Search results for: exhaust side bearing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3038

Search results for: exhaust side bearing

3038 Diagnosis and Resolution of Intermittent High Vibration Spikes at Exhaust Bearing of Mitsubishi H-25 Gas Turbine using Shaft Vibration Analysis and Detailed Root Cause Analysis

Authors: Fahad Qureshi

Abstract:

This paper provides detailed study on the diagnosis of intermittent high vibration spikes at exhaust bearing (Non-Drive End) of Mitsubishi H-25 gas turbine installed in a petrochemical plant in Pakistan. The diagnosis is followed by successful root cause analysis of the issue and recommendations for improving the reliability of machine. Engro Polymer and Chemicals (EPCL), a Chlor Vinyl complex, has a captive power plant consisting of one combined cycle power plant (CCPP), having two gas turbines each having 25 MW capacity (make: Hitachi) and one extraction condensing steam turbine having 15 MW capacity (make: HTC). Besides, one 6.75 MW SGT-200 1S gas turbine (make: Alstom) is also available. In 2018, the organization faced an issue of intermittent high vibration at exhaust bearing of one of H-25 units having tag GT-2101 A, which eventually led to tripping of machine at configured securities. Since the machine had surpassed 64,000 running hours and major inspection was also due, so bearings inspection was performed. Inspection revealed excessive coke deposition at labyrinth where evidence of rotor rub was also present. Bearing clearance was also at upper limit, and slight babbitt (soft metal) chip off was observed at one of its pads so it was preventively replaced. The unit was restated successfully and exhibited no abnormality until October 2020, when these spikes reoccurred, leading to machine trip. Recurrence of the issue within two years indicated that root cause was not properly addressed, so this paper furthers the discussion on in-depth analysis of findings and establishes successful root cause analysis, which captured significant learnings both in terms of machine design deficiencies and gaps in operation & maintenance (O & M) regime. Lastly, revised O& M regime along with set of recommendations are proposed to avoid recurrence.

Keywords: exhaust side bearing, Gas turbine, rubbing, vibration

Procedia PDF Downloads 142
3037 Investigation Effect of External Flow to Exhaust Gas Flow at Heavy Commercial Vehicle with CFD

Authors: F. Kantaş, D. Boyacı, C. Dinç

Abstract:

Exhaust systems plays an important role in thermal heat management. Exhaust manifold picks burned gas from engine and exhaust pipes transmit exhaust gas to muffler, exhaust gas is reacted chemically to avoid noxious gas and sound is reduced in muffler then gas is threw out with tail pipe from muffler. Exhaust gas flows out from tail pipe and this hot gas flows to many parts that available around tail pipe and muffler, like spare tire, transmission, pipes etc. These parts are heated by hot exhaust gas. Also vehicle on ride, external flow effects exhaust gas flow and exhaust gas behavior is changed. It's impossible to understand which parts are heated by hot exhaust gas in tests. To understand this phenomena, exhaust gas flow is solved in CFD also external flow due to vehicle movement must be solved with exhaust gas flow. Because external flow effects exhaust gas flow behavior with many parameters. This paper investigates external flow effects exhaust gas flow behavior and other critical parameters effect exhaust gas flow behavior, like different tail pipe design, exhaust gas mass flow in critic vehicle driving situations.

Keywords: exhaust, gas flow, vehicle, external flow

Procedia PDF Downloads 407
3036 Experimental Challenges and Solutions in Design and Operation of the Test Rig for Water Lubricated Journal Bearing

Authors: Ravindra Mallya, B. Satish Shenoy, B. Raghuvir Pai

Abstract:

The study deals with the challenges in developing a test rig to test the performance of water lubricated journal bearing. The test rig is designed to simulate the working conditions of the bearing in order to understand their performance before they are put in operation. The bearing that is studied is the commercially available water lubricated bearing which has a rubber liner bonded with a rigid metal shell. The lubricant enters the bearing axially through a pressurized inlet tank and exits to an outlet tank which is at sufficiently low pressure. The load on the bearing is applied through the dead weight system which acts both in upward and downward direction so that net load acts on the bearing. The issues in feeding the lubricant into the bearing from the inlet side and preventing the leakage of the lubricant is discussed. The application of the load on the test bearing while maintaining the bearing afloat is also discussed.

Keywords: axial groove, hydrodynamic pressure, journal bearing, test rig, water lubrication

Procedia PDF Downloads 469
3035 Experimental Study of Exhaust Muffler System for Direct-Injection Gasoline Engine

Authors: Abdallah F. Abd El-Mohsen, Ahmed A. Abdelsamee, Nouby M. Ghazaly

Abstract:

Engine exhaust noise is considered one of the largest sources of vehicle exterior noise. Further reduction of noise from the vehicle exhaust system will be required, as the vehicle exterior noise regulations become stricter. Therefore, the present study has been carried out to illustrate the role of engine operating parameters and exhaust system construction factors on exhaust noise emitted. The measurements carried out using different exhaust systems, which are mainly used in today’s vehicle. The effect of engine speed on the spectra level of exhaust noise is recorded at engine speeds of 900 rpm, 1800 rpm, 2700, rpm 3600 rpm and 4500 rpm. The results indicate that the increase of engine speed causes a significant increase in the spectrum level of exhaust noise. The increase in the number of the outlet of the expansion chamber also reduces the overall level of exhaust noise.

Keywords: exhaust system, expansion chamber, engine speed, spectra

Procedia PDF Downloads 128
3034 Examination of Internally and Externally Coated Cr3C2 Exhaust Pipe of a Diesel Engine via Plasma Spray Method

Authors: H. Hazar, S. Sap

Abstract:

In this experimental study; internal and external parts of an exhaust pipe were coated with a chromium carbide (Cr3C2) material having a thickness of 100 micron by using the plasma spray method. A diesel engine was used as the test engine. Thus, the results of continuing chemical reaction in coated and uncoated exhaust pipes were investigated. Internally and externally coated exhaust pipe was compared with the standard exhaust system. External heat transfer occurring as a result of coating the internal and external parts of the exhaust pipe was reduced and its effects on harmful exhaust emissions were investigated. As a result of the experiments; a remarkable improvement was determined in emission values as a result of delay in cooling of exhaust gases due to the coating.

Keywords: chrome carbide, diesel engine, exhaust emission, thermal barrier

Procedia PDF Downloads 237
3033 A Review on Bearing Capacity Factor Nγ of Foundations with Different Shapes

Authors: R. Ziaie Moayed, S. Taghvamanesh

Abstract:

So far several methods by different researchers have been developed in order to calculate the bearing capacity factors of foundations and retaining walls. In this paper, the bearing capacity factor Ny (shape factor) for different types of foundation have been investigated. The formula for bearing capacity on c–φ–γ soil can still be expressed by Terzaghi’s equation except that the bearing capacity factor Ny depends on the surcharge ratio, and friction angle φ. Many empirical definitions have been used for measurement of the bearing capacity factors N

Keywords: bearing capacity, bearing capacity factor Nγ, irregular foundations, shape factor

Procedia PDF Downloads 108
3032 Heat Transfer Correlations for Exhaust Gas Flow

Authors: Fatih Kantas

Abstract:

Exhaust systems are key contributors to ground vehicles as a heat source. Understanding heat transfer in exhaust systems is related to defining effective parameter on heat transfer in exhaust system. In this journal, over 20 Nusselt numbers are investigated. This study shows advantages and disadvantages of various Nusselt numbers in different range Re, Pr and pulsating flow amplitude and frequency. Also (CAF) Convective Augmentation Factors are defined to correct standard Nusselt number for geometry and location of exhaust system. Finally, optimum Nusselt number and Convective Augmentation Factors are recommended according to Re, Pr and pulsating flow amplitude and frequency, geometry and location effect of exhaust system.

Keywords: exhaust gas flow, heat transfer correlation, Nusselt, Prandtl, pulsating flow

Procedia PDF Downloads 322
3031 Design and Performance Optimization of Isostatic Pressing Working Cylinder Automatic Exhaust Valve

Authors: Wei-Zhao, Yannian-Bao, Xing-Fan, Lei-Cao

Abstract:

An isostatic pressing working cylinder automatic exhaust valve is designed. The finite element models of valve core and valve body under ultra-high pressure work environment are built to study the influence of interact of valve core and valve body to sealing performance. The contact stresses of metal sealing surface with different sizes are calculated and the automatic exhaust valve is optimized. The result of simulation and experiment shows that the sealing of optimized exhaust valve is more reliable and the service life is greatly improved. The optimized exhaust valve has been used in the warm isostatic pressing equipment.

Keywords: exhaust valve, sealing, ultra-high pressure, isostatic pressing

Procedia PDF Downloads 270
3030 Numerical Simulation of Air Flow, Exhaust and Their Mixture in a Helicopter Exhaust Injective Cooler

Authors: Mateusz Paszko, Konrad Pietrykowski, Krzysztof Skiba

Abstract:

Due to low-altitude and relatively low flight speed, today’s combat assets like missile weapons equipped with infrared guidance systems are one of the most important threats to the helicopters performing combat missions. Especially meaningful in helicopter aviation is infrared emission by exhaust gases, regressed to the surroundings. Due to high temperature, exhaust gases are a major factor in detectability of a helicopter performing air combat operations. This study presents the results of simulating the flow of the mixture of exhaust and air in the flow duct of an injective exhaust cooler, adapted to cooperate with the PZL 10W turbine engine. The simulation was performed using a numerical model and the ANSYS Fluent software. Simulation computations were conducted for set flight conditions of the PZL W-3 Falcon helicopter. The conclusions resulting from the conducted numerical computations should allow for optimisation of the flow duct geometry in the cooler, in order to achieve the greatest possible temperature reduction of exhaust exiting into the surroundings. It is expected that the obtained results should be useful for further works related to the development of the final version of exhaust cooler for the PZL W-3 Falcon helicopter.

Keywords: exhaust cooler, helicopter, numerical simulation, stealth

Procedia PDF Downloads 104
3029 Optimization Design of Superposition Wave Form Automotive Exhaust Bellows Structure

Authors: Zhang Jianrun, He Tangling

Abstract:

Superposition wave form automotive exhaust bellows is a new type of bellows, which has the characteristics of large compensation, good vibration isolation performance and long life. It has been paid more and more attention and applications in automotive exhaust pipe system. Aiming at the lack of current design methods of superposition wave form automotive exhaust bellows, this paper proposes a response surface parameter optimization method where the fatigue life and vibration transmissibility of the bellows are set as objectives. The parametric modeling of bellow structure is also adopted to achieve the high efficiency in the design. The approach proposed in this paper provides a new way for the design of superposition wave form automotive exhaust bellows. It embodies good engineering application value.

Keywords: superposition wave form, exhaust bellows, optimization, vibration, fatigue life

Procedia PDF Downloads 60
3028 Research on Steam Injection Technology of Extended Range Engine Cylinder for Waste Heat Recovery

Authors: Zhiyuan Jia, Xiuxiu Sun, Yong Chen, Liu Hai, Shuangqing Li

Abstract:

The engine cooling water and exhaust gas contain a large amount of available energy. In order to improve energy efficiency, a steam injection technology based on waste heat recovery is proposed. The models of cooling water waste heat utilization, exhaust gas waste heat utilization, and exhaust gas-cooling water waste heat utilization were constructed, and the effects of the three modes on the performance of steam injection were analyzed, and then the feasibility of in-cylinder water injection steam technology based on waste heat recovery was verified. The research results show that when the injection water flow rate is 0.10 kg/s and the temperature is 298 K, at a cooling water temperature of 363 K, the maximum temperature of the injection water heated by the cooling water can reach 314.5 K; at an exhaust gas temperature of 973 K and an exhaust gas flow rate of 0.12 kg/s, the maximum temperature of the injection water heated by the exhaust gas can reach 430 K; Under the condition of cooling water temperature of 363 K, exhaust gas temperature of 973 K and exhaust gas flow rate of 0.12 kg/s, after cooling water and exhaust gas heating, the maximum temperature of the injection water can reach 463 K. When the engine is 1200 rpm, the water injection volume is 30 mg, and the water injection time is 36°CA, the engine power increases by 2% and the fuel consumption is reduced by 2.6%.

Keywords: cooling water, exhaust gas, extended range engine, steam injection, waste heat recovery

Procedia PDF Downloads 147
3027 Application of Exhaust Gas-Air Brake System in Petrol and Diesel Engine

Authors: Gurlal Singh, Rupinder Singh

Abstract:

The possible role of the engine brake is to convert a power-producing engine into a power-absorbing retarding mechanism. In this braking system, exhaust gas (EG) from the internal combustion (IC) engines is used to operate air brake in the automobiles. Airbrake is most used braking system in vehicles. In the proposed model, instead of air brake, EG is used to operate the brake lever and stored in a specially designed tank. This pressure of EG is used to operate the pneumatic cylinder and brake lever. Filters used to remove the impurities from the EG, then it is allowed to store in the tank. Pressure relief valve is used to achieve a specific pressure in the tank and helps to avoid further damage to the tank as well as in an engine. The petrol engine is used in the proposed EG braking system. The petrol engine is chosen initially because it produces less impurity in the exhaust than diesel engines. Moreover, exhaust brake system (EBS) for the Diesel engines is composed of gate valve, pneumatic cylinder and exhaust brake valve with the on-off solenoid. Exhaust brake valve which is core component of EBS should have characteristics such as high reliability and long life. In a diesel engine, there is butterfly valve in exhaust manifold connected with solenoid switch which is used to on and off the butterfly valve. When butterfly valve closed partially, then the pressure starts built up inside the exhaust manifold and cylinder that actually resist the movement of piston leads to crankshaft getting stops resulting stopping of the flywheel. It creates breaking effect in a diesel engine. The exhaust brake is a supplementary breaking system to the service brake. It is noted that exhaust brake increased 2-3 fold the life of service brake may be due to the creation of negative torque which retards the speed of the engine. More study may also be warranted for the best suitable design of exhaust brake in a diesel engine.

Keywords: exhaust gas, automobiles, solenoid, airbrake

Procedia PDF Downloads 225
3026 Numerical Study on the Static Characteristics of Novel Aerostatic Thrust Bearings Possessing Elastomer Capillary Restrictor and Bearing Surface

Authors: S. W. Lo, S.-H. Lu, Y. H. Guo, L. C. Hsu

Abstract:

In this paper, a novel design of aerostatic thrust bearing is proposed and is analyzed numerically. The capillary restrictor and bearing disk are made of elastomer like silicone and PU. The viscoelasticity of elastomer helps the capillary expand for more air flux and at the same time, allows conicity of the bearing surface to form when the air pressure is enhanced. Therefore, the bearing has the better ability of passive compensation. In the present example, as compared with the typical model, the new designs can nearly double the load capability and offer four times static stiffness.

Keywords: aerostatic, bearing, elastomer, static stiffness

Procedia PDF Downloads 331
3025 Influence of Prestress Loss on Mechanical Performance of Fabricated Girder Bridge

Authors: Wu Xiaoguang, Liu Jiaxin, Fang Miaomiao, Wei Saidong

Abstract:

There are many prestressed concrete prefabricated girder Bridges with small and medium span and the damage is serious. This paper mainly study the effect of prestress loss of prefabricated bridge bearing performance, through the establishment of ANSYS finite element model, from the condition of different prestress loss research, get the stress and strain data, draw curve, finally get the following conclusion: loss of prestress can reduce the ultimate bearing capacity of Bridges, the side span across the deflection value than the influence of times side span, the influence of the deflection in the midspan cross value. Therefore, the prestress loss and the effective prestress should be strictly considered in the design and construction process.

Keywords: across the deflection, loss of prestress, prefabricated girder bridge, the main tensile stress

Procedia PDF Downloads 107
3024 Estimation of Exhaust and Non-Exhaust Particulate Matter Emissions’ Share from On-Road Vehicles in Addis Ababa City

Authors: Solomon Neway Jida, Jean-Francois Hetet, Pascal Chesse

Abstract:

Vehicular emission is the key source of air pollution in the urban environment. This includes both fine particles (PM2.5) and coarse particulate matters (PM10). However, particulate matter emissions from road traffic comprise emissions from exhaust tailpipe and emissions due to wear and tear of the vehicle part such as brake, tire and clutch and re-suspension of dust (non-exhaust emission). This study estimates the share of the two sources of pollutant particle emissions from on-roadside vehicles in the Addis Ababa municipality, Ethiopia. To calculate its share, two methods were applied; the exhaust-tailpipe emissions were calculated using the Europeans emission inventory Tier II method and Tier I for the non-exhaust emissions (like vehicle tire wear, brake, and road surface wear). The results show that of the total traffic-related particulate emissions in the city, 63% emitted from vehicle exhaust and the remaining 37% from non-exhaust sources. The annual roads transport exhaust emission shares around 2394 tons of particles from all vehicle categories. However, from the total yearly non-exhaust particulate matter emissions’ contribution, tire and brake wear shared around 65% and 35% emanated by road-surface wear. Furthermore, vehicle tire and brake wear were responsible for annual 584.8 tons of coarse particles (PM10) and 314.4 tons of fine particle matter (PM2.5) emissions in the city whereas surface wear emissions were responsible for around 313.7 tons of PM10 and 169.9 tons of PM2.5 pollutant emissions in the city. This suggests that non-exhaust sources might be as significant as exhaust sources and have a considerable contribution to the impact on air quality.

Keywords: Addis Ababa, automotive emission, emission estimation, particulate matters

Procedia PDF Downloads 97
3023 The Investigation of LPG Injector Control Circuit on a Motorcycle

Authors: Bin-Wen Lan, Ying-Xin Chen, Hsueh-Cheng Yang

Abstract:

Liquefied petroleum gas is a fuel that has high octane number and low carbon number. This paper uses MSC-51 controller to investigate the effect of liquefied petroleum gas (LPG) on exhaust emissions for different engine speeds in a single cylinder, four-stroke and spark ignition engine. The results indicate that CO, CO2 and NOX exhaust emissions are lower with the use of LPG compared to the use of unleaded gasoline by using the developed controller. The open-loop in the LPG injection system was controlled by MCS-51 single chip. The results show that if a SI engine is operated with LPG fuel rather than gasoline fuel under the same conditions, significant reduction in exhaust emissions can be achieved. In summary, LPG has positive effects on main exhaust emissions such as CO, CO2 and NOX.

Keywords: LPG, control circuit, emission, MCS-51

Procedia PDF Downloads 452
3022 Modelling of Lunar Lander’s Thruster’s Exhaust Plume Impingement in Vacuum

Authors: Mrigank Sahai, R. Sri Raghu

Abstract:

This paper presents the modelling of rocket exhaust plume flow field and exhaust plume impingement in vacuum for the liquid apogee engine and attitude control thrusters of the lunar lander. Analytic formulations for rarefied gas kinetics has been taken as reference for modelling the plume flow field. The plume has been modelled as high speed, collision-less, axi-symmetric gas jet, expanding into vacuum and impinging at a normally set diffusive circular plate. Specular reflections have not been considered for the present study. Different parameters such as number density, temperature, pressure, flow velocity, heat flux etc., have been calculated and have been plotted against and compared to Direct Simulation Monte Carlo results. These analyses have provided important information for the placement of critical optical instruments and design of optimal thermal insulation for the hardware that may come in contact with the thruster exhaust.

Keywords: collision-less gas, lunar lander, plume impingement, rarefied exhaust plume

Procedia PDF Downloads 240
3021 Modelling of Filters CO2 (Carbondioxide) and CO (Carbonmonoxide) Portable in Motor Vehicle's Exhaust with Absorbent Chitosan

Authors: Yuandanis Wahyu Salam, Irfi Panrepi, Nuraeni

Abstract:

The increased of greenhouse gases, that is CO2 (carbondioxide) in atmosphere induce the rising of earth’s surface average temperature. One of the largest contributors to greenhouse gases is motor vehicles. Smoke which is emitted by motor’s exhaust containing gases such as CO2 (carbondioxide) and CO (carbon monoxide). Chemically, chitosan is cellulose like plant fiber that has the ability to bind like absorbant foam. Chitosan is a natural antacid (absorb toxins), when chitosan is spread over the surface of water, chitosan is able to absorb fats, oils, heavy metals, and other toxic substances. Judging from the nature of chitosan is able to absorb various toxic substances, it is expected that chitosan is also able to filter out gas emission from the motor vehicles. This study designing a carbondioxide filter in the exhaust of motor vehicles using chitosan as its absorbant. It aims to filter out gases in the exhaust so that CO2 and CO can be reducted before emitted by exhaust. Form of this reseach is study of literature and applied with experimental research of tool manufacture. Data collected through documentary studies by studying books, magazines, thesis, search on the internet as well as the relevant reference. This study will produce a filters which has main function to filter out CO2 and CO emissions that generated by vehicle’s exhaust and can be used as portable.

Keywords: filter, carbon, carbondioxide, exhaust, chitosan

Procedia PDF Downloads 317
3020 Polymer Aerostatic Thrust Bearing under Circular Support for High Static Stiffness

Authors: Sy-Wei Lo, Chi-Heng Yu

Abstract:

A new design of aerostatic thrust bearing is proposed for high static stiffness. The bearing body, which is mead of polymer covered with metallic membrane, is held by a circular ring. Such a support helps form a concave air gap to grasp the air pressure. The polymer body, which can be made rapidly by either injection or molding is able to provide extra damping under dynamic loading. The smooth membrane not only serves as the bearing surface but also protects the polymer body. The restrictor is a capillary inside a silicone tube. It can passively compensate the variation of load by expanding the capillary diameter for more air flux. In the present example, the stiffness soars from 15.85 N/µm of typical bearing to 349.85 N/µm at bearing elevation 9.5 µm; meanwhile the load capacity also enhances from 346.86 N to 704.18 N.

Keywords: aerostatic, bearing, polymer, static stiffness

Procedia PDF Downloads 335
3019 Plasma Systems Application in Treating Automobile Exhaust Gases for a Clean Environment (Case Study)

Authors: Tahsen Abdalwahab Ibraheem Albehege

Abstract:

Exhaust fuel purification is of great importance to prevent the emission of major pollutants into the atmosphere such as diesel particulates and nitrogen oxides and meet environmental regulations, so environmental impacts are a primary concern of Diesel Exhaust Gas (DEG) which contains hazardous substances harmful to the environment as well as human health.We can not plasma formed through directing electrical energy to create free electrons, which in turn can react with gaseous species, but we can by used to treat engine exhaust gases. . By NO that has been reportedly oxidized to HNO3 and then into ammonium nitrate, and then condensed and removed. In general, thermal plasmas are formed by heating a system to high temperatures 2,000 degrees C, however this can be inefficient and can require extensive thermal management.

Keywords: plasma system application, project physics, oxidizing environment, electromagnetically

Procedia PDF Downloads 70
3018 In-Cylinder Exhaust Heat Recovery of an I. C. Engine Using Water Injection

Authors: Jayakrishnan U.

Abstract:

A concept of adding two strokes to a four stroke Otto or Diesel engine cycle presented here for the waste heat recovery in a four stroke internal combustion engine. Four stroke Diesel cycle and Otto cycle engines have very low thermal efficiency due to high amount of energy loss in exhaust and also on the cooling of the engine. It is estimated about 35 percent of fuel energy is lost in exhaust of engine and 30 percent in cooling of engine. So by modifying a four-stroke Otto or Diesel engine by adding two-stroke heat recovery steam cycle is presented here. Water injection is used to get an additional power stroke by partial compression of the exhaust gases at the end of third stroke in a four stroke I.C.Engine. It is the conversion of a four-stroke cycle to a six-stroke cycle. By taking a four stroke petrol engine of known dimensions, an ideal thermodynamic model is used to analyse and calculate the events of exhaust gas compression and following two strokes of water injection. By changing the exhaust valve closing timing during exhaust stroke and analysing it on various points, an optimum amount of exhaust gas re-compression and amount of water injection can be found for maximizing efficiency and fuel economy. It is achieved by changing the exhaust valve timing and finding an optimum amount of exhaust re-compression, maximizing the net mean effective pressure of the steam expansion stroke (MEPsteam). Specific fuel consumption of the engine also decreases increasing the fuel economy. The valve closing timings for maximum MEPsteam is limited by either 1 bar or dew point temperature of expansion gas or moisture mixture to avoid moisture formation. By modifying the four-stroke Otto or Diesel cycle by adding two water injection stroke has the potential to significantly increase the engine efficiency and fuel economy.

Keywords: internal combustion engine, engine efficiency, six-stroke cycle, water injection, specific fuel consumption

Procedia PDF Downloads 271
3017 Discrete Element Modeling on Bearing Capacity Problems

Authors: N. Li, Y. M. Cheng

Abstract:

In this paper, the classical bearing capacity problem is re-considered from discrete element analysis. In the discrete element approach, the bearing capacity problem is considered from the elastic stage to plastic stage to rupture stage (large displacement). The bearing capacity failure mechanism of a strip footing on soil is investigated, and the influence of micro-parameters on the bearing capacity of soil is also observed. It is found that the distinct element method (DEM) gives very good visualized results, and basically coincides well with that derived by the classical methods.

Keywords: bearing capacity, distinct element method, failure mechanism, large displacement

Procedia PDF Downloads 339
3016 Evaluating of Bearing Capacity of Two Adjacent Strip Foundations Located around a Soil Slip

Authors: M. Meftahi, M. Hoseinzadeh, S. A. Naeini

Abstract:

Selection of soil bearing capacity is an important issue that should be investigated under different conditions. The bearing capacity of foundation around of soil slope is based on the active and passive forces. On the other hand, due to extension of urban structures, it is inevitable to put the foundations together. Concerning the two cases mentioned above, investigating the behavior of adjacent foundations which are constructed besides soil slope is essential. It should be noted that, according to the conditions, the bearing capacity of adjacent foundations can be less or more than mat foundations. Also, soil reinforcement increases the bearing capacity of adjacent foundations, and the amount of its increase depends on the distance between foundations. In this research, based on numerical studies, a method is presented for evaluating ultimate bearing capacity of adjacent foundations at different intervals. In the present study, the effect of foundation width, the center to center distance of adjacent foundations and reinforced soil has been investigated on the bearing capacity of adjacent foundations beside soil slope. The results indicate that, due to interference of failure surfaces created under foundation, it depends on their intervals and the ultimate bearing capacity of foundation varies.

Keywords: adjacent foundation, bearing capacity, reinforcements, settlement, numerical analysis

Procedia PDF Downloads 131
3015 Analysis of the Influence of Support Failure on the Dynamic Effect of Bridge Structure

Authors: Sun Fan, Wu Xiaoguang, Fang Miaomiao, Wei Chi

Abstract:

The degree of damage to the support is simulated by finite element software, and its influence on the static and dynamic effects of the bridge structure is analyzed. Four working conditions are selected for the study of bearing damage impact: the bearing is intact (condition 1), the bearing damage coefficient is 0.8 (condition 2), the bearing damage coefficient is 0.6 (condition 3), and the bearing damage coefficient is 0.4 (Working Condition 4). The effect value of the bridge structure under each working condition is calculated, and the simple-supported girder bridge and continuous girder bridge with typical spans are taken as examples to analyze the overall change of the bridge structure after the bearing completely fails.

Keywords: bridge bearing damage, dynamic response, finite element analysis, load conditions

Procedia PDF Downloads 189
3014 A Practical and Theoretical Study on the Electromotor Bearing Defect Detection in a Wet Mill Using the Vibration Analysis Method and Defect Length Calculation in the Bearing

Authors: Mostafa Firoozabadi, Alireza Foroughi Nematollahi

Abstract:

Wet mills are one of the most important equipment in the mining industries and any defect occurrence in them can stop the production line and it can make some irrecoverable damages to the system. Electromotors are the significant parts of a mill and their monitoring is a necessary process to prevent unwanted defects. The purpose of this study is to investigate the Electromotor bearing defects, theoretically and practically, using the vibration analysis method. When a defect happens in a bearing, it can be transferred to the other parts of the equipment like inner ring, outer ring, balls, and the bearing cage. The electromotor defects source can be electrical or mechanical. Sometimes, the electrical and mechanical defect frequencies are modulated and the bearing defect detection becomes difficult. In this paper, to detect the electromotor bearing defects, the electrical and mechanical defect frequencies are extracted firstly. Then, by calculating the bearing defect frequencies, and the spectrum and time signal analysis, the bearing defects are detected. In addition, the obtained frequency determines that the bearing level in which the defect has happened and by comparing this level to the standards it determines the bearing remaining lifetime. Finally, the defect length is calculated by theoretical equations to demonstrate that there is no need to replace the bearing. The results of the proposed method, which has been implemented on the wet mills in the Golgohar mining and industrial company in Iran, show that this method is capable of detecting the electromotor bearing defects accurately and on time.

Keywords: bearing defect length, defect frequency, electromotor defects, vibration analysis

Procedia PDF Downloads 468
3013 Undrained Bearing Capacity of Circular Foundations on two Layered Clays

Authors: S. Benmebarek, S. Benmoussa, N. Benmebarek

Abstract:

Natural soils are often deposited in layers. The estimation of the bearing capacity of the soil using conventional bearing capacity theory based on the properties of the upper layer introduces significant inaccuracies if the thickness of the top layer is comparable to the width of the foundation placed on the soil surface. In this paper, numerical computations using the FLAC code are reported to evaluate the two clay layers effect on the bearing capacity beneath rigid circular rough footing subject to axial static load. The computation results of the parametric study are used to illustrate the sensibility of the bearing capacity, the shape factor and the failure mechanisms to the layered strength and layered thickness.

Keywords: numerical modeling, circular footings, layered clays, bearing capacity, failure

Procedia PDF Downloads 460
3012 Variation of the Dynamic Characteristics of a Spindle with the Change of Bearing Preload

Authors: Shinji Oouchi, Hajime Nomura, Kung-Da Wu, Jui-Pin Hung

Abstract:

This paper presents the variation of the dynamic characteristics of a spindle with the change of bearing preload. The correlations between the variation of bearing preload and fundamental modal parameters were first examined by conducting vibration tests on physical spindle units. Experimental measurements show that the dynamic compliance and damping ratio associated with the dominating modes were affected to vary with variation of the bearing preload. When the bearing preload was slightly deviated from a standard value, the modal frequency and damping ability also vary to different extent, which further enable the spindle to perform with different compliance. For the spindle used in this study, a standard preload value set on bearings would enable the spindle to behave a higher stiffness as compared with others with a preload variation. This characteristic can be served as a reference to examine the variation of bearing preload of spindle in assemblage or operation.

Keywords: dynamic compliance, bearing preload, modal damping, standard preload

Procedia PDF Downloads 430
3011 Numerical Evaluation of the Flow Behavior inside the Scrubber Unit with Engine Exhaust Pipe

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

A wet scrubber is an air pollution control device that removes particulate matter and acid gases from waste gas streams found in marine engine exhaust. If the flue gases in the exhaust is employed for CFD simulation, it makes the problem complicate due to the involvement of emissions. Owing to the fact, the scrubber system in this paper is handled with appropriate approach by designing with the flow properties of hot air and water droplet injections to evaluate the flow behavior inside the system. Since the wet scrubber has the capability of operating over wide range of mixture compositions, the current scrubber model with the designing approach doesn’t deviate from the actual behavior of the system. The scrubber design is constructed with engine exhaust pipe with the purpose of measuring the flow properties inside the scrubber by the influence of exhaust pipe characteristics. The flow properties are computed by the thermodynamic variables such as temperature and pressure with the flow velocity. In this work, numerical analyses have been conducted for the flow of fluid in the scrubber system through CFD technique.

Keywords: wet scrubber, water droplet injections, thermodynamic variables, CFD technique

Procedia PDF Downloads 313
3010 Experimental Analysis of Electrical Energy Producing Using the Waste Heat of Exhaust Gas by the Help of Thermoelectric Generator

Authors: Dilek Ozlem Esen, Mesut Kaya

Abstract:

The focus of this study is to analyse the results of heat recovery from exhaust gas which is produced by an internal combustion engine (ICE). To obtain a small amount of energy, an exhaust system which is suitable for recovery waste heat has been constructed. Totally 27 TEGs have been used to convert from the heat to electric energy. By producing a small amount of this energy by the help of thermoelectric generators can reduce engine loads thus decreasing pollutant emissions, fuel consumption, and CO2. This case study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. As a result of this study, 0,45 A averaged current rate, 13,02 V averaged voltage rate and 5,8 W averaged electrical energy have been produced in a five hours operation time.

Keywords: thermoelectric, peltier, thermoelectric generator (TEG), exhaust, cogeneration

Procedia PDF Downloads 614
3009 The Mechanical Properties of a Small-Size Seismic Isolation Rubber Bearing for Bridges

Authors: Yi F. Wu, Ai Q. Li, Hao Wang

Abstract:

Taking a novel type of bridge bearings with the diameter being 100mm as an example, the theoretical analysis, the experimental research as well as the numerical simulation of the bearing were conducted. Since the normal compression-shear machines cannot be applied to the small-size bearing, an improved device to test the properties of the bearing was proposed and fabricated. Besides, the simulation of the bearing was conducted on the basis of the explicit finite element software ANSYS/LS-DYNA, and some parameters of the bearing are modified in the finite element model to effectively reduce the computation cost. Results show that all the research methods are capable of revealing the fundamental properties of the small-size bearings, and a combined use of these methods can better catch both the integral properties and the inner detailed mechanical behaviors of the bearing.

Keywords: ANSYS/LS-DYNA, compression shear, contact analysis, explicit algorithm, small-size

Procedia PDF Downloads 147