences of the inscription of reproduction into the neoliberal economic paradigm. The new biotechnologies developments have raised a new patriarchal justification for State’s control of uterus bodies and a new construction of knowledge about reproductive health. Moral discussion and juridification remove reproduction and non-reproduction from their personal and intimate context and frame them under words like “duties”, “rights”, “family planning”, “demography”, and “population policy”, reinvent them as “States business” and ultimately help to re/confirm a specific construct of fertility, motherhood, and family. Moreover, the interaction between the neoliberal economy and medical biotechnologies brought about a new formulation of the connection between feminine generative potential and value production. The widespread and contemporary debates on Medically Assisted Reproduction (MAR), surrogacy and abortion suggest the need for a “feminist/queer global bioethical discourse” capable of inserting itself into the official bioethical debate characterized by the traditional dichotomy of laic bioethics/Catholic bioethics. The contribution moves from a feminist bioethics perspective on reproductive technologies to introduce a feminist/queer global bioethics point of view on reproductive health. The comparison between reproduction and non-reproduction debates is useful to analyze and demonstrate how restrictive legislations, dichotomic bioethical discussion and medical control confirm and strengthens gender injustice in reproductive life. In fact, MAR, surrogacy, and abortion restrictions stem from a shared social and legal paradigm that depends on traditional gender roles revealing how the stratification of reproduction is based on multiple discrimination along the lines of gender, race, and class. In conclusion, the perspective of feminist/queer global bioethics tries to read the concept of universal reproductive justice, introducing an original point of view on reproductive health access.

Keywords: queer bioethics, reproductive health, reproductive justice, reproductive technologies

Procedia PDF Downloads 129
6991 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.

Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem

Procedia PDF Downloads 78
6990 Heat Transfer in Direct-Driven Generator for Large-Scaled Wind Turbine

Authors: Dae-Gyun Ahn, Eun-Teak Woo, Yun-Hyun Cho, Seung-Ho Han

Abstract:

For the sustainable development of wind energy, energy industries have invested in the development of highly efficient wind generators such as the Axial Flux Permanent Magnet (AFPM) generator. The AFPM generator, however, has a history of overheating on the surface of the stator, so that power production decreases significantly. A proper cooling system, therefore, is needed. Although a convective-type cooling system has been developed, the size of the air blower must be increased when the generator’s capacity exceeds 2.5MW. In this study, a newly developed conductive-type cooling system was proposed for the 2.5MW AFPM generator installed on an offshore wind turbine. Through electromagnetic thermal analysis, the efficiency of the heat transfer on the stator surface was investigated. When using the proposed cooling system, the temperatures on the stator surface and on the permanent magnet under conditions of thermal saturation were 76 and 66 C, respectively. (KETEP 20134030200320)

Keywords: heat transfer, thermal analysis, axial flux permanent magnet, conductive-type cooling system

Procedia PDF Downloads 446
6989 Applications of Big Data in Education

Authors: Faisal Kalota

Abstract:

Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.

Keywords: big data, learning analytics, analytics, big data in education, Hadoop

Procedia PDF Downloads 430
6988 Estimation of Wind Characteristics and Energy Yield at Different Towns in Libya

Authors: Farag Ahwide, Souhel Bousheha

Abstract:

A technical assessment has been made of electricity generation, considering wind turbines ranging between Vestas (V80-2.0 MW and V112-3.0 MW) and the air density is equal to 1.225 Kg/m3, at different towns in Libya. Wind speed might have been measured each 3 hours during 10 m stature at a time for 10 quite sometime between 2000 Furthermore 2009, these towns which are spotted on the bank from claiming Mediterranean ocean also how in the desert, which need aid Derna 1, Derna 2, Shahat, Benghazi, Ajdabya, Sirte, Misurata, Tripoli-Airport, Al-Zawya, Al-Kofra, Sabha, Nalut. The work presented long term "wind data analysis in terms of annual, seasonal, monthly and diurnal variations at these sites. Wind power density with different heights has been studied. Excel sheet program was used to calculate the values of wind power density and the values of wind speed frequency for the stations; their seasonally values have been estimated. Limit variable with rated wind pace to 10 different wind turbines need to be been estimated, which is used to focus those required yearly vitality yield of a wind vitality change framework (WECS), acknowledging wind turbines extending between 600 kW and 3000 kW).

Keywords: energy yield, wind turbines, wind speed, wind power density

Procedia PDF Downloads 302
6987 Comparison between Post- and Oxy-Combustion Systems in a Petroleum Refinery Unit Using Modeling and Optimization

Authors: Farooq A. Al-Sheikh, Ali Elkamel, William A. Anderson

Abstract:

A fluidized catalytic cracking unit (FCCU) is one of the effective units in many refineries. Modeling and optimization of FCCU were done by many researchers in past decades, but in this research, comparison between post- and oxy-combustion was studied in the regenerator-FCCU. Therefore, a simplified mathematical model was derived by doing mass/heat balances around both reactor and regenerator. A state space analysis was employed to show effects of the flow rates variables such as air, feed, spent catalyst, regenerated catalyst and flue gas on the output variables. The main aim of studying dynamic responses is to figure out the most influencing variables that affect both reactor/regenerator temperatures; also, finding the upper/lower limits of the influencing variables to ensure that temperatures of the reactors and regenerator work within normal operating conditions. Therefore, those values will be used as side constraints in the optimization technique to find appropriate operating regimes. The objective functions were modeled to be maximizing the energy in the reactor while minimizing the energy consumption in the regenerator. In conclusion, an oxy-combustion process can be used instead of a post-combustion one.

Keywords: FCCU modeling, optimization, oxy-combustion, post-combustion

Procedia PDF Downloads 212
6986 Experimental and Simulation Analysis of an Innovative Steel Shear Wall with Semi-Rigid Beam-to-Column Connections

Authors: E. Faizan, Wahab Abdul Ghafar, Tao Zhong

Abstract:

Steel plate shear walls (SPSWs) are a robust lateral load resistance structure because of their high flexibility and efficient energy dissipation when subjected to seismic loads. This research investigates the seismic performance of an innovative infill web strip (IWS-SPSW) and a typical unstiffened steel plate shear wall (USPSW). As a result, two 1:3 scale specimens of an IWS-SPSW and USPSW with a single story and a single bay were built and subjected to a cyclic lateral loading methodology. In the prototype, the beam-to-column connections were accomplished with the assistance of semi-rigid end-plate connectors. IWS-SPSW demonstrated exceptional ductility and shear load-bearing capacity during the testing process, with no cracks or other damage occurring. In addition, the IWS-SPSW could effectively dissipate energy without causing a significant amount of beam-column connection distortion. The shear load-bearing capacity of the USPSW was exceptional. However, it exhibited low ductility, severe infill plate corner ripping, and huge infill web plate cracks. The FE models were created and then confirmed using the experimental data. It has been demonstrated that the infill web strips of an SPSW system can affect the system's high performance and total energy dissipation. In addition, a parametric analysis was carried out to evaluate the material qualities of the IWS, which can considerably improve the system's seismic performances. These properties include the steel's strength as well as its thickness.

Keywords: steel shear walls, seismic performance, failure mode, hysteresis response, nonlinear finite element analysis, parametric study

Procedia PDF Downloads 78
6985 AI Peer Review Challenge: Standard Model of Physics vs 4D GEM EOS

Authors: David A. Harness

Abstract:

Natural evolution of ATP cognitive systems is to meet AI peer review standards. ATP process of axiom selection from Mizar to prove a conjecture would be further refined, as in all human and machine learning, by solving the real world problem of the proposed AI peer review challenge: Determine which conjecture forms the higher confidence level constructive proof between Standard Model of Physics SU(n) lattice gauge group operation vs. present non-standard 4D GEM EOS SU(n) lattice gauge group spatially extended operation in which the photon and electron are the first two trace angular momentum invariants of a gravitoelectromagnetic (GEM) energy momentum density tensor wavetrain integration spin-stress pressure-volume equation of state (EOS), initiated via 32 lines of Mathematica code. Resulting gravitoelectromagnetic spectrum ranges from compressive through rarefactive of the central cosmological constant vacuum energy density in units of pascals. Said self-adjoint group operation exclusively operates on the stress energy momentum tensor of the Einstein field equations, introducing quantization directly on the 4D spacetime level, essentially reformulating the Yang-Mills virtual superpositioned particle compounded lattice gauge groups quantization of the vacuum—into a single hyper-complex multi-valued GEM U(1) × SU(1,3) lattice gauge group Planck spacetime mesh quantization of the vacuum. Thus the Mizar corpus already contains all of the axioms required for relevant DeepMath premise selection and unambiguous formal natural language parsing in context deep learning.

Keywords: automated theorem proving, constructive quantum field theory, information theory, neural networks

Procedia PDF Downloads 183