Search results for: phenazine-1-carboxylic acid degradation
4470 Effect of the pH on the Degradation Kinetics of Biodegradable Mg-0.8Ca Orthopedic Implants
Authors: A. Mohamed, A. El-Aziz
Abstract:
The pH of the body plays a great role in the degradation kinetics of biodegradable Mg-Ca orthopedic implants. At the location of fracture, the pH of the body becomes no longer neutral which draws the attention towards studying a range of different pH values of the body fluid. In this study, the pH of Hank’s balanced salt solution (HBSS) was modified by phosphate buffers into an aggressive acidic pH 1.8, a slightly acidic pH 5.3 and an alkaline pH 8.1. The biodegradation of Mg-0.8Ca implant was tested in those three different media using immersion test and electrochemical polarization means. It was proposed that the degradation rate has increased with decreasing the pH of HBSS. The immersion test revealed weight gain for all the samples followed by weight loss as the immersion time increased. The highest weight gain was pronounced for the acidic pH 1.8 and the least weight gain was observed for the alkaline pH 8.1. This was in agreement with the electrochemical polarization test results where the degradation rate was found to be high (7.29 ± 2.2 mm/year) in the aggressive acidic solution of pH 1.8 and relatively minimum (0.31 ± 0.06 mm/year) in the alkaline medium of pH 8.1. Furthermore, it was confirmed that the pH of HBSS has reached a steady state of an alkaline pH (~pH 11) at the end of the two-month immersion period regardless of the initial pH of the solution. Finally, the corrosion products formed on the samples’ surface were investigated by SEM, EDX and XRD analyses that revealed the formation of magnesium and calcium phosphates with different morphologies according to the pH.Keywords: biodegradable, electrochemical polarization means, orthopedics, immersion test, simulated body fluid
Procedia PDF Downloads 1234469 Fish Oil and Its Methyl Ester as an Alternate Fuel in the Direct Injection Diesel Engine
Authors: Pavan Pujar
Abstract:
Mackerel Fish oil was used as the raw material to produce the biodiesel in this study. The raw oil (RO) was collected from discarded fish products. This oil was filtered and heated to 110oC and made it moisture free. The filtered and moisture free RO was transesterified to produce biodiesel. The experimental results showed that oleic acid and lauric acid were the two major components of the fish oil biodiesel (FOB). Palmitic acid and linoleic acid were found approximately same in the quantity. The fuel properties kinematic viscosity, flash point, fire point, specific gravity, calorific value, cetane number, density, acid value, saponification value, iodine value, cloud point, pour point, ash content, Cu strip corrosion, carbon residue, API gravity were determined for FOB. A comparative study of the properties was carried out with RO and Neat diesel (ND). It was found that Cetane number was 59 for FOB which was more than RO, which showed 57. Blends (B20, B40, B60, B80: example: B20: 20% FOB + 80% ND) of FOB and ND were prepared on volume basis and comparative study was carried out with ND and FOB. Performance parameters BSFE, BSEC, A:F Ratio, Break thermal efficiency were analyzed and it was found that complete replacement of neat diesel (ND) is possible without any engine modifications.Keywords: fish oil biodiesel, raw oil, blends, performance parameters
Procedia PDF Downloads 4134468 Effect of Salicylic Acid and Nitrogen Fertilizer on Wheat Growth and Yield
Authors: Omar Ibrahim, Aly A. Gaafar, K. A. Ratib
Abstract:
Two field experiments in micro plots were carried out during the winter seasons of 2012/2013 and 2013/2014, Soil Salinity Laboratory, Alexandria, Egypt, to study the effect of three levels of salicylic acid (SA) as a growth regulator (0, 50, 100 ppm) and three rates of nitrogen fertilizer (75, 100, 125 kg N/feddan) on growth and yield of a spring wheat (Giza 168). The experimental design was a split plot with the main plots in randomized complete block design (RCBD) and four replicates. The results indicated that increasing nitrogen fertilizer rates resulted in insignificant effect on both plant height (cm) and grain weight/spike only. However, a significant effect was observed in all the other studied characters due to the increase in nitrogen fertilizer. On the other hand, increasing salicylic acid rates resulted in insignificant effect in all the studied characters except for chlorophyll a, chlorophyll b, number of grain/spike, and grain yield (gm/ plot). The highest effects on grain yield in wheat were obtained by the rate of 125 kg/feddan of nitrogen fertilizer and 100 ppm of salicylic acid. In conclusion, the data indicated that a high grain yield could be obtained by adding 100 kg/feddan of nitrogen fertilizer and spraying of 50 ppm of salicylic acid with no significant difference with the highest rates. Finally, the interaction had no significant effect on all the studied characters.Keywords: growth regulator, nitrogen fertilizer, spring wheat, salicylic acid
Procedia PDF Downloads 1174467 Benzoxaboralone: A Boronic Acid with High Oxidative Stability and Utility in Biological Contexts
Authors: Brian J. Graham, Ronald T. Raines
Abstract:
The presence of a nearly vacant p orbital on boron endows boronic acids with unique abilities as a catalyst and ligand. An organocatalytic process has been developed for the conversion of biomass-derived sugars to 5-hydroxymethylfurfural, which is a platform chemical. Specifically, 2-carboxyphenylboronic acid (2-CPBA) has been shown to be an optimal catalyst for this process, promoting the desired transformation in the absence of metals. The attributes of 2-CPBA as a catalyst led to additional investigations of its structure and reactivity. 2-CPBA was found to exist as a cyclized benzoxaborolone adduct rather than a free carboxylic acid. This cyclization has profound consequences for the oxidative stability of the boronic acid. Stereoelectronic effects within the oxaborolone ring destabilize the oxidation transition state by reducing electron donation from the cyclic oxygen to the developing p orbital on boron. That leads to a 10,000-fold increase in oxidative stability while maintaining the normal reactivity of boronic acids toward diols (e.g., carbohydrates) and nucleophiles in proteins while also presenting numerous hydrogen-bond accepting and donating groups. Thus, benzoxaborolones are useful in catalysis, chemical biology, medicinal chemistry, and allied fields.Keywords: bioisosteres, boronic acid, catalysis, oxidative stability, pharmacophore, stereoelectronic effects
Procedia PDF Downloads 1894466 Regulation of Differentiating Intramuscular Stromal Vascular Cells Isolated from Hanwoo Beef Cattle by Retinoic Acid and Calcium
Authors: Seong Gu Hwang, Young Kyoon Oh, Joseph F. dela Cruz
Abstract:
Marbling, or intramuscular fat, has been consistently identified as one of the top beef quality problems. Intramuscular adipocytes distribute throughout the perimysial connective tissue of skeletal muscle and are the major site for the deposition of intramuscular fat, which is essential for the eating quality of meat. The stromal vascular fraction of the skeletal muscle contains progenitor cells that can be enhanced to differentiate to adipocytes and increase intramuscular fat. Primary cultures of bovine intramuscular stromal vascular cells were used in this study to elucidate the effects of extracellular calcium and retinoic acid concentration on adipocyte differentiation. Cell viability assay revealed that even at different concentrations of calcium and retinoic acid, there was no significant difference on cell viability. Monitoring of the adipocyte differentiation showed that bovine intramuscular stromal vascular cells cultured in a low concentration of extracellular calcium and retinoic acid had a better degree of fat accumulation. The mRNA and protein expressions of PPARγ, C/EBPα, SREBP-1c and aP2 were analyzed and showed a significant upregulation upon the reduction in the level of extracellular calcium and retinoic acid. The upregulation of these adipogenic related genes means that the decreasing concentration of calcium and retinoic acid is able to stimulate the adipogenic differentiation of bovine intramuscular stromal vascular cells. To further elucidate the effect of calcium, the expression level of calreticulin was measured. Calreticulin which is known to be an inhibitor of PPARγ was down regulated by the decreased level of calcium and retinoic acid in the culture media. The same tendency was observed on retinoic acid receptors RARα and CRABP-II. These receptors are recognized as adipogenic inhibitors, and the downregulation of their expression allowed a better level of differentiation in bovine intramuscular stromal vascular cells. In conclusion, data show that decreasing the level of extracellular calcium and retinoic acid can significantly promote adipogenesis in intramuscular stromal vascular cells of Hanwoo beef cattle. These findings may provide new insights in enhancing intramuscular adipogenesis and marbling in beef cattle.Keywords: calcium, calreticulin, hanwoo beef, retinoic acid
Procedia PDF Downloads 3054465 Hydrometallurgical Treatment of Abu Ghalaga Ilmenite Ore
Authors: I. A. Ibrahim, T. A. Elbarbary, N. Abdelaty, A. T. Kandil, H. K. Farhan
Abstract:
The present work aims to study the leaching of Abu Ghalaga ilmenite ore by hydrochloric acid and simultaneous reduction by iron powder method to dissolve its titanium and iron contents. Iron content in the produced liquor is separated by solvent extraction using TBP as a solvent. All parameters affecting the efficiency of the dissolution process were separately studied including the acid concentration, solid/liquid ratio which controls the ilmenite/acid molar ratio, temperature, time and grain size. The optimum conditions at which maximum leaching occur are 30% HCl acid with a solid/liquid ratio of 1/30 at 80 °C for 4 h using ore ground to -350 mesh size. At the same time, all parameters affecting on solvent extraction and stripping of iron content from the produced liquor were studied. Results show that the best extraction is at solvent/solution 1/1 by shaking at 240 RPM for 45 minutes at 30 °C whereas best striping of iron at H₂O/solvent 2/1.Keywords: ilmenite ore, leaching, titanium solvent extraction, Abu Ghalaga ilmenite ore
Procedia PDF Downloads 2904464 Conversion of Sweet Sorghum Bagasse to Sugars for Succinic Acid Production
Authors: Enlin Lo, Ioannis Dogaris, George Philippidis
Abstract:
Succinic acid is a compound used for manufacturing lacquers, resins, and other coating chemicals. It is also used in the food and beverage industry as a flavor additive. It is predominantly manufactured from petrochemicals, but it can also be produced by fermentation of sugars from renewable feedstocks, such as plant biomass. Bio-based succinic acid has great potential in becoming a platform chemical (building block) for commodity and high-value chemicals. In this study, the production of bio-based succinic acid from sweet sorghum was investigated. Sweet sorghum has high fermentable sugar content and can be cultivated in a variety of climates. In order to avoid competition with food feedstocks, its non-edible ‘bagasse’ (the fiber part after extracting the juice) was targeted. Initially, various conditions of pretreating sweet sorghum bagasse (SSB) were studied in an effort to remove most of the non-fermentable components and expose the cellulosic fiber containing the fermentable sugars (glucose). Concentrated (83%) phosphoric acid was utilized at temperatures 50-80 oC for 30-60 min at various SSB loadings (10-15%), coupled with enzymatic hydrolysis using commercial cellulase (Ctec2, Novozymes) enzyme, to identify the conditions that lead to the highest glucose yields for subsequent fermentation to succinic acid. As the pretreatment temperature and duration increased, the bagasse color changed from light brown to dark brown-black, indicating decomposition, which ranged from 15% to 72%, while the theoretical glucose yield is 91%. With Minitab software statistical analysis, a model was built to identify the optimal pretreatment condition for maximum glucose released. The projected theoretical bio-based succinic acid production is 23g per 100g of SSB, which will be confirmed with fermentation experiments using the bacterium Actinobacillus succinogenes.Keywords: biomass, cellulose, enzymatic hydrolysis, fermentation, pretreatment, succinic acid
Procedia PDF Downloads 2194463 Development of Nanocomposite from Poly (Lactic Acid) Plasticised Epoxidised Jatropha Oil and Nanocrystalline Cellulose
Authors: Siti Hasnah Kamarudin, Luqman Chuah Abdullah, Min Min Aung, Chantara Thevy Ratnam
Abstract:
The primary objective of this work was to develop fully nanocomposite material based on poly(lactic acid), epoxidized jatropha oil (EJO) and nanocrystalline cellulose. EJO was investigated as a sustainable alternative to petrochemical-based plasticizers to reinforce the ductility and toughness of plastics, in this case, nanocellulose/poly(lactic acid) (PLA). The EJO was melt blended into nanocellulose/PLA at concentrations from 1 wt% to 5 wt%. The blends were then hot-pressed into sheets to characterize their mechanical and physical properties. Microcrystalline cellulose had been converted to nanocrystalline cellulose by acid mercerisation technique and the effects thereof on the composites’ tensile, flexural, and impact properties, as well as their water absorption and density, were studied. The impact strengths of the nanocomposites were improved with the addition of NCC up to 0.5 wt%, with a maximum over 10 times that of the neat PLA. The flexural strength and modulus increased 4% and 50%, respectively, for NCC/PLA plasticized with EJO. This increase demonstrated the nanocrystalline cellulose addition gave notable improvements to the composites’ properties. Furthermore, analysis by scanning electron microscopy (SEM) of the nanocomposites’ tensile fracture surfaces indicated better interaction adhesion of the NCC/PLA plasticized with EJO compared with the PLA/EJO composites.Keywords: nanocrystalline cellulose, nanocomposite, poly (lactic acid), epoxidised jatropha oil
Procedia PDF Downloads 1484462 Underivatized Amino Acid Analyses Using Liquid Chromatography-Tandem Mass Spectrometry in Scalp Hair of Children with Autism Spectrum Disorder
Authors: Ayat Bani Rashaid, Zain Khasawneh, Mazin Alqhazo, Shreen Nusair, Mohammad El-Khateeb, Mahmoud Bashtawi
Abstract:
Autism Spectrum disorder (ASD) is a psychiatric disorder with unknown etiology that mainly affects children in the first three years of life. Alterations of amino acid levels are believed to contribute to ASD. The levels of six essential amino acids (methionine, histidine, valine, leucine, threonine, and phenylalanine), five conditional amino acids (proline, tyrosine, glutamine, cysteine, and cystine), and five non-essential amino acids (asparagine, aspartic acid, alanine, serine, and glutamic acid) in hair samples of children with ASD (n = 25) were analyzed and compared to corresponding levels in healthy age-matched controls (n = 25). The results showed that the levels of methionine, alanine, and asparagine were significantly lower in the hair samples of ASD group compared to those of the control group (p ≤ 0.05). However, the levels of glutamic acid were significantly higher in the ASD group than the control group (p ≤ 0.05). The current findings could contribute towards further understanding of ASD etiology and provide specialists with a hair amino acid profile utilized as a biomarker for early diagnosis of ASD. Such biomarkers could participate in future developments of therapies that reduce ASD-related symptoms.Keywords: autism spectrum disorder, amino acids, liquid chromatography-tandem mass spectrometry, human hair
Procedia PDF Downloads 1374461 The High Temperature Damage of DV–2 Turbine Blade Made from Ni–Base Superalloy
Authors: Juraj Belan, Lenka Hurtalová, Eva Tillová, Alan Vaško, Milan Uhríčik
Abstract:
High-pressure turbine (HPT) blades of DV–2 jet engines are made from Ni–base superalloy, a former Soviet Union production, specified as ŽS6K. For improving its high-temperature resistance are blades covered with Al–Si diffusion layer. A regular operation temperature of HPT blades vary from 705°C to 750°C depending on jet engine regime. An over-crossing working temperature range causes degradation of protective alitize layer as well as base material–gamma matrix and gamma prime particles what decreases turbine blade lifetime. High-temperature degradation has mainly diffusion mechanism and causes coarsening of strengthening phase gamma prime and protective alitize layer thickness growing. All changes have a significant influence on high-temperature properties of base material.Keywords: alitize layer, gamma prime phase, high-temperature degradation, Ni–base superalloy ŽS6K, turbine blade
Procedia PDF Downloads 5334460 Investigation of an Alkanethiol Modified Au Electrode as Sensor for the Antioxidant Activity of Plant Compounds
Authors: Dana A. Thal, Heike Kahlert, Fritz Scholz
Abstract:
Thiol molecules are known to easily form self-assembled monolayers (SAM) on Au surfaces. Depending on the thiol’s structure, surface modifications via SAM can be used for electrode sensor development. In the presented work, 1-decanethiol coated polycrystalline Au electrodes were applied to indirectly assess the radical scavenging potential of plant compounds and extracts. Different plant compounds with reported antioxidant properties as well as an extract from the plant Gynostemma pentaphyllum were tested for their effectiveness to prevent SAM degradation on the sensor electrodes via photolytically generated radicals in aqueous media. The SAM degradation was monitored over time by differential pulse voltammetry (DPV) measurements. The results were compared to established antioxidant assays. The obtained data showed an exposure time and concentration dependent degradation process of the SAM at the electrode’s surfaces. The tested substances differed in their capacity to prevent SAM degradation. Calculated radical scavenging activities of the tested plant compounds were different for different assays. The presented method poses a simple system for radical scavenging evaluation and, considering the importance of the test system in antioxidant activity evaluation, might be taken as a bridging tool between in-vivo and in-vitro antioxidant assay in order to obtain more biologically relevant results in antioxidant research.Keywords: alkanethiol SAM, plant antioxidant, polycrystalline Au, radical scavenger
Procedia PDF Downloads 2984459 Methods for Mitigating Corrosion Caused by Biogenic Sulfuric Acid in Sewerage Systems: State of the Art Review
Authors: M. Cortés, E. Vera, M. Avella
Abstract:
Corrosion is an imminent process in nature, which affects all types of materials. In sewerage systems, the corrosion process caused by microorganisms, also known as biogenic sulfuric acid attack, has been studied. This affects the structural integrity of the concrete drainage pipes and the sewage treatment plants. This article is a review of research which focuses on the study of how to reduce the production of hydrogen sulfide, how to improve the resistance of concrete through the use of additives and the implementation of antimicrobial techniques to reduce bacterial growth.Keywords: bactericides, biogenic sulfuric acid, corrosion, concrete, hydrogen sulphide, nano materials, zeolites
Procedia PDF Downloads 4444458 The Effect of Chelate to RE Ratio on Upconversion Emissions Property of NaYF4: Yb3+ and Tm3+ Nanocrystals
Authors: M. Kaviani Darani, S. Bastani, M. Ghahari, P. Kardar
Abstract:
In this paper the NaYF4: Yb3+, Tm3+ nanocrystals were synthesized by hydrothermal method. Different chelating ligand type (citric acid, butanoic acid, and AOT) was selected to investigate the effect of their concentration on upconversion efficiency. Crystal structure and morphology have been well characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analysis. Photo luminescence were recorded on a spectrophotometer equipped with 980 nm laser diode az excitation source and an integerating sphere. The products with various morphologies range from sphere to cubic, hexagonal,prism and nanorods were prepared at different ratios. The particle size was found to be dependent on the nucleation rate, which, in turn, was affected by type and concentration of ligands. The optimum amount of chelate to RE ratio was obtained 0.75, 1.5, and 1 for Citric Acid, Butanoic Acid and AOT, respectively. Emissions in the UV (1D2-3H6), blue-violet(1D2-3F4), blue (1G4-3H6), red (1G4-3F4), and NIR (1G4-3H5) were observed and were the direct result of subsequent transfers of energy from the Yb3+ ion to the Tm3+ ion.Keywords: upconversion nanoparticles, NaYF4, lanthanide, hydrothermal
Procedia PDF Downloads 2624457 Integrated Two Stage Processing of Biomass Conversion to Hydroxymethylfurfural Esters Using Ionic Liquid as Green Solvent and Catalyst: Synthesis of Mono Esters
Authors: Komal Kumar, Sreedevi Upadhyayula
Abstract:
In this study, a two-stage process was established for the synthesis of HMF esters using ionic liquid acid catalyst. Ionic liquid catalyst with different strength of the Bronsted acidity was prepared in the laboratory and characterized using 1H NMR, FT-IR, and 13C NMR spectroscopy. Solid acid catalyst from the ionic liquid catalyst was prepared using the immobilization method. The acidity of the synthesized acid catalyst was measured using Hammett function and titration method. Catalytic performance was evaluated for the biomass conversion to 5-hydroxymethylfurfural (5-HMF) and levulinic acid (LA) in methyl isobutyl ketone (MIBK)-water biphasic system. A good yield of 5-HMF and LA was found at the different composition of MIBK: Water. In the case of MIBK: Water ratio 10:1, good yield of 5-HMF was observed at ambient temperature 150˚C. Upgrading of 5-HMF into monoesters from the reaction of 5-HMF and reactants using biomass-derived monoacid were performed. Ionic liquid catalyst with -SO₃H functional group was found to be best efficient in comparative of a solid acid catalyst for the esterification reaction and biomass conversion. A good yield of 5-HMF esters with high 5-HMF conversion was found to be at 105˚C using the best active catalyst. In this process, process A was the hydrothermal conversion of cellulose and monomer into 5-HMF and LA using acid catalyst. And the process B was the esterification followed by using similar acid catalyst. All monoesters of 5-HMF synthesized here can be used in chemical, cross linker for adhesive or coatings and pharmaceutical industry. A theoretical density functional theory (DFT) study for the optimization of the ionic liquid structure was performed using the Gaussian 09 program to find out the minimum energy configuration of ionic liquid catalyst.Keywords: biomass conversion, 5-HMF, Ionic liquid, HMF ester
Procedia PDF Downloads 2514456 Natural Dyeing on Wool Fabrics Using Some Red Rose Petals
Authors: Emrah Çimen, Mustafa Demirelli, Burcu Yilmaz Şahinbaşkan, Mahmure Üstün Özgür
Abstract:
Natural colours are used on a large area such as textile, food and pharmaceutical industries by many researchers. When tannic acid is used together with metal salts for dyeing with natural dyes, antibacterial and fastness properties of textile materials are increased. In addition, the allegens are removed on wool fabrics. In this experimental work, some red rose petals were applied as a natural dye with three different dyeing methods and eight different mordant salts. The effect of tannic acid and different metal salts on dyeing of wool fabric was studied. Colour differences ΔECMC (2:1) and fastness properties of dyed fabrics were investigated and compared with each other. Finally, dark colours and adequate colour fastness results (4+) were obtained after dyeing of wool fabrics with FeSO4.7H2O, FeCl3.6H2O and CuCl2.2H2O in the presence of the tannic acid.Keywords: natural dye, red rose petals, tannic acid, mordant salts, wool fabric
Procedia PDF Downloads 6304455 Ferulic Acid-Grafted Chitosan: Thermal Stability and Feasibility as an Antioxidant for Active Biodegradable Packaging Film
Authors: Sarekha Woranuch, Rangrong Yoksan
Abstract:
Active packaging has been developed based on the incorporation of certain additives, in particular antimicrobial and antioxidant agents, into packaging systems to maintain or extend product quality and shelf-life. Ferulic acid is one of the most effective natural phenolic antioxidants, which has been used in food, pharmaceutical and active packaging film applications. However, most phenolic compounds are sensitive to oxygen, light and heat; its activities are thus lost during product formulation and processing. Grafting ferulic acid onto polymer is an alternative to reduce its loss under thermal processes. Therefore, the objectives of the present research were to study the thermal stability of ferulic acid after grafting onto chitosan, and to investigate the possibility of using ferulic acid-grafted chitosan (FA-g-CTS) as an antioxidant for active biodegradable packaging film. FA-g-CTS was incorporated into biodegradable film via a two-step process, i.e. compounding extrusion at temperature up to 150 °C followed by blown film extrusion at temperature up to 175 °C. Although incorporating FA-g-CTS with a content of 0.02–0.16% (w/w) caused decreased water vapor barrier property and reduced extensibility, the films showed improved oxygen barrier property and antioxidant activity. Radical scavenging activity and reducing power of the film containing FA-g-CTS with a content of 0.04% (w/w) were higher than that of the naked film about 254% and 94%, respectively. Tensile strength and rigidity of the films were not significantly affected by adding FA-g-CTS with a content of 0.02–0.08% (w/w). The results indicated that FA-g-CTS could be potentially used as an antioxidant for active packaging film.Keywords: active packaging film, antioxidant activity, chitosan, ferulic acid
Procedia PDF Downloads 5034454 Solar Photocatalysis of Methyl Orange Using Multi-Ion Doped TiO2 Catalysts
Authors: Victor R. Thulari, John Akach, Haleden Chiririwa, Aoyi Ochieng
Abstract:
Solar-light activated titanium dioxide photocatalysts were prepared by hydrolysis of titanium (IV) isopropoxide with thiourea, followed by calcinations at 450 °C. The experiments demonstrated that methyl orange in aqueous solutions were successfully degraded under solar light using doped TiO2. The photocatalytic oxidation of a mono azo methyl-orange dye has been investigated in multi ion doped TiO2 and solar light. Solutions were irradiated by solar-light until high removal was achieved. It was found that there was no degradation of methyl orange in the dark and in the absence of TiO2. Varieties of laboratory prepared TiO2 catalysts both un-doped and doped using titanium (IV) isopropoxide and thiourea as a dopant were tested in order to compare their photoreactivity. As a result, it was found that the efficiency of the process strongly depends on the working conditions. The highest degradation rate of methyl orange was obtained at optimum dosage using commercially produced TiO2. Our work focused on laboratory synthesized catalyst and the maximum methyl orange removal was achieved at 81% with catalyst loading of 0.04 g/L, initial pH of 3 and methyl orange concentration of 0.005 g/L using multi-ion doped catalyst. The kinetics of photocatalytic methyl orange dye stuff degradation was found to follow a pseudo-first-order rate law. The presence of the multi-ion dopant (thiourea) enhanced the photoefficiency of the titanium dioxide catalyst.Keywords: degradation, kinetics, methyl orange, photocatalysis
Procedia PDF Downloads 3354453 Revealing Thermal Degradation Characteristics of Distinctive Oligo-and Polisaccharides of Prebiotic Relevance
Authors: Attila Kiss, Erzsébet Némedi, Zoltán Naár
Abstract:
As natural prebiotic (non-digestible) carbohydrates stimulate the growth of colon microflora and contribute to maintain the health of the host, analytical studies aiming at revealing the chemical behavior of these beneficial food components came to the forefront of interest. Food processing (especially baking) may lead to a significant conversion of the parent compounds, hence it is of utmost importance to characterize the transformation patterns and the plausible decomposition products formed by thermal degradation. The relevance of this work is confirmed by the wide-spread use of these carbohydrates (fructo-oligosaccharides, cyclodextrins, raffinose and resistant starch) in the food industry. More and more functional foodstuffs are being developed based on prebiotics as bioactive components. 12 different types of oligosaccharides have been investigated in order to reveal their thermal degradation characteristics. Different carbohydrate derivatives (D-fructose and D-glucose oligomers and polymers) have been exposed to elevated temperatures (150 °C 170 °C, 190 °C, 210 °C, and 220 °C) for 10 min. An advanced HPLC method was developed and used to identify the decomposition products of carbohydrates formed as a consequence of thermal treatment. Gradient elution was applied with binary solvent elution (acetonitrile, water) through amine based carbohydrate column. Evaporative light scattering (ELS) proved to be suitable for the reliable detection of the UV/VIS inactive carbohydrate degradation products. These experimental conditions and applied advanced techniques made it possible to survey all the formed intermediers. Change in oligomer distribution was established in cases of all studied prebiotics throughout the thermal treatments. The obtained results indicate increased extent of chain degradation of the carbohydrate moiety at elevated temperatures. Prevalence of oligomers with shorter chain length and even the formation of monomer sugars (D-glucose and D-fructose) might be observed at higher temperatures. Unique oligomer distributions, which have not been described previously are revealed in the case of each studied, specific carbohydrate, which might result in various prebiotic activities. Resistant starches exhibited high stability when being thermal treated. The degradation process has been modeled by a plausible reaction mechanism, in which proton catalyzed degradation and chain cleavage take place.Keywords: prebiotics, thermal degradation, fructo-oligosaccharide, HPLC, ELS detection
Procedia PDF Downloads 3054452 Economic Evaluation of Degradation by Corrosion of an On-Grid Battery Energy Storage System: A Case Study in Algeria Territory
Authors: Fouzia Brihmat
Abstract:
Economic planning models, which are used to build microgrids and distributed energy resources, are the current norm for expressing such confidence (DER). These models often decide both short-term DER dispatch and long-term DER investments. This research investigates the most cost-effective hybrid (photovoltaic-diesel) renewable energy system (HRES) based on Total Net Present Cost (TNPC) in an Algerian Saharan area, which has a high potential for solar irradiation and has a production capacity of 1GW/h. Lead-acid batteries have been around much longer and are easier to understand, but have limited storage capacity. Lithium-ion batteries last longer, are lighter, but generally more expensive. By combining the advantages of each chemistry, we produce cost-effective high-capacity battery banks that operate solely on AC coupling. The financial implications of this research describe the corrosion process that occurs at the interface between the active material and grid material of the positive plate of a lead-acid battery. The best cost study for the HRES is completed with the assistance of the HOMER Pro MATLAB Link. Additionally, during the course of the project's 20 years, the system is simulated for each time step. In this model, which takes into consideration decline in solar efficiency, changes in battery storage levels over time, and rises in fuel prices above the rate of inflation. The trade-off is that the model is more accurate, but it took longer to compute. As a consequence, the model is more precise, but the computation takes longer. We initially utilized the Optimizer to run the model without MultiYear in order to discover the best system architecture. The optimal system for the single-year scenario is the Danvest generator, which has 760 kW, 200 kWh of the necessary quantity of lead-acid storage, and a somewhat lower COE of $0.309/kWh. Different scenarios that account for fluctuations in the gasified biomass generator's production of electricity have been simulated, and various strategies to guarantee the balance between generation and consumption have been investigated. The technological optimization of the same system has been finished and is being reviewed in a recent paper study.Keywords: battery, corrosion, diesel, economic planning optimization, hybrid energy system, lead-acid battery, multi-year planning, microgrid, price forecast, PV, total net present cost
Procedia PDF Downloads 884451 L-Carnitine vs Extracorporeal Elimination for Acute Valproic Acid Intoxication: A Systemic Review
Authors: Byung Keun Yang, Jae Eun Ku, Young Seon Joo, Je Sung You, Sung Phil Chung, Hahn Shick Lee
Abstract:
The purpose of this study is to review the evidence comparing the efficacy and safety between L-carnitine and extracorporeal elimination therapy in the management of acute valproic acid L-carnitine vs Extracorporeal Elimination for Acute Valproic acid Intoxication. PubMed, Embase, Cochrane library, Web of Science, KoreaMed, KMbase, and KISS were searched, using the terms carnitine and valproic acid. All studies, regardless of design, reporting efficacy or safety endpoints were included. Reference citations from identified publications were reviewed. Both English and Korean languages were included. Two authors extracted primary data elements including poisoning severity, presenting features, clinical management, and outcomes. Thirty two articles including 33 cases were identified. Poisoning severity was classified as 3 mild, 11 moderate, and 19 severe cases. Nine cases were treated with L-carnitine while 24 cases received extracorporeal therapy without L-carnitine. All patients except one expired patient treated with hemodialysis recovered clinically and no adverse effects were noted. A case report comparing two patients who ingested the same amount of valproic acid showed increased ICU stay (3 vs. 11 days) in case of delayed extracorporeal therapy. Published evidence comparing L-carnitine with extracorporeal therapy is limited. Based on the available evidence, it is reasonable to consider L-carnitine for patients with acute valproic acid overdose. In case of severe poisoning, extracorporeal therapy would also be considered in the early phase of treatment.Keywords: carnitine, overdose, poisoning, renal dialysis, valproic acid
Procedia PDF Downloads 3654450 Rapid Method for the Determination of Acid Dyes by Capillary Electrophoresis
Authors: Can Hu, Huixia Shi, Hongcheng Mei, Jun Zhu, Hongling Guo
Abstract:
Textile fibers are important trace evidence and frequently encountered in criminal investigations. A significant aspect of fiber evidence examination is the determination of fiber dyes. Although several instrumental methods have been developed for dyes detection, the analysis speed is not fast enough yet. A rapid dye analysis method is still needed to further improve the efficiency of case handling. Capillary electrophoresis has the advantages of high separation speed and high separation efficiency and is an ideal method for the rapid analysis of fiber dyes. In this paper, acid dyes used for protein fiber dyeing were determined by a developed short-end injection capillary electrophoresis technique. Five acid red dyes with similar structures were successfully baseline separated within 5 min. The separation reproducibility is fairly good for the relative standard deviation of retention time is 0.51%. The established method is rapid and accurate which has great potential to be applied in forensic setting.Keywords: acid dyes, capillary electrophoresis, fiber evidence, rapid determination
Procedia PDF Downloads 1444449 TiO₂ Deactivation Process during Photocatalytic Ethanol Degradation in the Gas Phase
Authors: W. El-Alami, J. Araña, O. González Díaz, J. M. Doña Rodríguez
Abstract:
The efficiency of the semiconductor TiO₂ needs to be improved to be an effective tool for pollutant removal. To improve the efficiency of this semiconductor, it is necessary to deepen the knowledge of the processes that take place on its surface. In this sense, the deactivation of the catalyst is one of the aspects considered relevant. In order to study this point, the processes of deactivation of TiO₂ during the gas phase degradation of ethanol have been studied. For this, catalysts with only the anatase phase (SA and PC100) and catalysts with anatase and rutile phases (P25 and P90) have been selected. In order to force the deactivation processes, different cycles have been performed, adding ethanol gas but avoiding the degradation of acetates to determine their effect on the process. The surface concentration of fluorine on the catalysts was semi-quantitatively determined by EDAX analysis. The photocatalytic experiments were done with four commercial catalysts (P25, SA, P90, and PC100) and the two fluoride catalysts indicated above. The interaction and photocatalytic degradation of ethanol were followed by Fourier transform infrared spectroscopy (FTIR). EDAX analysis has revealed the presence of sodium on the surface of fluorinated catalysts. In FTIR studies, it has been observed that the acetates adsorbed on the anatase phase in P25 and P90 give rise to electron transfer to surface traps that modify the electronic states of the semiconductor. These deactivation studies have also been carried out with fluorinated P25 and SA catalysts (F-P25 and F-SA) which have observed similar electron transfers but in the opposite direction during illumination. In these materials, it has been observed that the electrons present in the surface traps, as a consequence of the interaction Ti-F, react with the holes, causing a change in the electronic states of the semiconductor. In this way, deactivated states of these materials have been detected by different electron transfer routes. It has been identified that acetates produced from the degradation of ethanol in P25 and P90 are probably hydrated on the surface of the rutile phase. In the catalysts with only the anatase phase (SA and PC100), the deactivation is immediate if the acetates are not removed before adsorbing ethanol again. In F-P25 and F-SA has been observed that the acetates formed react with the sodium ions present on the surface and not with the Ti atoms because they are interacting with the fluorine.Keywords: photocatalytic degradation, ethanol, TiO₂, deactivation process, F-P25
Procedia PDF Downloads 744448 Poly(Methyl Methacrylate) Degradation Products and Its in vitro Cytotoxicity Evaluation in NIH3T3 Cells
Authors: Lesly Y Carmona-Sarabia, Luisa Barraza-Vergara, Vilmalí López-Mejías, Wandaliz Torres-García, Maribella Domenech-Garcia, Madeline Torres-Lugo
Abstract:
Biosensors are used in many applications providing real-time monitoring to treat long-term conditions. Thus, understanding the physicochemical properties and biological side effects on the skin of polymers (e. g., poly(methyl methacrylate), PMMA) employed in the fabrication of wearable biosensors is crucial for the selection of manufacturing materials within this field. The PMMA (hydrophobic and thermoplastic polymer) is commonly employed as a coating material or substrate in the fabrication of wearable devices. The cytotoxicityof PMMA (including residual monomers or degradation products) on the skin, in terms of cells and tissue, is required to prevent possible adverse effects (cell death, skin reactions, sensitization) on human health. Within this work, accelerated aging of PMMA (Mw ~ 15000) through thermal and photochemical degradation was under-taken. The accelerated aging of PMMA was carried out by thermal (200°C, 1h) and photochemical degradation (UV-Vis, 8-15d) adapted employing ISO protocols (ISO-10993-12, ISO-4892-1:2016, ISO-877-1:2009, ISO-188: 2011). In addition, in vitro cytotoxicity evaluation of PMMA degradation products was performed using NIH3T3 fibroblast cells to assess the response of skin tissues (in terms of cell viability) exposed with polymers utilized to manufacture wearable biosensors, such as PMMA. The PMMA (Mw ~ 15000) before and after accelerated aging experiments was characterized by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), powder X-ray diffractogram (PXRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) to determine and verify the successful degradation of this polymer under the specific conditions previously mention. The degradation products were characterized through nuclear magnetic resonance (NMR) to identify possible byproducts generated after the accelerated aging. Results demonstrated a percentage (%) weight loss between 1.5-2.2% (TGA thermographs) for PMMA after accelerated aging. The EDS elemental analysis reveals a 1.32 wt.% loss of carbon for PMMA after thermal degradation. These results might be associated with the amount (%) of PMMA degrade after the accelerated aging experiments. Furthermore, from the thermal degradation products was detected the presence of the monomer and methyl formate (low concentrations) and a low molecular weight radical (·COOCH3) in higher concentrations by NMR. In the photodegradation products, methyl formate was detected in higher concentrations. These results agree with the proposed thermal or photochemical degradation mechanisms found in the literature.1,2 Finally, significant cytotoxicity on the NIH3T3 cells was obtained for the thermal and photochemical degradation products. A decrease in cell viability by > 90% (stock solutions) was observed. It is proposed that the presence of byproducts (e.g. methyl formate or radicals such as ·COOCH₃) from the PMMA degradation might be responsible for the cytotoxicity observed in the NIH3T3 fibroblast cells. Additionally, experiments using skin models will be employed to compare with the NIH3T3 fibroblast cells model.Keywords: biosensors, polymer, skin irritation, degradation products, cell viability
Procedia PDF Downloads 1394447 Pathology of Explanted Transvaginal Meshes
Authors: Vladimir V. Iakovlev, Erin T. Carey, John Steege
Abstract:
The use of polypropylene mesh devices for Pelvic Organ Prolapse (POP) spread rapidly during the last decade, yet our knowledge of the mesh-tissue interaction is far from complete. We aimed to perform a thorough pathological examination of explanted POP meshes and describe findings that may explain mechanisms of complications resulting in product excision. We report a spectrum of important findings, including nerve ingrowth, mesh deformation, involvement of detrusor muscle with neural ganglia, and polypropylene degradation. Analysis of these findings may improve and guide future treatment strategies.Keywords: transvaginal, mesh, nerves, polypropylene degradation
Procedia PDF Downloads 4014446 Removal of Phenol from Aqueous Solutions by Ferrite Catalysts
Authors: Bayan Alqasem, Israa Othman, Mohammad Abu Haija, Fawzi Banat
Abstract:
The large-scale production of wastewater containing highly toxic pollutants made it necessary to find efficient water treatment technologies. Phenolic compounds, which are known to be persistent and hazardous, are highly presented in wastewater. In this study, different ferrite catalysts CrFe₂O₄, CuFe₂O₄, MgFe₂O₄, MnFe₂O₄, NiFe₂O₄, and ZnFe₂O₄ were employed to study the catalytic degradation of phenol aqueous solutions. The catalysts were prepared via sol-gel and co-precipitation methods. All of the prepared catalysts were characterized using infrared spectroscopy (IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The ferrites catalytic activities were tested towards phenol degradation using high-performance liquid chromatography (HPLC). The photocatalytic properties of the ferrites were also investigated. The experimental results suggested that CuFe₂O₄ is an effective catalyst for the removal of phenol from wastewater. Additionally, different CuFe₂O₄composites were also prepared either by varying the metal ratios or incorporating chemically reduced graphene oxide in the ferrite cluster.Keywords: phenol degradation, ferrite catalysts, ferrite composites, photocatalysis
Procedia PDF Downloads 2074445 Spectroscopic Determination of Functionalized Active Principles from Coleus aromaticus Benth Leaf Extract Using Ionic Liquids
Authors: Zharama M. Llarena
Abstract:
Green chemistry for plant extraction of active principles is the main interest of many researchers concerned with climate change. While classical organic solvents are detrimental to our environment, greener alternatives to ionic liquids are very promising for sustainable organic chemistry. This study focused on the determination of functional groups observed in the main constituents from the ionic liquid extracts of Coleus aromaticus Benth leaves using FT-IR Spectroscopy. Moreover, this research aimed to determine the best ionic liquid that can separate functionalized plant constituents from the leaves Coleus aromaticus Benth using Fourier Transform Infrared Spectroscopy. Coleus aromaticus Benth leaf extract in different ionic liquids, elucidated pharmacologically important functional groups present in major constituents of the plant, namely, rosmarinic acid, caffeic acid and chlorogenic acid. In connection to distinctive appearance of functional groups in the spectrum and highest % transmittance, potassium chloride-glycerol is the best ionic liquid for green extraction.Keywords: chlorogenic acid, coleus aromaticus, ionic liquid, rosmarinic acid
Procedia PDF Downloads 3184444 Improving the Feeding Value of Straws with Pleurotus Ostreatus
Authors: S. Hussain, N. Ahmad, S. Alam, M. Bezabhi, W. H. Hendriks, P. Yu, J. W. Cone
Abstract:
The high content of lignin in cell walls is the major limiting factor in the digestion and utilisation of cereal crop residues by ruminants. The aim of this study was to evaluate the effectiveness of the white rot fungus, Pleurotus ostreatus (P. ostreatus), to degrade lignin and to enhance the rumen degradability of maize stover, rice straw, wheat straw and their mixture in equal proportion on a dry-matter (DM) basis. Four samples of each substrate were incubated aerobically in triplicate with P. ostreatus for 0 (Control), 21, 28 and 35 days under solid-state conditions (temperature, 24 ͦ C; humidity, 70± 5%). The changes in chemical composition, DM and nutrient losses, and rumen fermentation characteristics using in vitro DM digestibility (DMD) and the in vitro gas production (GP) technique were measured. The results showed that incubation with P. ostreatus decreased (P < 0.001) the contents of neutral detergent fibre and lignin with a concomitant increase (P < 0.001) in the contents of ash and crude protein. The losses of nutrients differed (P < 0.001) among the straw types, with rice straw and maize stover showing the largest (P < 0.05) lignin degradation compared to wheat and mixed straws. The DMD and 72-h cumulative GP increased (P < 0.001) consistently with increasing fungal incubation period and for all substrates the highest values of DMD and GP were measured after 35 days of incubation with P. ostreatus. The lignin degradation was strongly associated with hemicellulose degradation (r = 0.71) across the various straws. Results of the present study demonstrated that incubation of low-quality crop residues with P. ostreatus under solid-state conditions upgrades their feeding value by reducing the content of lignin and increasing the content of crude protein and ruminal degradation.Keywords: crop residues, lignin degradation, maize stovers, wheat straws, white rot fungi
Procedia PDF Downloads 624443 Lactic Acid, Citric Acid, and Potassium Bitartrate Non-Hormonal Prescription Vaginal PH Modulator Gel for the Prevention of Pregnancy
Authors: Shanna Su, Kathleen Vincent
Abstract:
Introduction: A non-hormonal prescription vaginal pH modulator (VPM) gel (Phexxi®), with active ingredients lactic acid, citric acid, and potassium bitartrate, has recently been approved for the prevention of pregnancy in the United States. The objective of this review is to compile the evidence available from published preclinical and clinical trials to support its use. Areas covered: PubMed was searched for published literature on VPM gel. Two Phase III trials were found on the clinicaltrials.gov database. The results demonstrated that VPM gel is safe, with minimal side effects, and effective (cumulative 6-7 cycle pregnancy rate of 4.1-13.65%, (Pearl Index 27.5) as a contraceptive. Microbicidal effects suggest the potential for the prevention of sexually transmitted infections (STIs); currently, a Phase III clinical trial is being conducted to evaluate the prevention of chlamydia and gonorrhea. Expert opinion: Non-hormonal reversible contraceptive options have been limited to the highly effective copper-releasing intrauterine device that requires insertion by a trained clinician and less effective coitally-associated barrier and spermicide options which are typically available over-the-counter. Spermicides, which improve the efficacy of barrier devices, may increase the risk of Human Immunodeficiency Virus (HIV)/STIs. VPM gel provides a new safe, effective non-hormonal contraceptive option with the potential for prevention of STIs.Keywords: citric acid, lactic acid, non-hormonal contraception, potassium bitartrate, topical vaginal contraceptive, vaginal pH modulator gel
Procedia PDF Downloads 1004442 Effects of Indole on Aerobic Biodegradation of Butanoic Acid by Pseudomonas aeruginosa and Serratia marcescens
Authors: J. B. J. Njalam’mano, E. M. N. Chirwa
Abstract:
In low resource settings in Africa and other developing regions, pit latrines remain the dominant basic minimum acceptable form of sanitation. However, unpleasant smells-malodours emitted from faecal sludge in the pit latrines, which elicit disgusting or repulsive response, are one of the factors that thwart people to use latrines and instead opt for open defecation as an alternative. This provides an important but often overlooked major impediment, dissuading people from adopting and using the pit latrines hence affecting successful, effective sanitation promotion. The malodours are primarily attributed to four odorants: butanoic acid (C₄H₈O₂), dimethyl trisulphide (C₂H₆S₃), indole (C₈H₇N) and para-cresol (C₇H₈O). Several pit latrine deodorisation methods such as addition of carbonous materials, use of ventilation systems and urine separation are available, and they continue to occupy their niche, but social, economic, environmental and technological shortfalls remain. Bioremediation has been gaining popularity because it is inexpensive, simple to operate and environmentally friendly. Recently, the biodegradation of butanoic acid as individual odorant has been studied. However, to the best of our knowledge, there have been no kinetic studies of the butanoic acid in the presence of other key odorous compounds. In this study, a series of experiments were conducted to investigate the effects of indole on the removal of butanoic acid under aerobic conditions using indigenous bacteria strains, Pseudomonas aeruginosa, and Serratia marcescens isolated from faecal sludge as pure cultures as well as mixed cultures. In this purpose, butanoic acid removal was performed in a batch reactor containing the bacterial strains in mineral salt medium (MSM) amended with 3000 ppm of butanoic acid at the temperature of 30°C, under continuous stirring rate of 150 rpm and the concentration of indole was varied from 50-200 ppm. The initial pH of the solution was in the range of 6.0-7.2. Overall, there were significant differences in the bacterial growth rate and total butanoic acid removal dependent on the concentration of indole in the solution.Keywords: biodegradation, butanoic acid, indole, pit latrine
Procedia PDF Downloads 1954441 Thermo-Physical Properties and Solubility of CO2 in Piperazine Activated Aqueous Solutions of β-Alanine
Authors: Ghulam Murshid
Abstract:
Carbon dioxide is one of the major greenhouse gas (GHG) contributors. It is an obligation of the industry to reduce the amount of carbon dioxide emission to the acceptable limits. Tremendous research and studies are reported in the past and still the quest to find the suitable and economical solution of this problem needed to be explored in order to develop the most plausible absorber for carbon dioxide removal. Amino acids are reported by the researchers as a potential solvent for absorption of carbon dioxide to replace alkanolamines due to its ability to resist oxidative degradation, low volatility due to its ionic structure and higher surface tension. In addition, the introduction of promoter-like piperazine to amino acid helps to further enhance the solubility. In this work, the effect of piperazine on thermophysical properties and solubility of β-Alanine aqueous solutions were studied for various concentrations. The measured physicochemical properties data was correlated as a function of temperature using least-squares method and the correlation parameters are reported together with it respective standard deviations. The effect of activator piperazine on the CO2 loading performance of selected amino acid under high-pressure conditions (1bar to 10bar) at temperature range of (30 to 60)oC was also studied. Solubility of CO2 decreases with increasing temperature and increases with increasing pressure. Quadratic representation of solubility using Response Surface Methodology (RSM) shows that the most important parameter to optimize solubility is system pressure. The addition of promoter increases the solubility effect of the solvent.Keywords: amino acids, co2, global warming, solubility
Procedia PDF Downloads 414