Search results for: delayed diagnosis
1955 Evaluation of Classification Algorithms for Diagnosis of Asthma in Iranian Patients
Authors: Taha SamadSoltani, Peyman Rezaei Hachesu, Marjan GhaziSaeedi, Maryam Zolnoori
Abstract:
Introduction: Data mining defined as a process to find patterns and relationships along data in the database to build predictive models. Application of data mining extended in vast sectors such as the healthcare services. Medical data mining aims to solve real-world problems in the diagnosis and treatment of diseases. This method applies various techniques and algorithms which have different accuracy and precision. The purpose of this study was to apply knowledge discovery and data mining techniques for the diagnosis of asthma based on patient symptoms and history. Method: Data mining includes several steps and decisions should be made by the user which starts by creation of an understanding of the scope and application of previous knowledge in this area and identifying KD process from the point of view of the stakeholders and finished by acting on discovered knowledge using knowledge conducting, integrating knowledge with other systems and knowledge documenting and reporting.in this study a stepwise methodology followed to achieve a logical outcome. Results: Sensitivity, Specifity and Accuracy of KNN, SVM, Naïve bayes, NN, Classification tree and CN2 algorithms and related similar studies was evaluated and ROC curves were plotted to show the performance of the system. Conclusion: The results show that we can accurately diagnose asthma, approximately ninety percent, based on the demographical and clinical data. The study also showed that the methods based on pattern discovery and data mining have a higher sensitivity compared to expert and knowledge-based systems. On the other hand, medical guidelines and evidence-based medicine should be base of diagnostics methods, therefore recommended to machine learning algorithms used in combination with knowledge-based algorithms.Keywords: asthma, datamining, classification, machine learning
Procedia PDF Downloads 4461954 Hybridization of Manually Extracted and Convolutional Features for Classification of Chest X-Ray of COVID-19
Authors: M. Bilal Ishfaq, Adnan N. Qureshi
Abstract:
COVID-19 is the most infectious disease these days, it was first reported in Wuhan, the capital city of Hubei in China then it spread rapidly throughout the whole world. Later on 11 March 2020, the World Health Organisation (WHO) declared it a pandemic. Since COVID-19 is highly contagious, it has affected approximately 219M people worldwide and caused 4.55M deaths. It has brought the importance of accurate diagnosis of respiratory diseases such as pneumonia and COVID-19 to the forefront. In this paper, we propose a hybrid approach for the automated detection of COVID-19 using medical imaging. We have presented the hybridization of manually extracted and convolutional features. Our approach combines Haralick texture features and convolutional features extracted from chest X-rays and CT scans. We also employ a minimum redundancy maximum relevance (MRMR) feature selection algorithm to reduce computational complexity and enhance classification performance. The proposed model is evaluated on four publicly available datasets, including Chest X-ray Pneumonia, COVID-19 Pneumonia, COVID-19 CTMaster, and VinBig data. The results demonstrate high accuracy and effectiveness, with 0.9925 on the Chest X-ray pneumonia dataset, 0.9895 on the COVID-19, Pneumonia and Normal Chest X-ray dataset, 0.9806 on the Covid CTMaster dataset, and 0.9398 on the VinBig dataset. We further evaluate the effectiveness of the proposed model using ROC curves, where the AUC for the best-performing model reaches 0.96. Our proposed model provides a promising tool for the early detection and accurate diagnosis of COVID-19, which can assist healthcare professionals in making informed treatment decisions and improving patient outcomes. The results of the proposed model are quite plausible and the system can be deployed in a clinical or research setting to assist in the diagnosis of COVID-19.Keywords: COVID-19, feature engineering, artificial neural networks, radiology images
Procedia PDF Downloads 751953 Preventive Maintenance of Rotating Machinery Based on Vibration Diagnosis of Rolling Bearing
Authors: T. Bensana, S. Mekhilef
Abstract:
The methodology of vibration based condition monitoring technology has been developing at a rapid stage in the recent years suiting to the maintenance of sophisticated and complicated machines. The ability of wavelet analysis to efficiently detect non-stationary, non-periodic, transient features of the vibration signal makes it a demanding tool for condition monitoring. This paper presents a methodology for fault diagnosis of rolling element bearings based on wavelet envelope power spectrum technique is analysed in both the time and frequency domains. In the time domain the auto-correlation of the wavelet de-noised signal is applied to evaluate the period of the fault pulses. However, in the frequency domain the wavelet envelope power spectrum has been used to identify the fault frequencies with the single sided complex Laplace wavelet as the mother wavelet function. Results show the superiority of the proposed method and its effectiveness in extracting fault features from the raw vibration signal.Keywords: preventive maintenance, fault diagnostics, rolling element bearings, wavelet de-noising
Procedia PDF Downloads 3771952 Hypotonia - A Concerning Issue in Neonatal Care
Authors: Eda Jazexhiu-Postoli, Gladiola Hoxha, Ada Simeoni, Sonila Biba
Abstract:
Background Neonatal hypotonia represents a commonly encountered issue in the Neonatal Intensive Care Unit and newborn nursery. The differential diagnosis is broad, encompassing chromosome abnormalities, primary muscular dystrophies, neuropathies and inborn errors of metabolism. Aim of study Our study describes some of the main clinical features of hypotonia in newborns and presents clinical cases of neonatal hypotonia we treated in our Neonatal unit in the last 3 years. Case reports Four neonates born in our hospital presented with hypotonia after birth, one preterm newborn 35-36 weeks of gestational age and three other term newborns (38-39 weeks of gestational age). Prenatal data revealed a decrease in fetal movements in both cases. Intrapartum meconium-stained amniotic fluid was found in 75% of our hypotonic newborns. Clinical features included inability to establish effective respiratory movements and need for resuscitation in the delivery room, respiratory distress syndrome, feeding difficulties and need for oro-gastric tube feeding, dysmorphic features, hoarse voice and moderate to severe muscular hypotonia. The genetic workup revealed the diagnosis of Autosomal Recessive Congenital Myasthenic Syndrome 1-B, Sotos Syndrome, Spinal Muscular Atrophy Type 1 and Transient Hypotonia of the Newborn. Two out of four hypotonic neonates were transferred to the Pediatric Intensive Care Unit and died at the age of three to five months old. Conclusion Hypotonia is a concerning finding in neonatal care and it is suggested by decreased intrauterine fetal movements, failure to establish first breaths, respiratory distress and feeding difficulties in the neonate. Prognosis is determined by its etiology and time of diagnosis and intervention.Keywords: hypotonic neonate, respiratory distress, feeding difficulties, fetal movements
Procedia PDF Downloads 1131951 Communication of Expected Survival Time to Cancer Patients: How It Is Done and How It Should Be Done
Authors: Geir Kirkebøen
Abstract:
Most patients with serious diagnoses want to know their prognosis, in particular their expected survival time. As part of the informed consent process, physicians are legally obligated to communicate such information to patients. However, there is no established (evidence based) ‘best practice’ for how to do this. The two questions explored in this study are: How do physicians communicate expected survival time to patients, and how should it be done? We explored the first, descriptive question in a study with Norwegian oncologists as participants. The study had a scenario and a survey part. In the scenario part, the doctors should imagine that a patient, recently diagnosed with a serious cancer diagnosis, has asked them: ‘How long can I expect to live with such a diagnosis? I want an honest answer from you!’ The doctors should assume that the diagnosis is certain, and that from an extensive recent study they had optimal statistical knowledge, described in detail as a right-skewed survival curve, about how long such patients with this kind of diagnosis could be expected to live. The main finding was that very few of the oncologists would explain to the patient the variation in survival time as described by the survival curve. The majority would not give the patient an answer at all. Of those who gave an answer, the typical answer was that survival time varies a lot, that it is hard to say in a specific case, that we will come back to it later etc. The survey part of the study clearly indicates that the main reason why the oncologists would not deliver the mortality prognosis was discomfort with its uncertainty. The scenario part of the study confirmed this finding. The majority of the oncologists explicitly used the uncertainty, the variation in survival time, as a reason to not give the patient an answer. Many studies show that patients want realistic information about their mortality prognosis, and that they should be given hope. The question then is how to communicate the uncertainty of the prognosis in a realistic and optimistic – hopeful – way. Based on psychological research, our hypothesis is that the best way to do this is by explicitly describing the variation in survival time, the (usually) right skewed survival curve of the prognosis, and emphasize to the patient the (small) possibility of being a ‘lucky outlier’. We tested this hypothesis in two scenario studies with lay people as participants. The data clearly show that people prefer to receive expected survival time as a median value together with explicit information about the survival curve’s right skewedness (e.g., concrete examples of ‘positive outliers’), and that communicating expected survival time this way not only provides people with hope, but also gives them a more realistic understanding compared with the typical way expected survival time is communicated. Our data indicate that it is not the existence of the uncertainty regarding the mortality prognosis that is the problem for patients, but how this uncertainty is, or is not, communicated and explained.Keywords: cancer patients, decision psychology, doctor-patient communication, mortality prognosis
Procedia PDF Downloads 3281950 Modelling and Detecting the Demagnetization Fault in the Permanent Magnet Synchronous Machine Using the Current Signature Analysis
Authors: Yassa Nacera, Badji Abderrezak, Saidoune Abdelmalek, Houassine Hamza
Abstract:
Several kinds of faults can occur in a permanent magnet synchronous machine (PMSM) systems: bearing faults, electrically short/open faults, eccentricity faults, and demagnetization faults. Demagnetization fault means that the strengths of permanent magnets (PM) in PMSM decrease, and it causes low output torque, which is undesirable for EVs. The fault is caused by physical damage, high-temperature stress, inverse magnetic field, and aging. Motor current signature analysis (MCSA) is a conventional motor fault detection method based on the extraction of signal features from stator current. a simulation model of the PMSM under partial demagnetization and uniform demagnetization fault was established, and different degrees of demagnetization fault were simulated. The harmonic analyses using the Fast Fourier Transform (FFT) show that the fault diagnosis method based on the harmonic wave analysis is only suitable for partial demagnetization fault of the PMSM and does not apply to uniform demagnetization fault of the PMSM.Keywords: permanent magnet, diagnosis, demagnetization, modelling
Procedia PDF Downloads 651949 Autism: Impact on Cognitive, Social-Communication and Behavioural Development
Authors: Prachi Sharma, B. V. Ramkumar
Abstract:
In current days, autism is a well-known neurodevelopmental disorder that may restrict child development globally. Ignorance or delayed identification or incorrect diagnosis of autism is a major challenge in controlling such an incurable disorder. This may lead to various behavioural complications followed by mental illness in adulthood. Autism is an incurable disorder that is progressive and negatively affects our development globally. This may vary in degree in different skills. However, a deviation from the normal range creates a complex outcome in social and communication areas and restricts or deviates cognitive ability. The primary goal of the present research is to identify and understand the deviations in cognitive, social communication, and behaviour in children during their growing age, with a focus on autism. In this study, five children with mild autism were taken. All the children had achieved normal developmental milestones until the age of one year. The maximum age of observation of children’s development was four years to see the difference in their developmental rates in the areas of cognitive, social communication, and behaviour. The study is based on the parental report about their children from 1 year to 4 years. Videos and pictures of children during their development were also seen as a reference to verify information received by the parents of the children. This research is qualitative, with samples for which were selected using a purposive sampling technique. The data was collected from the OPD, NIEPID RC, NOIDA, India. The data was collected in the form of parental reports based on their observations about their kids. Videos were also seen to verify the information reported by the parents (just shown to verify the facts, not shared). In results, we observed a significant difference in the rate of development in all five children taken for this research. The children having mild autism, at present, showed variations in all three domains (cognitive, social communication, and behaviour). These variations were seen in terms of restricted development in global areas. The result revealed that typical features of ASD had created more cognitive restrictions as compared to the children having ASD features with hyperactivity. Behavioral problems were observed with different levels of severity in the children having ASD with hyperactivity, whereas children with typical ASD are found with some typical problem behaviours like head banging, body rocking, self-biting, etc., with different levels of severity. The social-communication area was observed as equally affected in all children, as no major difference was found in the information received from each parent.Keywords: autism/ASD, behaviour, cognitive skill, hyperactivity, social-communication skill
Procedia PDF Downloads 361948 Diagnosis and Resolution of Intermittent High Vibration Spikes at Exhaust Bearing of Mitsubishi H-25 Gas Turbine using Shaft Vibration Analysis and Detailed Root Cause Analysis
Authors: Fahad Qureshi
Abstract:
This paper provides detailed study on the diagnosis of intermittent high vibration spikes at exhaust bearing (Non-Drive End) of Mitsubishi H-25 gas turbine installed in a petrochemical plant in Pakistan. The diagnosis is followed by successful root cause analysis of the issue and recommendations for improving the reliability of machine. Engro Polymer and Chemicals (EPCL), a Chlor Vinyl complex, has a captive power plant consisting of one combined cycle power plant (CCPP), having two gas turbines each having 25 MW capacity (make: Hitachi) and one extraction condensing steam turbine having 15 MW capacity (make: HTC). Besides, one 6.75 MW SGT-200 1S gas turbine (make: Alstom) is also available. In 2018, the organization faced an issue of intermittent high vibration at exhaust bearing of one of H-25 units having tag GT-2101 A, which eventually led to tripping of machine at configured securities. Since the machine had surpassed 64,000 running hours and major inspection was also due, so bearings inspection was performed. Inspection revealed excessive coke deposition at labyrinth where evidence of rotor rub was also present. Bearing clearance was also at upper limit, and slight babbitt (soft metal) chip off was observed at one of its pads so it was preventively replaced. The unit was restated successfully and exhibited no abnormality until October 2020, when these spikes reoccurred, leading to machine trip. Recurrence of the issue within two years indicated that root cause was not properly addressed, so this paper furthers the discussion on in-depth analysis of findings and establishes successful root cause analysis, which captured significant learnings both in terms of machine design deficiencies and gaps in operation & maintenance (O & M) regime. Lastly, revised O& M regime along with set of recommendations are proposed to avoid recurrence.Keywords: exhaust side bearing, Gas turbine, rubbing, vibration
Procedia PDF Downloads 1851947 Automatic Thresholding for Data Gap Detection for a Set of Sensors in Instrumented Buildings
Authors: Houda Najeh, Stéphane Ploix, Mahendra Pratap Singh, Karim Chabir, Mohamed Naceur Abdelkrim
Abstract:
Building systems are highly vulnerable to different kinds of faults and failures. In fact, various faults, failures and human behaviors could affect the building performance. This paper tackles the detection of unreliable sensors in buildings. Different literature surveys on diagnosis techniques for sensor grids in buildings have been published but all of them treat only bias and outliers. Occurences of data gaps have also not been given an adequate span of attention in the academia. The proposed methodology comprises the automatic thresholding for data gap detection for a set of heterogeneous sensors in instrumented buildings. Sensor measurements are considered to be regular time series. However, in reality, sensor values are not uniformly sampled. So, the issue to solve is from which delay each sensor become faulty? The use of time series is required for detection of abnormalities on the delays. The efficiency of the method is evaluated on measurements obtained from a real power plant: an office at Grenoble Institute of technology equipped by 30 sensors.Keywords: building system, time series, diagnosis, outliers, delay, data gap
Procedia PDF Downloads 2431946 Breast Cancer: The Potential of miRNA for Diagnosis and Treatment
Authors: Abbas Pourreza
Abstract:
MicroRNAs (miRNAs) are small single-stranded non-coding RNAs. They are almost 18-25 nucleotides long and very conservative through evolution. They are involved in adjusting the expression of numerous genes due to the existence of a complementary region, generally in the 3' untranslated regions (UTR) of target genes, against particular mRNAs in the cell. Also, miRNAs have been proven to be involved in cell development, differentiation, proliferation, and apoptosis. More than 2000 miRNAs have been recognized in human cells, and these miRNAs adjust approximately one-third of all genes in human cells. Dysregulation of miRNA originated from abnormal DNA methylation patterns of the locus, cause to down-regulated or overexpression of miRNAs, and it may affect tumor formation or development of it. Breast cancer (BC) is the most commonly identified cancer, the most prevalent cancer (23%), and the second-leading (14%) mortality in all types of cancer in females. BC can be classified based on the status (+/−) of the hormone receptors, including estrogen receptor (ER), progesterone receptor (PR), and the Receptor tyrosine-protein kinase erbB-2 (ERBB2 or HER2). Currently, there are four main molecular subtypes of BC: luminal A, approximately 50–60 % of BCs; luminal B, 10–20 %; HER2 positive, 15–20 %, and 10–20 % considered Basal (triple-negative breast cancer (TNBC)) subtype. Aberrant expression of miR-145, miR-21, miR-10b, miR-125a, and miR-206 was detected by Stem-loop real-time RT-PCR in BC cases. Breast tumor formation and development may result from down-regulation of a tumor suppressor miRNA such as miR-145, miR-125a, and miR-206 and/or overexpression of an oncogenic miRNA such as miR-21 and miR-10b. MiR-125a, miR-206, miR-145, miR-21, and miR-10b are hugely predicted to be new tumor markers for the diagnosis and prognosis of BC. MiR-21 and miR-125a could play a part in the treatment of HER-2-positive breast cancer cells, while miR-145 and miR-206 could speed up the evolution of cure techniques for TNBC. To conclude, miRNAs will be presented as hopeful molecules to be used in the primary diagnosis, prognosis, and treatment of BC and battle as opposed to its developed drug resistance.Keywords: breast cancer, HER2 positive, miRNA, TNBC
Procedia PDF Downloads 941945 Functional Analysis of Variants Implicated in Hearing Loss in a Cohort from Argentina: From Molecular Diagnosis to Pre-Clinical Research
Authors: Paula I. Buonfiglio, Carlos David Bruque, Lucia Salatino, Vanesa Lotersztein, Sebastián Menazzi, Paola Plazas, Ana Belén Elgoyhen, Viviana Dalamón
Abstract:
Hearing loss (HL) is the most prevalent sensorineural disorder affecting about 10% of the global population, with more than half due to genetic causes. About 1 in 500-1000 newborns present congenital HL. Most of the patients are non-syndromic with an autosomal recessive mode of inheritance. To date, more than 100 genes are related to HL. Therefore, the Whole-exome sequencing (WES) technique has become a cost-effective alternative approach for molecular diagnosis. Nevertheless, new challenges arise from the detection of novel variants, in particular missense changes, which can lead to a spectrum of genotype-to-phenotype correlations, which is not always straightforward. In this work, we aimed to identify the genetic causes of HL in isolated and familial cases by designing a multistep approach to analyze target genes related to hearing impairment. Moreover, we performed in silico and in vivo analyses in order to further study the effect of some of the novel variants identified in the hair cell function using the zebrafish model. A total of 650 patients were studied by Sanger Sequencing and Gap-PCR in GJB2 and GJB6 genes, respectively, diagnosing 15.5% of sporadic cases and 36% of familial ones. Overall, 50 different sequence variants were detected. Fifty of the undiagnosed patients with moderate HL were tested for deletions in STRC gene by Multiplex ligation-dependent probe amplification technique (MLPA), leading to 6% of diagnosis. After this initial screening, 50 families were selected to be analyzed by WES, achieving diagnosis in 44% of them. Half of the identified variants were novel. A missense variant in MYO6 gene detected in a family with postlingual HL was selected to be further analyzed. A protein modeling with AlphaFold2 software was performed, proving its pathogenic effect. In order to functionally validate this novel variant, a knockdown phenotype rescue assay in zebrafish was carried out. Injection of wild-type MYO6 mRNA in embryos rescued the phenotype, whereas using the mutant MYO6 mRNA (carrying c.2782C>A variant) had no effect. These results strongly suggest the deleterious effect of this variant on the mobility of stereocilia in zebrafish neuromasts, and hence on the auditory system. In the present work, we demonstrated that our algorithm is suitable for the sequential multigenic approach to HL in our cohort. These results highlight the importance of a combined strategy in order to identify candidate variants as well as the in silico and in vivo studies to analyze and prove their pathogenicity and accomplish a better understanding of the mechanisms underlying the physiopathology of the hearing impairment.Keywords: diagnosis, genetics, hearing loss, in silico analysis, in vivo analysis, WES, zebrafish
Procedia PDF Downloads 921944 Stigmatization of Individuals Who Receive Mental Health Treatment and the Role of Social Media: A Cross-Generational Cohort Design and Extension
Authors: Denise Ben-Porath, Tracy Masterson
Abstract:
In the past, individuals who struggled with and sought treatment for mental health difficulties were stigmatized. However, the current generation holds more open attitudes around mental health issues. Indeed, public figures such as Demi Lovato, Naomi Osaka, and Simone Biles have taken to social media to break the silence around mental health, discussing their own struggles and the benefits of treatment. Thus, there is considerable reason to believe that this generation would hold fewer stigmatizing attitudes toward mental health difficulties and treatment compared to previous ones. In this study, we explored possible changes in stigma on mental health diagnosis and treatment seeking behavior between two generations: Gen Z, the current generation, and Gen X, those born between 1965-1980. It was hypothesized that Gen Z would hold less stigmatizing views on mental illness than Gen X. To examine possible changes in stigma attitudes between these two generations, we conducted a cross-generational cohort design by using the same methodology employed 20 years ago from the Ben-Porath (2002) study. Thus, participants were randomly assigned to read one of the following four case vignettes employed in the Ben-Porath (2002) study: (a) “Tom” who has received psychotherapy due to depression (b) “Tom” who has been depressed but received no psychological help, (c) “Tom” who has received medical treatment due to a back pain, or (d) “Tom” who had a back pain but did not receive medical attention. After reading the vignette, participants rated “Tom” on various personality dimensions using the IFQ Questionnaire and answered questions about their frequency of social media use and willingness to seek mental health treatment on a scale from 1-10. Identical to the results 20 years prior, a significant main effect was found for diagnosis with “Tom” being viewed in more negative terms when he was described as having depression vs. a medical condition (back pain) [F (1, 376) = 126.53, p < .001]. However, in the study conducted 20 years earlier, a significant interaction was found between diagnosis and help-seeking behavior [F (1, 376) = 8.28, p < .005]. Specifically, “Tom” was viewed in the most negative terms when described as depressed and seeking treatment. Alternatively, the current study failed to find a significant interaction between depression and help seeking behavior. These findings suggest that while individuals who hold a mental health diagnosis may still be stigmatized as they were 20 years prior, seeking treatment for mental health issues may be less so. Findings are discussed in the context of social media use and its impact on destigmatization.Keywords: stigma, mental illness, help-seeking, social media
Procedia PDF Downloads 811943 Computer Aided Diagnostic System for Detection and Classification of a Brain Tumor through MRI Using Level Set Based Segmentation Technique and ANN Classifier
Authors: Atanu K Samanta, Asim Ali Khan
Abstract:
Due to the acquisition of huge amounts of brain tumor magnetic resonance images (MRI) in clinics, it is very difficult for radiologists to manually interpret and segment these images within a reasonable span of time. Computer-aided diagnosis (CAD) systems can enhance the diagnostic capabilities of radiologists and reduce the time required for accurate diagnosis. An intelligent computer-aided technique for automatic detection of a brain tumor through MRI is presented in this paper. The technique uses the following computational methods; the Level Set for segmentation of a brain tumor from other brain parts, extraction of features from this segmented tumor portion using gray level co-occurrence Matrix (GLCM), and the Artificial Neural Network (ANN) to classify brain tumor images according to their respective types. The entire work is carried out on 50 images having five types of brain tumor. The overall classification accuracy using this method is found to be 98% which is significantly good.Keywords: brain tumor, computer-aided diagnostic (CAD) system, gray-level co-occurrence matrix (GLCM), tumor segmentation, level set method
Procedia PDF Downloads 5091942 Changes in Serum Hepcidin Levels in Children with Inflammatory Bowel Disease during Anti-Inflammatory Treatment
Authors: Eva Karaskova, Jana Volejnikova, Dusan Holub, Maria Velganova-Veghova, Michaela Spenerova, Dagmar Pospisilova
Abstract:
Background: Hepcidin is the central regulator of iron metabolism. Its production is mainly affected by an iron deficiency and the presence of inflammatory activity in the body. The aim of this study was to compare serum hepcidin levels in paediatric patients with newly diagnosed inflammatory bowel disease and hepcidin levels during maintenance therapy, correlate changes of serum hepcidin levels with selected markers of iron metabolism and inflammation and type of provided treatment. Methods: Children with newly diagnosed Crohn's disease (CD) and ulcerative colitis (UC) were included in this prospective study. Blood and stool samples were collected before treatment (baseline). Serum hepcidin, hemoglobin levels, platelet counts, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), interleukin-6 (IL 6), ferritin, iron, soluble transferrin receptors, and fecal calprotectin were assessed. The same parameters were measured and compared with the baseline levels in the follow-up period, during maintenance therapy (average of 39 months after diagnosis). Results: Patients with CD (n=30) had higher serum hepcidin levels (expressed as a median and interquartile range) at diagnosis than subjects with UC (n=13). These levels significantly decreased during the follow-up (from 36.5 (11.5-79.6) ng/ml to 2.1 (0.9-6.7) ng/ml). Contrarily, no significant serum hepcidin level changes were observed in UC (from 5.4 (3.4-16.6) ng/ml to 4.8 (0.9-8.1) ng/ml). While in children with CD hepcidin level dynamics correlated with disease activity and inflammatory markers (ESR, CRP), an only correlation with serum iron levels was observed in patients with UC. Conclusion: Children with CD had higher serum hepcidin levels at diagnosis compared to subjects with UC. Decrease of serum hepcidin in the CD group during anti-inflammatory therapy has been observed, whereas low hepcidin levels in children with UC have remained unchanged. Acknowledgment: This study was supported by grant MH CZ–DRO (FNOl, 00098892).Keywords: children, Crohn's disease, ulcerative colitis, anaemia, hepcidin
Procedia PDF Downloads 1211941 An Empirical Diagnosis of the Maladies and Therapies of Budgeting in Nigeria
Authors: Ben-Caleb Egbide, Omolehinwa O. Eddy, Adeyemi S. Keyinde, Eriabie Sylvester, Ojeka Stephen
Abstract:
The national budget remains an integral part of the developmental plan of the economy of any country. The budget reflects the fundamental values underlying the government’s economic policies and objectives and whose execution is expected to realize national/public desires. In Nigeria, over three decades budget had failed to deliver the desired benefits, suggesting the existence of infractions, which are yet to be empirically ascertained. This paper attempts a diagnosis of the infractions peculiar to Nigeria budgetary system and their suggested panacea. Data were collected through the administration of questionnaire to a cross section of organizations/institutions representing government agencies and the general public. Mann-Whitney U test was employed to gauge the consistency in perception of the two groups. The result revealed that budget indiscipline, official corruption, allocative inefficiency and poor budget governance are the most influential infractions of budgeting in Nigeria. Consequently, it was suggested that budget transparency, target budgeting, zero tolerance on corruption and budget discipline are the most cogent therapies to the malfunctioning in Nigerian budgetary system.Keywords: budgeting, budget maladies, budget therapies, Nigeria
Procedia PDF Downloads 2911940 Different Types of Amyloidosis Revealed with Positive Cardiac Scintigraphy with Tc-99M DPD-SPECT
Authors: Ioannis Panagiotopoulos, Efstathios Kastritis, Anastasia Katinioti, Georgios Efthymiadis, Argyrios Doumas, Maria Koutelou
Abstract:
Introduction: Transthyretin amyloidosis (ATTR) is a rare but serious infiltrative disease. Myocardial scintigraphy with DPD has emerged as the most effective, non-invasive, highly sensitive, and highly specific diagnostic method for cardiac ATTR amyloidosis. However, there are cases in which additional laboratory investigations reveal AL amyloidosis or other diseases despite a positive DPD scintigraphy. We describe the experience from the Onassis Cardiac Surgery Center and the monitoring center for infiltrative myocardial diseases of the cardiology clinic at AHEPA. Materials and Methods: All patients with clinical suspicion of cardiac or extracardiac amyloidosis undergo a myocardial scintigraphy scan with Tc-99m DPD. In this way, over 500 patients have been examined. Further diagnostic approach based on clinical and imaging findings includes laboratory investigation and invasive techniques (e.g., biopsy). Results: Out of 76 patients in total with positive myocardial scintigraphy Grade 2 or 3 according to the Perugini scale, 8 were proven to suffer from AL Amyloidosis during the investigation of paraproteinemia. Among these patients, 3 showed Grade 3 uptake, while the rest were graded as Grade 2, or 2 to 3. Additionally, one patient presented diffuse and unusual radiopharmaceutical uptake in soft tissues throughout the body without cardiac involvement. These findings raised suspicions, leading to the analysis of κ and λ light chains in the serum, as well as immunostaining of proteins in the serum and urine of these specific patients. The final diagnosis was AL amyloidosis. Conclusion: The value of DPD scintigraphy in the diagnosis of cardiac amyloidosis from transthyretin is undisputed. However, positive myocardial scintigraphy with DPD should not automatically lead to the diagnosis of ATTR amyloidosis. Laboratory differentiation between ATTR and AL amyloidosis is crucial, as both prognosis and therapeutic strategy are dramatically altered. Laboratory exclusion of paraproteinemia is a necessary and essential step in the diagnostic algorithm of ATTR amyloidosis for all positive myocardial scintigraphy with diphosphonate tracers since >20% of patients with Grade 3 and 2 uptake may conceal AL amyloidosis.Keywords: AL amyloidosis, amyloidosis, ATTR, myocardial scintigraphy, Tc-99m DPD
Procedia PDF Downloads 791939 The Importance of the Phases of Information, Diagnosis, Planning, Intervention and Management in a Historic Center
Authors: Giovanni Duran Polo
Abstract:
Demonstrate the importance of the stages such as Information, Diagnosis, Management, and Intervention is fundamental to have a historical, live, and quality inhabited center. One of the major actions to take is to promote the concept of the management of a historic center with harmonious development. For that, concerned actors should strengthen the concept that said historic center may be the neighborhood of all and for all. The centers of historical cities, presented as any other urban area, social, environmental issues etc; yet they get added value that have no other city neighborhoods. The equity component, either by the urban plan, or environmental quality offered properties of architectural, landscape or some land uses are the differentiating element, while the tool that makes them attractive face pressure exerted by new housing developments or shopping centers. That's why through the experience of working in historical centers, they are declared the actions in heritage areas. This paper will show how the encounter with each of these places are trying to take the phases of information, to gather all the data needed to be closer to the territory with specific data, diagnosis; which allowed the actors to see what state they were, felt how the heart is related to the rest of the city, show what problems affected the situation and what potential it had to compete in a global market. Also, to discuss the importance of the organization, as it is legal and normative basis for it have an order and a concept, when you know what can and what cannot, in an area where the citizen has many myth or history, when he wanted to intervene in protected buildings. It is also appropriate to show how it could develop the intervention phase, where the shares on the tangible elements and intervention for the protection of the heritage property are executed. The management is the final phase which will carry out all that was raised on paper, it's time to orient, explain, persuade, promote, and encourage citizens to take care of the heritage. It is profitable and also an obligation and it is not an insurmountable burden. It has to be said this is the time to pull all the cards to make the historical center and heritage becoming more alive today. It is the moment to make it more inhabited and to transformer it into a quality place, so citizens will cherish and understand the importance of such a place. Inhabited historical centers, endowments and equipment required, with trade quality, with constant cultural offer, with well-preserved buildings and tidy, modern and safe public spaces are always attractive for tourism, but first of all, the place should be conceived for citizens, otherwise everything will be doomed to failure.Keywords: development, diagnosis, heritage historic center, intervention, management, patrimony
Procedia PDF Downloads 3951938 Better Defined WHO International Classification of Disease Codes for Relapsing Fever Borreliosis, and Lyme Disease Education Aiding Diagnosis, Treatment Improving Human Right to Health
Authors: Mualla McManus, Jenna Luche Thaye
Abstract:
World Health Organisation International Classification of Disease codes were created to define disease including infections in order to guide and educate diagnosticians. Most infectious diseases such as syphilis are clearly defined by their ICD 10 codes and aid/help to educate the clinicians in syphilis diagnosis and treatment globally. However, current ICD 10 codes for relapsing fever Borreliosis and Lyme disease are less clearly defined and can impede appropriate diagnosis especially if the clinician is not familiar with the symptoms of these infectious diseases. This is despite substantial number of scientific articles published in peer-reviewed journals about relapsing fever and Lyme disease. In the USA there are estimated 380,000 people annually contacting Lyme disease, more cases than breast cancer and 6x HIV/AIDS cases. This represents estimated 0.09% of the USA population. If extrapolated to the global population (7billion), 0.09% equates to 63 million people contracting relapsing fever or Lyme disease. In many regions, the rate of contracting some form of infection from tick bite may be even higher. Without accurate and appropriate diagnostic codes, physicians are impeded in their ability to properly care for their patients, leaving those patients invisible and marginalized within the medical system and to those guiding public policy. This results in great personal hardship, pain, disability, and expense. This unnecessarily burdens health care systems, governments, families, and society as a whole. With accurate diagnostic codes in place, robust data can guide medical and public health research, health policy, track mortality and save health care dollars. Better defined ICD codes are the way forward in educating the diagnosticians about relapsing fever and Lyme diseases.Keywords: WHO ICD codes, relapsing fever, Lyme diseases, World Health Organisation
Procedia PDF Downloads 1931937 Comparison of Techniques for Detection and Diagnosis of Eccentricity in the Air-Gap Fault in Induction Motors
Authors: Abrahão S. Fontes, Carlos A. V. Cardoso, Levi P. B. Oliveira
Abstract:
The induction motors are used worldwide in various industries. Several maintenance techniques are applied to increase the operating time and the lifespan of these motors. Among these, the predictive maintenance techniques such as Motor Current Signature Analysis (MCSA), Motor Square Current Signature Analysis (MSCSA), Park's Vector Approach (PVA) and Park's Vector Square Modulus (PVSM) are used to detect and diagnose faults in electric motors, characterized by patterns in the stator current frequency spectrum. In this article, these techniques are applied and compared on a real motor, which has the fault of eccentricity in the air-gap. It was used as a theoretical model of an electric induction motor without fault in order to assist comparison between the stator current frequency spectrum patterns with and without faults. Metrics were purposed and applied to evaluate the sensitivity of each technique fault detection. The results presented here show that the above techniques are suitable for the fault of eccentricity in the air gap, whose comparison between these showed the suitability of each one.Keywords: eccentricity in the air-gap, fault diagnosis, induction motors, predictive maintenance
Procedia PDF Downloads 3491936 Dizziness in the Emergency: A 1 Year Prospective Study
Authors: Nouini Adrâa
Abstract:
Background: The management of dizziness and vertigo can be challenging in the emergency department (ED). It is important to rapidly diagnose vertebrobasilar stroke (VBS), as therapeutic options such as thrombolysis and anticoagulation require prompt decisions. Objective: This study aims to assess the rate of misdiagnosis in patients with dizziness caused by VBS in the ED. Methods and Results: The cohort was comprised of 82 patients with a mean age of 55 years; 51% were women and 49% were men. Among dizzy patients, 15% had VBS. We used Cohen’s kappa test to quantify the agreement between two raters – namely, emergency physicians and neurologists – regarding the causes of dizziness in the ED. The agreement between emergency physicians and neurologists is low for the final diagnosis of central vertigo disorders and moderate for the final diagnosis of VBS. The sensitivity of ED clinal examination for benign conditions such as BPPV was low at 56%. The positive predictive value of the ED clinical examination for VBS was also low at 50%. Conclusion: There is a substantial rate of misdiagnosis in patients with dizziness caused by VBS in the ED. To reduce the number of missing diagnoses of VBS in the future, there is a need to train emergency physicians in neuro vestibular examinations, including the HINTS examination for acute vestibular syndrome (AVS) and the Dix-Hallpike (DH) maneuver for episodic vestibular syndrome. Using video head impulse tests could help reduce the rate of misdiagnosis of VBS in the ED.Keywords: dizziness, vertigo, vestibular disease, emergency
Procedia PDF Downloads 541935 Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features
Authors: Nadia Masood Khan, Muhammad Salman Khan, Gul Muhammad Khan
Abstract:
Cardiologists perform cardiac auscultation to detect abnormalities in heart sounds. Since accurate auscultation is a crucial first step in screening patients with heart diseases, there is a need to develop computer-aided detection/diagnosis (CAD) systems to assist cardiologists in interpreting heart sounds and provide second opinions. In this paper different algorithms are implemented for automated heart sound classification using unsegmented phonocardiogram (PCG) signals. Support vector machine (SVM), artificial neural network (ANN) and cartesian genetic programming evolved artificial neural network (CGPANN) without the application of any segmentation algorithm has been explored in this study. The signals are first pre-processed to remove any unwanted frequencies. Both time and frequency domain features are then extracted for training the different models. The different algorithms are tested in multiple scenarios and their strengths and weaknesses are discussed. Results indicate that SVM outperforms the rest with an accuracy of 73.64%.Keywords: pattern recognition, machine learning, computer aided diagnosis, heart sound classification, and feature extraction
Procedia PDF Downloads 2601934 Lung Disease Detection from the Chest X Ray Images Using Various Transfer Learning
Authors: Aicha Akrout, Amira Echtioui, Mohamed Ghorbel
Abstract:
Pneumonia remains a significant global health concern, posing a substantial threat to human lives due to its contagious nature and potentially fatal respiratory complications caused by bacteria, fungi, or viruses. The reliance on chest X-rays for diagnosis, although common, often necessitates expert interpretation, leading to delays and potential inaccuracies in treatment. This study addresses these challenges by employing transfer learning techniques to automate the detection of lung diseases, with a focus on pneumonia. Leveraging three pre-trained models, VGG-16, ResNet50V2, and MobileNetV2, we conducted comprehensive experiments to evaluate their performance. Our findings reveal that the proposed model based on VGG-16 demonstrates superior accuracy, precision, recall, and F1 score, achieving impressive results with an accuracy of 93.75%, precision of 94.50%, recall of 94.00%, and an F1 score of 93.50%. This research underscores the potential of transfer learning in enhancing pneumonia diagnosis and treatment outcomes, offering a promising avenue for improving healthcare delivery and reducing mortality rates associated with this debilitating respiratory condition.Keywords: chest x-ray, lung diseases, transfer learning, pneumonia detection
Procedia PDF Downloads 411933 Identification of microRNAs in Early and Late Onset of Parkinson’s Disease Patient
Authors: Ahmad Rasyadan Arshad, A. Rahman A. Jamal, N. Mohamed Ibrahim, Nor Azian Abdul Murad
Abstract:
Introduction: Parkinson’s disease (PD) is a complex and asymptomatic disease where patients are usually diagnosed at late stage where about 70% of the dopaminergic neurons are lost. Therefore, identification of molecular biomarkers is crucial for early diagnosis of PD. MicroRNA (miRNA) is a short nucleotide non-coding small RNA which regulates the gene expression in post-translational process. The involvement of these miRNAs in neurodegenerative diseases includes maintenance of neuronal development, necrosis, mitochondrial dysfunction and oxidative stress. Thus, miRNA could be a potential biomarkers for diagnosis of PD. Objective: This study aim to identify the miRNA involved in Late Onset PD (LOPD) and Early Onset PD (EOPD) compared to the controls. Methods: This is a case-control study involved PD patients in the Chancellor Tunku Muhriz Hospital at the UKM Medical Centre. miRNA samples were extracted using miRNeasy serum/plasma kit from Qiagen. The quality of miRNA extracted was determined using Agilent RNA 6000 Nano kit in the Bioanalyzer. miRNA expression was performed using GeneChip miRNA 4.0 chip from Affymetrix. Microarray was performed in EOPD (n= 7), LOPD (n=9) and healthy control (n=11). Expression Console and Transcriptomic Analyses Console were used to analyze the microarray data. Result: miR-129-5p was significantly downregulated in EOPD compared to LOPD with -4.2 fold change (p = <0.050. miR-301a-3p was upregulated in EOPD compared to healthy control (fold = 10.3, p = <0.05). In LOPD versus healthy control, miR-486-3p (fold = 15.28, p = <0.05), miR-29c-3p (fold = 12.21, p = <0.05) and miR-301a-3p (fold = 10.01, p =< 0.05) were upregulated. Conclusion: Several miRNA have been identified to be differentially expressed in EOPD compared to LOPD and PD versus control. These miRNAs could serve as the potential biomarkers for early diagnosis of PD. However, these miRNAs need to be validated in a larger sample size.Keywords: early onset PD, late onset PD, microRNA (miRNA), microarray
Procedia PDF Downloads 2571932 A Rare Case of Endometriosis Lesion in Caecum Causing Acute Small Bowel Obstruction
Authors: Freda Halim
Abstract:
Endometriosis in bowel is rare condition, about 3-37% of endometriosis cases. Most of bowel endometriosis rising in the rectosigmoid (90% of bowel endometriosis). The incidence of caecal endometriosis is very low ( < 5% of bowel endometriosis) and almost never causing acute small bowel obstruction. The aim of this paper is to show that although bowel obstruction caused by caecal endometriosis is difficult to diagnose as it is rare, and may require laparotomy to make definite diagnosis, but it should be considered in infertile female patient. The case is 37 years old woman infertile woman with intestinal obstruction with pre-operative diagnosis total acute small bowel obstruction caused by right colonic mass, with sepsis as the complication. Before the acute small bowel obstruction, she complained of chronic right lower quadrant pain with chronic constipation alternate with chronic diarrhea, symptoms that happened both in bowel endometriosis and colorectal malignancy. She also complained of chronic pelvic pain and dysmenorrhea. She was married for 10 years with no child. The patient was never diagnosed with endometriosis and never seek medical attention for infertility and the chronic pelvic pain. The patient underwent Abdominal CT Scan, with results: massive small bowel obstruction, and caecal mass that causing acute small bowel obstruction. Diagnosis of acute small bowel obstruction due to right colonic mass was made, and exploratory laparotomy was performed in the patient. During the laparotomy, mass at caecum and ileocaecal that causing massive small bowel obstruction was found and standard right hemicolectomy and temporary ileostomy were performed. The pathology examination showed ectopic endometriosis lesions in caecum and ileocaecal valve. The histopathology also confirmed with the immunohistochemistry, in which positive ER, PR, CD 10 and CD7 was found the ileocaecal and caecal mass. In the second operation, reanastomosis of the ileum was done 3 months after the first operation. The chronic pelvic pain is decreasing dramatically after the first and second operation. In conclusion, although bowel obstruction caused by caecal endometriosis is a rare cause of intestinal obstruction, but it can be considered as a cause in infertile female patientKeywords: acute, bowel obstruction, caecum, endometriosis
Procedia PDF Downloads 1481931 Validation Pulmonary Embolus Severity Index Score Early Mortality Rate at 1, 3, 7 Days in Patients with a Diagnosis of Pulmonary Embolism
Authors: Nicholas Marinus Batt, Angus Radford, Khaled Saraya
Abstract:
Pulmonary Embolus Severity Index (PESI) score is a well-validated decision-making score grading mortality rates (MR) in patients with a suspected or confirmed diagnosis of pulmonary embolism (PE) into 5 classes. Thirty and 90 days MR in class I and II are lower allowing the treatment of these patients as outpatients. In a London District General Hospital (DGH) with mixed ethnicity and high disease burden, we looked at MR at 1, 3, and 7 days of all PESI score classes. Our pilot study of 112 patients showed MR of 0% in class I, II, and III. The current study includes positive Computed Tomographic Scans (CT scans) for PE over the following three years (total of 555). MR was calculated for all PESI score classes at 1, 3 & 7 days. Thirty days MR was additionally calculated to validate the study. Our initial results so far are in line with our pilot studies. Further subgroup analysis accounting for the local co-morbidities and disease burden and its impact on the MR will be undertaken.Keywords: Pulmonary Embolism (PE), Pulmonary Embolism Severity Index (PESI) score, mortality rate (MR), CT pulmonary artery
Procedia PDF Downloads 2621930 Malignancy Assessment of Brain Tumors Using Convolutional Neural Network
Authors: Chung-Ming Lo, Kevin Li-Chun Hsieh
Abstract:
The central nervous system in the World Health Organization defines grade 2, 3, 4 gliomas according to the aggressiveness. For brain tumors, using image examination would have a lower risk than biopsy. Besides, it is a challenge to extract relevant tissues from biopsy operation. Observing the whole tumor structure and composition can provide a more objective assessment. This study further proposed a computer-aided diagnosis (CAD) system based on a convolutional neural network to quantitatively evaluate a tumor's malignancy from brain magnetic resonance imaging. A total of 30 grade 2, 43 grade 3, and 57 grade 4 gliomas were collected in the experiment. Transferred parameters from AlexNet were fine-tuned to classify the target brain tumors and achieved an accuracy of 98% and an area under the receiver operating characteristics curve (Az) of 0.99. Without pre-trained features, only 61% of accuracy was obtained. The proposed convolutional neural network can accurately and efficiently classify grade 2, 3, and 4 gliomas. The promising accuracy can provide diagnostic suggestions to radiologists in the clinic.Keywords: convolutional neural network, computer-aided diagnosis, glioblastoma, magnetic resonance imaging
Procedia PDF Downloads 1441929 Methodology of Automation and Supervisory Control and Data Acquisition for Restructuring Industrial Systems
Authors: Lakhoua Najeh
Abstract:
Introduction: In most situations, an industrial system already existing, conditioned by its history, its culture and its context are in difficulty facing the necessity to restructure itself in an organizational and technological environment in perpetual evolution. This is why all operations of restructuring first of all require a diagnosis based on a functional analysis. After a presentation of the functionality of a supervisory system for complex processes, we present the concepts of industrial automation and supervisory control and data acquisition (SCADA). Methods: This global analysis exploits the various available documents on the one hand and takes on the other hand in consideration the various testimonies through investigations, the interviews or the collective workshops; otherwise, it also takes observations through visits as a basis and even of the specific operations. The exploitation of this diagnosis enables us to elaborate the project of restructuring thereafter. Leaving from the system analysis for the restructuring of industrial systems, and after a technical diagnosis based on visits, an analysis of the various technical documents and management as well as on targeted interviews, a focusing retailing the various levels of analysis has been done according a general methodology. Results: The methodology adopted in order to contribute to the restructuring of industrial systems by its participative and systemic character and leaning on a large consultation a lot of human resources that of the documentary resources, various innovating actions has been proposed. These actions appear in the setting of the TQM gait requiring applicable parameter quantification and a treatment valorising some information. The new management environment will enable us to institute an information and communication system possibility of migration toward an ERP system. Conclusion: Technological advancements in process monitoring, control and industrial automation over the past decades have contributed greatly to improve the productivity of virtually all industrial systems throughout the world. This paper tries to identify the principles characteristics of a process monitoring, control and industrial automation in order to provide tools to help in the decision-making process.Keywords: automation, supervision, SCADA, TQM
Procedia PDF Downloads 1741928 Radiomics: Approach to Enable Early Diagnosis of Non-Specific Breast Nodules in Contrast-Enhanced Magnetic Resonance Imaging
Authors: N. D'Amico, E. Grossi, B. Colombo, F. Rigiroli, M. Buscema, D. Fazzini, G. Cornalba, S. Papa
Abstract:
Purpose: To characterize, through a radiomic approach, the nature of nodules considered non-specific by expert radiologists, recognized in magnetic resonance mammography (MRm) with T1-weighted (T1w) sequences with paramagnetic contrast. Material and Methods: 47 cases out of 1200 undergoing MRm, in which the MRm assessment gave uncertain classification (non-specific nodules), were admitted to the study. The clinical outcome of the non-specific nodules was later found through follow-up or further exams (biopsy), finding 35 benign and 12 malignant. All MR Images were acquired at 1.5T, a first basal T1w sequence and then four T1w acquisitions after the paramagnetic contrast injection. After a manual segmentation of the lesions, done by a radiologist, and the extraction of 150 radiomic features (30 features per 5 subsequent times) a machine learning (ML) approach was used. An evolutionary algorithm (TWIST system based on KNN algorithm) was used to subdivide the dataset into training and validation test and to select features yielding the maximal amount of information. After this pre-processing, different machine learning systems were applied to develop a predictive model based on a training-testing crossover procedure. 10 cases with a benign nodule (follow-up older than 5 years) and 18 with an evident malignant tumor (clear malignant histological exam) were added to the dataset in order to allow the ML system to better learn from data. Results: NaiveBayes algorithm working on 79 features selected by a TWIST system, resulted to be the best performing ML system with a sensitivity of 96% and a specificity of 78% and a global accuracy of 87% (average values of two training-testing procedures ab-ba). The results showed that in the subset of 47 non-specific nodules, the algorithm predicted the outcome of 45 nodules which an expert radiologist could not identify. Conclusion: In this pilot study we identified a radiomic approach allowing ML systems to perform well in the diagnosis of a non-specific nodule at MR mammography. This algorithm could be a great support for the early diagnosis of malignant breast tumor, in the event the radiologist is not able to identify the kind of lesion and reduces the necessity for long follow-up. Clinical Relevance: This machine learning algorithm could be essential to support the radiologist in early diagnosis of non-specific nodules, in order to avoid strenuous follow-up and painful biopsy for the patient.Keywords: breast, machine learning, MRI, radiomics
Procedia PDF Downloads 2661927 Phenotypical and Genotypical Diagnosis of Cystic Fibrosis in 26 Cases from East and South Algeria
Authors: Yahia Massinissa, Yahia Mouloud
Abstract:
Cystic fibrosis (CF), the most common lethal genetic disease in the Europe population, is caused by mutations in the transmembrane conductance regulator gene (CFTR). It affects most organs including an epithelial tissue, base of hydroelectrolytic transepithelial transport, notably that aerial ways, the pancreas, the biliary ways, the intestine, sweat glands and the genital tractus. The gene whose anomalies are responsible of the cystic fibrosis codes for a protein Cl channel named CFTR (cystic fibrosis transmembrane conductance regulator) that exercises multiple functions in the cell, one of the most important in control of sodium and chlorine through epithelia. The deficient function translates itself notably by an abnormal production of viscous secretion that obstructs the execrator channels of this target organ: one observes then a dilatation, an inflammation and an atrophy of these organs. It also translates itself by an increase of the concentration in sodium and in chloride in sweat, to the basis of the sweat test. In order to do a phenotypical and genotypical diagnosis at a part of the Algerian population, our survey has been carried on 16 patients with evocative symptoms of the cystic fibrosis at that the clinical context has been confirmed by a sweat test. However, anomalies of the CFTR gene have been determined by electrophoresis in gel of polyacrylamide of the PCR products (polymerase chain reaction), after enzymatic digestion, then visualized to the ultraviolet (UV) after action of the ethidium bromide. All mutations detected at the time of our survey have already been identified at patients attained by this pathology in other populations of the world. However, the important number of found mutation with regard to the one of the studied patients testifies that the origin of this big clinical variability that characterizes the illness in the consequences of an enormous diversity of molecular defects of the CFTR gene.Keywords: cystic fibrosis, CFTR gene, polymorphism, algerian population, sweat test, genotypical diagnosis
Procedia PDF Downloads 3081926 Unveiling Comorbidities in Irritable Bowel Syndrome: A UK BioBank Study utilizing Supervised Machine Learning
Authors: Uswah Ahmad Khan, Muhammad Moazam Fraz, Humayoon Shafique Satti, Qasim Aziz
Abstract:
Approximately 10-14% of the global population experiences a functional disorder known as irritable bowel syndrome (IBS). The disorder is defined by persistent abdominal pain and an irregular bowel pattern. IBS significantly impairs work productivity and disrupts patients' daily lives and activities. Although IBS is widespread, there is still an incomplete understanding of its underlying pathophysiology. This study aims to help characterize the phenotype of IBS patients by differentiating the comorbidities found in IBS patients from those in non-IBS patients using machine learning algorithms. In this study, we extracted samples coding for IBS from the UK BioBank cohort and randomly selected patients without a code for IBS to create a total sample size of 18,000. We selected the codes for comorbidities of these cases from 2 years before and after their IBS diagnosis and compared them to the comorbidities in the non-IBS cohort. Machine learning models, including Decision Trees, Gradient Boosting, Support Vector Machine (SVM), AdaBoost, Logistic Regression, and XGBoost, were employed to assess their accuracy in predicting IBS. The most accurate model was then chosen to identify the features associated with IBS. In our case, we used XGBoost feature importance as a feature selection method. We applied different models to the top 10% of features, which numbered 50. Gradient Boosting, Logistic Regression and XGBoost algorithms yielded a diagnosis of IBS with an optimal accuracy of 71.08%, 71.427%, and 71.53%, respectively. Among the comorbidities most closely associated with IBS included gut diseases (Haemorrhoids, diverticular diseases), atopic conditions(asthma), and psychiatric comorbidities (depressive episodes or disorder, anxiety). This finding emphasizes the need for a comprehensive approach when evaluating the phenotype of IBS, suggesting the possibility of identifying new subsets of IBS rather than relying solely on the conventional classification based on stool type. Additionally, our study demonstrates the potential of machine learning algorithms in predicting the development of IBS based on comorbidities, which may enhance diagnosis and facilitate better management of modifiable risk factors for IBS. Further research is necessary to confirm our findings and establish cause and effect. Alternative feature selection methods and even larger and more diverse datasets may lead to more accurate classification models. Despite these limitations, our findings highlight the effectiveness of Logistic Regression and XGBoost in predicting IBS diagnosis.Keywords: comorbidities, disease association, irritable bowel syndrome (IBS), predictive analytics
Procedia PDF Downloads 116