Search results for: compression tests
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5075

Search results for: compression tests

4655 Optimizing Foaming Agents by Air Compression to Unload a Liquid Loaded Gas Well

Authors: Mhenga Agneta, Li Zhaomin, Zhang Chao

Abstract:

When velocity is high enough, gas can entrain fluid and carry to the surface, but as time passes by, velocity drops to a critical point where fluids will start to hold up in the tubing and cause liquid loading which prevents gas production and may lead to the death of the well. Foam injection is widely used as one of the methods to unload liquid. Since wells have different characteristics, it is not guaranteed that foam can be applied in all of them and bring successful results. This research presents a technology to optimize the efficiency of foam to unload liquid by air compression. Two methods are used to explain optimization; (i) mathematical formulas are used to solve and explain the myth of how density and critical velocity could be minimized when air is compressed into foaming agents, then the relationship between flow rates and pressure increase which would boost up the bottom hole pressure and increase the velocity to lift liquid to the surface. (ii) Experiments to test foam carryover capacity and stability as a function of time and surfactant concentration whereby three surfactants anionic sodium dodecyl sulfate (SDS), nonionic Triton 100 and cationic hexadecyltrimethylammonium bromide (HDTAB) were probed. The best foaming agents were injected to lift liquid loaded in a created vertical well model of 2.5 cm diameter and 390 cm high steel tubing covered by a transparent glass casing of 5 cm diameter and 450 cm high. The results show that, after injecting foaming agents, liquid unloading was successful by 75%; however, the efficiency of foaming agents to unload liquid increased by 10% with an addition of compressed air at a ratio of 1:1. Measured values and calculated values were compared and brought about ± 3% difference which is a good number. The successful application of the technology indicates that engineers and stakeholders could bring water flooded gas wells back to production with optimized results by firstly paying attention to the type of surfactants (foaming agents) used, concentration of surfactants, flow rates of the injected surfactants then compressing air to the foaming agents at a proper ratio.

Keywords: air compression, foaming agents, gas well, liquid loading

Procedia PDF Downloads 128
4654 A Computer-Aided System for Detection and Classification of Liver Cirrhosis

Authors: Abdel Hadi N. Ebraheim, Eman Azomi, Nefisa A. Fahmy

Abstract:

This paper designs and implements a computer-aided system (CAS) to help detect and diagnose liver cirrhosis in patients with Chronic Hepatitis C. Our system reduces the required features (tests) the patient is asked to do to tests to their minimal best most informative subset of tests, with a diagnostic accuracy above 99%, and hence saving both time and costs. We use the Support Vector Machine (SVM) with cross-validation, a Multilayer Perceptron Neural Network (MLP), and a Generalized Regression Neural Network (GRNN) that employs a base of radial functions for functional approximation, as classifiers. Our system is tested on 199 subjects, of them 99 Chronic Hepatitis C.The subjects were selected from among the outpatient clinic in National Herpetology and Tropical Medicine Research Institute (NHTMRI).

Keywords: liver cirrhosis, artificial neural network, support vector machine, multi-layer perceptron, classification, accuracy

Procedia PDF Downloads 449
4653 Analysis of Structure-Flow Interaction for Water Brake Mechanism

Authors: Murat Avci, Fatih Kosar, Ismail Yilmaz

Abstract:

In this study, structure-flow interaction for water brake mechanism is studied with Abaqus CEL approach. The water brake mechanism is used for dynamic systems such as sled system on rail. For the achievement of these system tests, structure-flow interaction should be investigated in detail. This study is about a sled test of an aircraft subsystem which rises to supersonic speeds thanks to rocket engines. To decrease or to stop the thrusting rocket sleds, water brake mechanisms are used. Water brake mechanism provides the deceleration of the structures that have supersonic speeds. Therefore, structure-flow interaction may cause damage to the water brake mechanism. To verify all design revisions with system tests are so costly so that some decisions are taken in accordance with numerical methods. In this study, structure-flow interaction that belongs to water brake mechanism is solved with Abaqus CEL approach. Fluid and deformation on the structure behaviors are modeled at the same time thanks to CEL approach. Provided analysis results are corrected with the dynamic tests. Deformation zones seen in numerical analysis are also observed in dynamic tests. Finally, Johnson-Cook material model parameters used for this analysis are proven, and it is understood that these parameters can be used for dynamic analysis like water brake mechanism.

Keywords: aircraft, rocket, structure-flow, supersonic

Procedia PDF Downloads 147
4652 Effects of Cerium Oxide Nanoparticle Addition in Diesel and Diesel-Biodiesel Blends on the Performance Characteristics of a CI Engine

Authors: Abbas Ali Taghipoor Bafghi, Hosein Bakhoda, Fateme Khodaei Chegeni

Abstract:

An experimental investigation is carried out to establish the performance characteristics of a compression ignition engine while using cerium oxide nano particles as additive in neat diesel and diesel-bio diesel blends. In the first phase of the experiments, stability of neat diesel and diesel-bio diesel fuel blends with the addition of cerium oxide nano particles are analyzed. After series of experiments, it is found that the blends subjected to high speed blending followed by ultrasonic bath stabilization improves the stability.In the second phase, performance characteristics are studied using the stable fuel blends in a single cylinder four stroke engine coupled with an electrical dynamo meter and a data acquisition system. The cerium oxide acts as an oxygen donating catalyst and provides oxygen for combustion. The activation energy of cerium oxide acts to burn off carbon deposits within the engine cylinder at the wall temperature and prevents the deposition of non-polar compounds on the cylinder wall results reduction in HC emissions. The tests revealed that cerium oxide nano particles can be used as additive in diesel and diesel-bio diesel blends to improve complete combustion of the fuel significantly.

Keywords: engine, cerium oxide, biodiesel, deposit

Procedia PDF Downloads 331
4651 Numerical Analysis of Cold-Formed Steel Shear Wall Panels Subjected to Cyclic Loading

Authors: H. Meddah, M. Berediaf-Bourahla, B. El-Djouzi, N. Bourahla

Abstract:

Shear walls made of cold formed steel are used as lateral force resisting components in residential and low-rise commercial and industrial constructions. The seismic design analysis of such structures is often complex due to the slenderness of members and their instability prevalence. In this context, a simplified modeling technique across the panel is proposed by using the finite element method. The approach is based on idealizing the whole panel by a nonlinear shear link element which reflects its shear behavior connected to rigid body elements which transmit the forces to the end elements (studs) that resist the tension and the compression. The numerical model of the shear wall panel was subjected to cyclic loads in order to evaluate the seismic performance of the structure in terms of lateral displacement and energy dissipation capacity. In order to validate this model, the numerical results were compared with those from literature tests. This modeling technique is particularly useful for the design of cold formed steel structures where the shear forces in each panel and the axial forces in the studs can be obtained using spectrum analysis.

Keywords: cold-formed steel, cyclic loading, modeling technique, nonlinear analysis, shear wall panel

Procedia PDF Downloads 283
4650 Experimental Characterization of the AA7075 Aluminum Alloy Using Hot Shear Tensile Test

Authors: Trunal Bhujangrao, Catherine Froustey, Fernando Veiga, Philippe Darnis, Franck Girot Mata

Abstract:

The understanding of the material behavior under shear loading has great importance for a researcher in manufacturing processes like cutting, machining, milling, turning, friction stir welding, etc. where the material experiences large deformation at high temperature. For such material behavior analysis, hot shear tests provide a useful means to investigate the evolution of the microstructure at a wide range of temperature and to improve the material behavior model. Shear tests can be performed by direct shear loading (e.g. torsion of thin-walled tubular samples), or appropriate specimen design to convert a tensile or compressive load into shear (e.g. simple shear tests). The simple shear tests are straightforward and designed to obtained very large deformation. However, many of these shear tests are concerned only with the elastic response of the material. It is becoming increasingly important to capture a plastic response of the material. Plastic deformation is significantly more complex and is known to depend more heavily on the strain rate, temperature, deformation, etc. Besides, there is not enough work is done on high-temperature shear loading, because of geometrical instability occurred during the plastic deformation. The aim of this study is to design a new shear tensile specimen geometry to convert the tensile load into dominant shear loading under plastic deformation. Design of the specimen geometry is based on FEM. The material used in this paper is AA7075 alloy, tested quasi statically under elevated temperature. Finally, the microstructural changes taking place during

Keywords: AA7075 alloy, dynamic recrystallization, edge effect, large strain, shear tensile test

Procedia PDF Downloads 139
4649 A Review of Ethanol-Diesel Blend as a Fuel in Compression-Ignition Engine

Authors: Ibrahim Yahuza, Habou Dandakouta

Abstract:

The use of ethanol blended with diesel is receiving more attention by many researchers in the recent time. It was shown that ethanol–diesel blends were technically acceptable for existing diesel engines. Ethanol, as an attractive alternative fuel, is a renewable bio-based resource and it is oxygenated, thereby providing the potential to reduce particulate emissions in compression–ignition engines. In this review, the properties and specifications of ethanol blended with diesel fuel are discussed. Special emphasis is placed on the factors critical to the potential commercial use of these blends. These factors include blend properties such as stability, viscosity and lubricity, safety and materials compatibility. The effect of the fuel on engine performance, durability and emissions is also considered. The formulation of additives to correct certain key properties and maintain blend stability is suggested as a critical factor in ensuring fuel compatibility with engines. However, maintaining vehicle safety with these blends may require special materials and modification of the fuel tank design. Further work is required in specifying acceptable fuel characteristics, confirming the long-term effects on engine durability, and ensuring safety in handling and storing ethanol–diesel blends.

Keywords: ethanol, renewable, blend, bio-fuel, diesel engines

Procedia PDF Downloads 316
4648 Effect of Testing Device Calibration on Liquid Limit Assessment

Authors: M. O. Bayram, H. B. Gencdal, N. O. Fercan, B. Basbug

Abstract:

Liquid limit, which is used as a measure of soil strength, can be detected by Casagrande and fall-cone testing methods. The two methods majorly diverge from each other in terms of operator dependency. The Casagrande method that is applied according to ASTM D4318-17 standards may give misleading results, especially if the calibration process is not performed well. To reveal the effect of calibration for drop height and amount of soil paste placement in the Casagrande cup, a series of tests were carried out by multipoint method as it is specified in the ASTM standards. The tests include the combination of 6 mm, 8 mm, 10 mm, and 12 mm drop heights and under-filled, half-filled, and full-filled Casagrande cups by kaolinite samples. It was observed that during successive tests, the drop height of the cup deteriorated; hence the device was recalibrated before and after each test to provide the accuracy of the results. Besides, the tests by under-filled and full-filled samples for higher drop heights revealed lower liquid limit values than the lower drop heights revealed. For the half-filled samples, it was clearly seen that the liquid limit values didn’t change at all as the drop height increased, and this explains the function of standard specifications.

Keywords: calibration, casagrande cup method, drop height, kaolinite, liquid limit, placing form

Procedia PDF Downloads 147
4647 A Nonlinear Visco-Hyper Elastic Constitutive Model for Modelling Behavior of Polyurea at Large Deformations

Authors: Shank Kulkarni, Alireza Tabarraei

Abstract:

The fantastic properties of polyurea such as flexibility, durability, and chemical resistance have brought it a wide range of application in various industries. Effective prediction of the response of polyurea under different loading and environmental conditions necessitates the development of an accurate constitutive model. Similar to most polymers, the behavior of polyurea depends on both strain and strain rate. Therefore, the constitutive model should be able to capture both these effects on the response of polyurea. To achieve this objective, in this paper, a nonlinear hyper-viscoelastic constitutive model is developed by the superposition of a hyperelastic and a viscoelastic model. The proposed constitutive model can capture the behavior of polyurea under compressive loading conditions at various strain rates. Four parameter Ogden model and Mooney Rivlin model are used to modeling the hyperelastic behavior of polyurea. The viscoelastic behavior is modeled using both a three-parameter standard linear solid (SLS) model and a K-BKZ model. Comparison of the modeling results with experiments shows that Odgen and SLS model can more accurately predict the behavior of polyurea. The material parameters of the model are found by curve fitting of the proposed model to the uniaxial compression test data. The proposed model can closely reproduce the stress-strain behavior of polyurea for strain rates up to 6500 /s.

Keywords: constitutive modelling, ogden model, polyurea, SLS model, uniaxial compression test

Procedia PDF Downloads 232
4646 Shaking Table Test and Seismic Performance Evaluation of Spring Viscous Damper Cable System

Authors: Asad Naeem, Jinkoo Kim

Abstract:

This research proposes a self-centering passive damping system consisting of a spring viscous damper linked with a preloaded tendon. The seismic performance of the spring viscous damper is evaluated by pseudo-dynamic tests, and the results are used for the formulation of an analytical model of the damper in the structural analysis program. The shaking table tests of a two-story steel frame installed with the proposed damping system are carried out using five different earthquake records. The results from the shaking table tests are verified by numerical simulation of the retrofitted structure. The results obtained from experiments and numerical simulations demonstrate that the proposed damping system with self-centering capability is effective in reducing earthquake-induced displacement and member forces.

Keywords: seismic retrofit, spring viscous damper, shaking table test, earthquake resistant structures

Procedia PDF Downloads 172
4645 Radial Fuel Injection Computational Fluid Dynamics Model for a Compression Ignition Two-Stroke Opposed Piston Engine

Authors: Tytus Tulwin, Rafal Sochaczewski, Ksenia Siadkowska

Abstract:

Designing a new engine requires a large number of different cases to be considered. Especially different injector parameters and combustion chamber geometries. This is essential when developing an engine with unconventional build – compression ignition, two-stroke operating with direct side injection. Computational Fluid Dynamics modelling allows to test those different conditions and seek for the best conditions with correct combustion. This research presents the combustion results for different injector and combustion chamber cases. The shape of combustion chamber is different than for conventional engines as it requires side injection. This completely changes the optimal shape for the given condition compared to standard automotive heart shaped combustion chamber. Because the injection is not symmetrical there is a strong influence of cylinder swirl and piston motion on the injected fuel stream. The results present the fuel injection phenomena allowing to predict the right injection parameters for a maximum combustion efficiency and minimum piston heat loads. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: CFD, combustion, injection, opposed piston

Procedia PDF Downloads 265
4644 Overall Stability of Welded Q460GJ Steel Box Columns: Experimental Study and Numerical Simulations

Authors: Zhou Xiong, Kang Shao Bo, Yang Bo

Abstract:

To date, high-performance structural steel has been widely used for columns in construction practices due to its significant advantages over conventional steel. However, the same design approach with conventional steel columns is still adopted in the design of high-performance steel columns. As a result, its superior properties cannot be fully considered in design. This paper conducts a test and finite element analysis on the overall stability behaviour of welded Q460GJ steel box columns. In the test, four steel columns with different slenderness and width-to-thickness ratio were compressed under an axial compression testing machine. And finite element models were established in which material nonlinearity and residual stress distributions of test columns were included. Then, comparisons were made between test results and finite element result, it showed that finite element analysis results are agree well with the test result. It means that the test and finite element model are reliable. Then, we compared the test result with the design value calculated by current code, the result showed that Q460GJ steel box columns have the higher overall buckling capacity than the design value. It is necessary to update the design curves for Q460GJ steel columns so that the overall stability capacity of Q460GJ box columns can be designed appropriately.

Keywords: axial compression, box columns, global buckling, numerical simulations, Q460GJ steel

Procedia PDF Downloads 395
4643 Electronic Device Robustness against Electrostatic Discharges

Authors: Clara Oliver, Oibar Martinez

Abstract:

This paper is intended to reveal the severity of electrostatic discharge (ESD) effects in electronic and optoelectronic devices by performing sensitivity tests based on Human Body Model (HBM) standard. We explain here the HBM standard in detail together with the typical failure modes associated with electrostatic discharges. In addition, a prototype of electrostatic charge generator has been designed, fabricated, and verified to stress electronic devices, which features a compact high voltage source. This prototype is inexpensive and enables one to do a battery of pre-compliance tests aimed at detecting unexpected weaknesses to static discharges at the component level. Some tests with different devices were performed to illustrate the behavior of the proposed generator. A set of discharges was applied according to the HBM standard to commercially available bipolar transistors, complementary metal-oxide-semiconductor transistors and light emitting diodes. It is observed that high current and voltage ratings in electronic devices not necessarily provide a guarantee that the device will withstand high levels of electrostatic discharges. We have also compared the result obtained by performing the sensitivity tests based on HBM with a real discharge generated by a human. For this purpose, the charge accumulated in the person is monitored, and a direct discharge against the devices is generated by touching them. Every test has been performed under controlled relative humidity conditions. It is believed that this paper can be of interest for research teams involved in the development of electronic and optoelectronic devices which need to verify the reliability of their devices in terms of robustness to electrostatic discharges.

Keywords: human body model, electrostatic discharge, sensitivity tests, static charge monitoring

Procedia PDF Downloads 139
4642 Experimental and Numerical Analysis of Mustafa Paşa Mosque in Skopje

Authors: Ozden Saygili, Eser Cakti

Abstract:

The masonry building stock in Istanbul and in other cities of Turkey are exposed to significant earthquake hazard. Determination of the safety of masonry structures against earthquakes is a complex challenge. This study deals with experimental tests and non-linear dynamic analysis of masonry structures modeled through discrete element method. The 1:10 scale model of Mustafa Paşa Mosque was constructed and the data were obtained from the sensors on it during its testing on the shake table. The results were used in the calibration/validation of the numerical model created on the basis of the 1:10 scale model built for shake table testing. 3D distinct element model was developed that represents the linear and nonlinear behavior of the shake table model as closely as possible during experimental tests. Results of numerical analyses with those from the experimental program were compared and discussed.

Keywords: dynamic analysis, non-linear modeling, shake table tests, masonry

Procedia PDF Downloads 414
4641 Evaluation of Drilling Performance through Bit-Rock Interaction Using Passive Vibration Assisted Rotation Drilling (PVARD) Tool

Authors: Md. Shaheen Shah, Abdelsalam Abugharara, Dipesh Maharjan, Syed Imtiaz, Stephen Butt

Abstract:

Drilling performance is an essential goal in petroleum and mining industry. Drilling rate of penetration (ROP), which is inversely proportional to the mechanical specific energy (MSE) is influenced by numerous factors among which are the applied parameter: torque (T), weight on bit (WOB), fluid flow rate, revolution per minute (rpm), rock related parameters: rock type, rock homogeneousness, rock anisotropy orientation, and mechanical parameters: bit type, configuration of the bottom hole assembly (BHA). This paper is focused on studying the drilling performance by implementing a passive vibration assisted rotary drilling tool (pVARD) as part of the BHA through using different bit types: coring bit, roller cone bit, and PDC bit and various rock types: rock-like material, granite, sandstone, etc. The results of this study aim to produce a pVARD index for optimal drilling performance considering the recommendations of the pVARD’s spring compression tests and stress-strain analysis of rock samples conducted prior to drilling experiments, analyzing the cutting size distribution, and evaluating the applied drilling parameters as a function of WOB. These results are compared with those obtained from drilling without pVARD, which represents the typical rigid BHA of the conventional drilling.

Keywords: BHA, drilling performance, MSE, pVARD, rate of penetration, ROP, tensile and shear fractures, unconfined compressive strength

Procedia PDF Downloads 141
4640 Comparison of Visual Field Tests in Glaucoma Patients with a Central Visual Field Defect

Authors: Hye-Young Shin, Hae-Young Lopilly Park, Chan Kee Park

Abstract:

We compared the 24-2 and 10-2 visual fields (VFs) and investigate the degree of discrepancy between the two tests in glaucomatous eyes with central VF defects. In all, 99 eyes of 99 glaucoma patients who underwent both the 24-2 VF and 10-2 VF tests within 6 months were enrolled retrospectively. Glaucomatous eyes involving a central VF defect were divided into three groups based on the average total deviation (TD) of 12 central points in the 24-2 VF test (N = 33, in each group): group 1 (tercile with the highest TD), group 2 (intermediate TD), and group 3 (lowest TD). The TD difference was calculated by subtracting the average TD of the 10-2 VF test from the average TD of 12 central points in the 24-2 VF test. The absolute central TD difference in each quadrant was defined as the absolute value of the TD value obtained by subtracting the average TD of four central points in the 10-2 VF test from the innermost TD in the 24-2 VF test in each quadrant. The TD differences differed significantly between group 3 and groups 1 and 2 (P < 0.001). In the superonasal quadrant, the absolute central TD difference was significantly greater in group 2 than in group 1 (P < 0.05). In the superotemporal quadrant, the absolute central TD difference was significantly greater in group 3 than in groups 1 and 2 (P < 0.001). Our results indicate that the results of VF tests for different VFs can be inconsistent, depending on the degree of central defects and the VF quadrant.

Keywords: central visual field defect, glaucoma, 10-2 visual field, 24-2 visual field

Procedia PDF Downloads 166
4639 Stabilisation of a Soft Soil by Alkaline Activation

Authors: Mohammadjavad Yaghoubi, Arul Arulrajah, Mahdi M. Disfani, Suksun Horpibulsuk, Myint W. Bo, Stephen P. Darmawan

Abstract:

This paper investigates the changes in the strength development of a high water content soft soil stabilised with alkaline activation of fly ash (FA) to use in deep soil mixing (DSM) technology. The content of FA was 20% by dry mass of soil, and the alkaline activator was sodium silicate (Na2SiO3). Samples were cured for 3, 7, 14, 28 and 56 days to evaluate the effect of curing time on strength development. To study the effect of adding slag (S) to the mixture on the strength development, 5% S was replaced with FA. In addition, the effect of the initial unit weight of samples on strength development was studied by preparing specimens with two different static compaction stresses. This was to replicate the field conditions where during implementing the DSM technique, the pressure on the soil while being mixed, increases with depth. Unconfined compression strength (UCS), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) tests were conducted on the specimens. The results show that adding S to the FA based geopolymer activated by Na2SiO3 decreases the strength. Furthermore, samples prepared at a higher unit weight demonstrate greater strengths. Moreover, samples prepared at lower unit weight reached their final strength at about 14 days of curing, whereas the strength development continues to 56 days for specimens prepared at a higher unit weight.

Keywords: alkaline activation, curing time, fly ash, geopolymer, slag

Procedia PDF Downloads 334
4638 Contact Temperature of Sliding Surfaces in AISI 316 Austenitic Stainless Steel During PIN on Disk Dry Wear Testing

Authors: Dler Abdullah Ahmed, Zozan Ahmed Mohammed

Abstract:

This study looked into contact surface temperature during a pin-on-disk test. Friction and wear between sliding surfaces raised the temperature differential between the contact surface and ambient temperatures Tdiff. Tdiff was significantly influenced by wear test variables. Tdiff rose with the increase of sliding speed and applied load while dropped with the increase in ambient temperature. The highest Tdiff was 289°C during the tests at room temperature and 2.5 m/s sliding speed, while the minimum was only 24 °C during the tests at 400°C and 0.5 m/s. However, the maximum contact temperature Tmax was found during tests conducted at high ambient temperatures. The Tmax was estimated based on the theoretical equation. The comparison of experimental and theoretical Tmax data revealed good agreement.

Keywords: pin on disk test, contact temperature, wear, sliding surface, friction, ambient temperature

Procedia PDF Downloads 64
4637 Ecotoxicological Safety of Wastewater Treated with Lignocellulosic Adsorbents

Authors: Luísa P. Cruz-Lopes, Artur Figueirinha, Isabel Brás, Bruno Esteves

Abstract:

Portugal is an important wine and olive oil producer, activities which generate a high quantity of residues commonly called grape stalks and olive cake, respectively. In this work grape stalks and olive cake were used as lignocellulosic adsorbents for wastewater containing lead treatment. To attain a better knowledge of the factors that could influence the quality of the treated wastewater, a chemical characterization of the materials used in the treatment was done. To access the ecotoxicological safety of the treated wastewater, several tests were performed. The results of the toxicity test show that the samples leachate has a mild effect on the living models tested. The tests performed in lemna and bacteria were the most sensible to toxicity effects of the samples. The results obtained in this work evidenced the importance of use of simple and fast toxicity tests to predict impacts in the environment.

Keywords: chemical composition, lignocellulosic residues, ecotoxicological safety, wastewater

Procedia PDF Downloads 274
4636 Fatigue Tests of New Assembly Bolt Connections for Perspective Temporary Steel Railway Bridges

Authors: Marcela Karmazínová, Michal Štrba, Miln Pilgr

Abstract:

The paper deals with the problems of the actual behavior, failure mechanism and load-carrying capacity of the special bolt connection developed and intended for the assembly connections of truss main girders of perspective railway temporary steel bridges. Within the framework of this problem solution, several types of structural details of assembly joints have been considered as the conceptual structural design. Based on the preliminary evaluation of advantages or disadvantages of these ones, in principle two basic structural configurations so-called “tooth” and “splice-plate” connections have been selected for the subsequent detailed investigation. This investigation is mainly based on the experimental verification of the actual behavior, strain and failure mechanism and corresponding strength of the connection, and on its numerical modeling using FEM. This paper is focused only on the cyclic loading (fatigue) tests results of “splice-plate” connections and their evaluation, which have already been finished. Simultaneously with the fatigue tests, the static loading tests have been realized too, but these ones, as well as FEM numerical modeling, are not the subject of this paper.

Keywords: Bolt assembly connection, cyclic loading, failure mechanisms, fatigue strength, steel structure, structural detail category, temporary railway bridge

Procedia PDF Downloads 438
4635 Performance of the New Laboratory-Based Algorithm for HIV Diagnosis in Southwestern China

Authors: Yanhua Zhao, Chenli Rao, Dongdong Li, Chuanmin Tao

Abstract:

The Chinese Centers for Disease Control and Prevention (CCDC) issued a new laboratory-based algorithm for HIV diagnosis on April 2016, which initially screens with a combination HIV-1/HIV-2 antigen/antibody fourth-generation immunoassay (IA) followed, when reactive, an HIV-1/HIV-2 undifferentiated antibody IA in duplicate. Reactive specimens with concordant results undergo supplemental tests with western blots, or HIV-1 nucleic acid tests (NATs) and non-reactive specimens with discordant results receive HIV-1 NATs or p24 antigen tests or 2-4 weeks follow-up tests. However, little data evaluating the application of the new algorithm have been reported to date. The study was to evaluate the performance of new laboratory-based HIV diagnostic algorithm in an inpatient population of Southwest China over the initial 6 months by compared with the old algorithm. Plasma specimens collected from inpatients from May 1, 2016, to October 31, 2016, are submitted to the laboratory for screening HIV infection performed by both the new HIV testing algorithm and the old version. The sensitivity and specificity of the algorithms and the difference of the categorized numbers of plasmas were calculated. Under the new algorithm for HIV diagnosis, 170 of the total 52 749 plasma specimens were confirmed as positively HIV-infected (0.32%). The sensitivity and specificity of the new algorithm were 100% (170/170) and 100% (52 579/52 579), respectively; while 167 HIV-1 positive specimens were identified by the old algorithm with sensitivity 98.24% (167/170) and 100% (52 579/52 579), respectively. Three acute HIV-1 infections (AHIs) and two early HIV-1 infections (EHIs) were identified by the new algorithm; the former was missed by old procedure. Compared with the old version, the new algorithm produced fewer WB-indeterminate results (2 vs. 16, p = 0.001), which led to fewer follow-up tests. Therefore, the new HIV testing algorithm is more sensitive for detecting acute HIV-1 infections with maintaining the ability to verify the established HIV-1 infections and can dramatically decrease the greater number of WB-indeterminate specimens.

Keywords: algorithm, diagnosis, HIV, laboratory

Procedia PDF Downloads 389
4634 Experimental Study on the Variation of Young's Modulus of Hollow Clay Brick Obtained from Static and Dynamic Tests

Authors: M. Aboudalle, Le Btth, M. Sari, F. Meftah

Abstract:

In parallel with the appearance of new materials, brick masonry had and still has an essential part of the construction market today, with new technical challenges in designing bricks to meet additional requirements. Being used in structural applications, predicting the performance of clay brick masonry allows a significant cost reduction, in terms of practical experimentation. The behavior of masonry walls depends on the behavior of their elementary components, such as bricks, joints, and coatings. Therefore, it is necessary to consider it at different scales (from the scale of the intrinsic material to the real scale of the wall) and then to develop appropriate models, using numerical simulations. The work presented in this paper focuses on the mechanical characterization of the terracotta material at ambient temperature. As a result, the static Young’s modulus obtained from the flexural test shows different values in comparison with the compression test, as well as with the dynamic Young’s modulus obtained from the Impulse excitation of vibration test. Moreover, the Young's modulus varies according to the direction in which samples are extracted, where the values in the extrusion direction diverge from the ones in the orthogonal directions. Based on these results, hollow bricks can be considered as transversely isotropic bimodulus material.

Keywords: bimodulus material, hollow clay brick, ımpulse excitation of vibration, transversely isotropic material, young’s modulus

Procedia PDF Downloads 189
4633 The Practice of Teaching Chemistry by the Application of Online Tests

Authors: Nikolina Ribarić

Abstract:

E-learning is most commonly defined as a set of applications and processes, such as Web-based learning, computer-based learning, virtual classrooms, and digital collaboration, that enable access to instructional content through a variety of electronic media. The main goal of an e-learning system is learning, and the way to evaluate the impact of an e-learning system is by examining whether students learn effectively with the help of that system. Testmoz is a program for online preparation of knowledge evaluation assignments. The program provides teachers with computer support during the design of assignments and evaluating them. Students can review and solve assignments and also check the correctness of their solutions. Research into the increase of motivation by the practice of providing teaching content by applying online tests prepared in the Testmoz program was carried out with students of the 8th grade of Ljubo Babić Primary School in Jastrebarsko. The students took the tests in their free time, from home, for an unlimited number of times. SPSS was used to process the data obtained by the research instruments. The results of the research showed that students preferred to practice teaching content and achieved better educational results in chemistry when they had access to online tests for repetition and practicing in relation to subject content which was checked after repetition and practicing in "the classical way" -i.e., solving assignments in a workbook or writing assignments in worksheets.

Keywords: chemistry class, e-learning, motivation, Testmoz

Procedia PDF Downloads 151
4632 The Follower Robots Tested in Different Lighting Condition and Improved Capabilities

Authors: Sultan Muhammed Fatih Apaydin

Abstract:

In this study, two types of robot were examined as being pioneer robot and follower robot for improving of the capabilities of tracking robots. Robots continue to tracking each other and measurement of the follow-up distance between them is very important for improvements to be applied. It was achieved that the follower robot follows the pioneer robot in line with intended goals. The tests were applied to the robots in various grounds and environments in point of performance and necessary improvements were implemented by measuring the results of these tests.

Keywords: mobile robot, remote and autonomous control, infra-red sensors, arduino

Procedia PDF Downloads 559
4631 Biological Evaluation of Some Modern Titanium Alloys for Dental Implants

Authors: Roxana Maria Angelescu, Raluca Ion, Anişoara Cîmpean, Doina Răducanu, Mariana Lucia Angelescu

Abstract:

In an attempt to find titanium alloys that fulfill the requirements for mechanical and biological compatibility, laboratory and material related tests were performed during the years, as well as preclinical and clinical trials. The multidisciplinary scientific research facilitates the global evaluation of biocompatibility and osseointegration regarding the dental implant alloys. The aim of this study was to determine the in vitro biocompatibility of three modern titanium alloys: Ti-31.7Nb-6.21Zr-1.4Fe-0.16O (wt%), Ti-36.5Nb-4.5Zr-3Ta-0.16O (wt%) and Ti-20Nb-5Ta (wt%), in order to establish whether the use of these titanium alloys can have any toxic or injurious effects on biological systems. The commonly used Ti-6Al-4V alloy was investigated as a reference material. The behavior of MC3T3-E1 pre-osteoblasts on all these four metallic surfaces was evaluated. The tests of immunofluorescence, cytotoxicity and cellular proliferation lead to the conclusion that the newly-developed titanium alloys elicit a good cellular response in terms of cellular survival, adhesion, morphology and proliferative potential as well.

Keywords: biocompatibility tests, dental implants, titanium alloys, biomedical engineering

Procedia PDF Downloads 494
4630 Experimental Study and Numerical Modelling of Failure of Rocks Typical for Kuzbass Coal Basin

Authors: Mikhail O. Eremin

Abstract:

Present work is devoted to experimental study and numerical modelling of failure of rocks typical for Kuzbass coal basin (Russia). The main goal was to define strength and deformation characteristics of rocks on the base of uniaxial compression and three-point bending loadings and then to build a mathematical model of failure process for both types of loading. Depending on particular physical-mechanical characteristics typical rocks of Kuzbass coal basin (sandstones, siltstones, mudstones, etc. of different series – Kolchuginsk, Tarbagansk, Balohonsk) manifest brittle and quasi-brittle character of failure. The strength characteristics for both tension and compression are found. Other characteristics are also found from the experiment or taken from literature reviews. On the base of obtained characteristics and structure (obtained from microscopy) the mathematical and structural models are built and numerical modelling of failure under different types of loading is carried out. Effective characteristics obtained from modelling and character of failure correspond to experiment and thus, the mathematical model was verified. An Instron 1185 machine was used to carry out the experiments. Mathematical model includes fundamental conservation laws of solid mechanics – mass, impulse, energy. Each rock has a sufficiently anisotropic structure, however, each crystallite might be considered as isotropic and then a whole rock model has a quasi-isotropic structure. This idea gives an opportunity to use the Hooke’s law inside of each crystallite and thus explicitly accounting for the anisotropy of rocks and the stress-strain state at loading. Inelastic behavior is described in frameworks of two different models: von Mises yield criterion and modified Drucker-Prager yield criterion. The damage accumulation theory is also implemented in order to describe a failure process. Obtained effective characteristics of rocks are used then for modelling of rock mass evolution when mining is carried out both by an open-pit or underground opening.

Keywords: damage accumulation, Drucker-Prager yield criterion, failure, mathematical modelling, three-point bending, uniaxial compression

Procedia PDF Downloads 166
4629 Data Recording for Remote Monitoring of Autonomous Vehicles

Authors: Rong-Terng Juang

Abstract:

Autonomous vehicles offer the possibility of significant benefits to social welfare. However, fully automated cars might not be going to happen in the near further. To speed the adoption of the self-driving technologies, many governments worldwide are passing laws requiring data recorders for the testing of autonomous vehicles. Currently, the self-driving vehicle, (e.g., shuttle bus) has to be monitored from a remote control center. When an autonomous vehicle encounters an unexpected driving environment, such as road construction or an obstruction, it should request assistance from a remote operator. Nevertheless, large amounts of data, including images, radar and lidar data, etc., have to be transmitted from the vehicle to the remote center. Therefore, this paper proposes a data compression method of in-vehicle networks for remote monitoring of autonomous vehicles. Firstly, the time-series data are rearranged into a multi-dimensional signal space. Upon the arrival, for controller area networks (CAN), the new data are mapped onto a time-data two-dimensional space associated with the specific CAN identity. Secondly, the data are sampled based on differential sampling. Finally, the whole set of data are encoded using existing algorithms such as Huffman, arithmetic and codebook encoding methods. To evaluate system performance, the proposed method was deployed on an in-house built autonomous vehicle. The testing results show that the amount of data can be reduced as much as 1/7 compared to the raw data.

Keywords: autonomous vehicle, data compression, remote monitoring, controller area networks (CAN), Lidar

Procedia PDF Downloads 152
4628 A Rapid Reinforcement Technique for Columns by Carbon Fiber/Epoxy Composite Materials

Authors: Faruk Elaldi

Abstract:

There are lots of concrete columns and beams around in our living cities. Those columns are mostly open to aggressive environmental conditions and earthquakes. Mostly, they are deteriorated by sand, wind, humidity and other external applications at times. After a while, these beams and columns need to be repaired. Within the scope of this study, for reinforcement of concrete columns, samples were designed and fabricated to be strengthened with carbon fiber reinforced composite materials and conventional concrete encapsulation and followed by, and they were put into the axial compression test to determine load-carrying performance before column failure. In the first stage of this study, concrete column design and mold designs were completed for a certain load-carrying capacity. Later, the columns were exposed to environmental deterioration in order to reduce load-carrying capacity. To reinforce these damaged columns, two methods were applied, “concrete encapsulation” and the other one “wrapping with carbon fiber /epoxy” material. In the second stage of the study, the reinforced columns were applied to the axial compression test and the results obtained were analyzed. Cost and load-carrying performance comparisons were made and it was found that even though the carbon fiber/epoxy reinforced method is more expensive, this method enhances higher load-carrying capacity and reduces the reinforcement processing period.

Keywords: column reinforcement, composite, earth quake, carbon fiber reinforced

Procedia PDF Downloads 173
4627 Finite Element Modelling of Mechanical Connector in Steel Helical Piles

Authors: Ramon Omar Rosales-Espinoza

Abstract:

Pile-to-pile mechanical connections are used if the depth of the soil layers with sufficient bearing strength exceeds the original (“leading”) pile length, with the additional pile segment being termed “extension” pile. Mechanical connectors permit a safe transmission of forces from leading to extension pile while meeting strength and serviceability requirements. Common types of connectors consist of an assembly of sleeve-type external couplers, bolts, pins, and other mechanical interlock devices that ensure the transmission of compressive, tensile, torsional and bending stresses between leading and extension pile segments. While welded connections allow for a relatively simple structural design, mechanical connections are advantageous over welded connections because they lead to shorter installation times and significant cost reductions since specialized workmanship and inspection activities are not required. However, common practices followed to design mechanical connectors neglect important aspects of the assembly response, such as stress concentration around pin/bolt holes, torsional stresses from the installation process, and interaction between the forces at the installation (torsion), service (compression/tension-bending), and removal stages (torsion). This translates into potentially unsatisfactory designs in terms of the ultimate and service limit states, exhibiting either reduced strength or excessive deformations. In this study, the experimental response under compressive forces of a type of mechanical connector is presented, in terms of strength, deformation and failure modes. The tests revealed that the type of connector used can safely transmit forces from pile to pile. Using the results from the compressive tests, an analysis model was developed using the finite element (FE) method to study the interaction of forces under installation and service stages of a typical mechanical connector. The response of the analysis model is used to identify potential areas for design optimization, including size, gap between leading and extension piles, number of pin/bolts, hole sizes, and material properties. The results show the design of mechanical connectors should take into account the interaction of forces present at every stage of their life cycle, and that the torsional stresses occurring during installation are critical for the safety of the assembly.

Keywords: piles, FEA, steel, mechanical connector

Procedia PDF Downloads 258
4626 Heat Pipe Production and Life Performance Tests in Geosynchronous Telecom Satellites

Authors: Erkam Arslantas

Abstract:

Heat pipes one of the thermal control elements are used in communication satellites. A selection of the heat pipes of satellite thermal design will be emphasized how important and effective it is. In this article, manufacturing and performance control tests of heat pipes are reviewed from the current literature. The heat pipe is expected to function efficiently during all missions of the spacecraft from Beginning of Life (BOL) to End of Life (EOL). There are many parameters that are evaluated in manufacturing and performance control tests of the heat pipes which are used in satellites. These parameters are pressure design, leakage, noncondensable gas level (N.C.G), sine vibration, shock and static load capabilities, aging, bending, proof, final test etc. These parameters will be explained separately for the heat pipes in this review article and young researches working on the thermal control system of Geosynchronous Satellites systems can find easily related information in this article.

Keywords: communication satellite, heat pipe, performance test, thermal control

Procedia PDF Downloads 156