Search results for: performance assessment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17610

Search results for: performance assessment

13320 The Business of American Football: The Kicker Position and Performance to Salary Correlation

Authors: James R. Ogden, Denise T. Ogden

Abstract:

The National Football League (USA) is the largest sporting business in the United States. In order to generate revenue, it is important that NFL teams win. Coaches, owners and general managers of the NFL teams want to create powerful teams with reliable players and they are willing to spend large amounts of money in order to do so. This research looks at one of the National Football League’s key players, the kicker. It would be intuitively obvious to suggest that those kickers who perform the best get paid the most. In this paper the researchers performed a correlation and regression analysis to determine if there is a correlation between an NFL kicker’s field goal percentage and salary. The research proposition was that higher performing kickers receive higher salaries. The data suggest that there is no correlation between salary and on-field performance.

Keywords: business management, sports marketing, tourism, American football

Procedia PDF Downloads 305
13319 Ghanaian Men and the Performance of Masculinity: Negotiating Gender-Based Violence in Contemporary Ghana

Authors: Isaac Dery

Abstract:

Masculinity studies have gained much purchase globally in recent decades, especially the sense in which they have produced discursive space for interdisciplinary investigations. In the light of this, there is increasing consensus among commentators that different masculinities co-exist within a particular social space. There is also a growing recognition and awareness of the merits in examining the conceptual underpinnings of masculinity (especially hegemonic masculinity) its variously contested meanings, and values, and how it contributes to violent behaviours by men. The consequences of hegemonic masculinity and its violent and traumatic impacts on men and women have been evident. The emerging call to imagine more egalitarian and complex masculinities among men has been at the centre of various discussions on the fight against violence. Some theorists argue that this violence emanates from men’s drive to live up to impossible ideals of “masculinity.” Seeking to make the connections between masculinity and gender-based violence, this paper discusses the imperative and possibilities of engaging men/boys as key actors in the campaign against violence. It is worth re-examining the ways in which men’s embodiment and performance of dangerous masculinities contribute towards violence. This paper therefore argues that empowering men to understand the implications of certain behaviours is the key in an attempt to arrest violence and its traumatic cost. This paper is situated within the thesis that there is a relationship between men’s embodiment and performance of dominant forms of masculinities, on the one hand, and violence against women and other men, on the other. Based on research conducted in northern Ghana on domestic violence, it is the argument of this paper that in order to contain violence against women, conditions of gender construction need to be problematized in a manner that will transform fundamental understandings of gender relations in society.

Keywords: violence against women, masculinities, Ghana, gender

Procedia PDF Downloads 500
13318 Prediction of PM₂.₅ Concentration in Ulaanbaatar with Deep Learning Models

Authors: Suriya

Abstract:

Rapid socio-economic development and urbanization have led to an increasingly serious air pollution problem in Ulaanbaatar (UB), the capital of Mongolia. PM₂.₅ pollution has become the most pressing aspect of UB air pollution. Therefore, monitoring and predicting PM₂.₅ concentration in UB is of great significance for the health of the local people and environmental management. As of yet, very few studies have used models to predict PM₂.₅ concentrations in UB. Using data from 0:00 on June 1, 2018, to 23:00 on April 30, 2020, we proposed two deep learning models based on Bayesian-optimized LSTM (Bayes-LSTM) and CNN-LSTM. We utilized hourly observed data, including Himawari8 (H8) aerosol optical depth (AOD), meteorology, and PM₂.₅ concentration, as input for the prediction of PM₂.₅ concentrations. The correlation strengths between meteorology, AOD, and PM₂.₅ were analyzed using the gray correlation analysis method; the comparison of the performance improvement of the model by using the AOD input value was tested, and the performance of these models was evaluated using mean absolute error (MAE) and root mean square error (RMSE). The prediction accuracies of Bayes-LSTM and CNN-LSTM deep learning models were both improved when AOD was included as an input parameter. Improvement of the prediction accuracy of the CNN-LSTM model was particularly enhanced in the non-heating season; in the heating season, the prediction accuracy of the Bayes-LSTM model slightly improved, while the prediction accuracy of the CNN-LSTM model slightly decreased. We propose two novel deep learning models for PM₂.₅ concentration prediction in UB, Bayes-LSTM, and CNN-LSTM deep learning models. Pioneering the use of AOD data from H8 and demonstrating the inclusion of AOD input data improves the performance of our two proposed deep learning models.

Keywords: deep learning, AOD, PM2.5, prediction, Ulaanbaatar

Procedia PDF Downloads 48
13317 Girls' Underperformance in Science: From Biological Determinism and Feminist Perspectives

Authors: Raza Ullah, Hazir Ullah

Abstract:

There is ample evidence that reveals the outstanding performance of girls in a different range of subjects. However, it is pertinent to mention here that boys have historically dominated girls, particularly in math, physics, and technological subjects across the globe with the exception of few developed countries. This article examines the reasons why girls are underdog in STEM subjects. The article critically analyzes two main approaches towards gender and education: biological determinist and feminist. This article highlights that social factors influencing girls performance in STEM subjects have not analyzed critically, and girls underachieving in science has linked with biological and sex differences. The article concludes that the underperformance of girls in a STEM subject is the direct response of socio-cultural factors. Thus, socio-cultural factors are responsible for the dearth of girls in STEM subjects.

Keywords: gender, underperformance, STEM, education, sex

Procedia PDF Downloads 162
13316 Tuning Cubic Equations of State for Supercritical Water Applications

Authors: Shyh Ming Chern

Abstract:

Cubic equations of state (EoS), popular due to their simple mathematical form, ease of use, semi-theoretical nature and, reasonable accuracy are normally fitted to vapor-liquid equilibrium P-v-T data. As a result, They often show poor accuracy in the region near and above the critical point. In this study, the performance of the renowned Peng-Robinson (PR) and Patel-Teja (PT) EoS’s around the critical area has been examined against the P-v-T data of water. Both of them display large deviations at critical point. For instance, PR-EoS exhibits discrepancies as high as 47% for the specific volume, 28% for the enthalpy departure and 43% for the entropy departure at critical point. It is shown that incorporating P-v-T data of the supercritical region into the retuning of a cubic EoS can improve its performance above the critical point dramatically. Adopting a retuned acentric factor of 0.5491 instead of its genuine value of 0.344 for water in PR-EoS and a new F of 0.8854 instead of its original value of 0.6898 for water in PT-EoS reduces the discrepancies to about one third or less.

Keywords: equation of state, EoS, supercritical water, SCW

Procedia PDF Downloads 536
13315 Random Access in IoT Using Naïve Bayes Classification

Authors: Alhusein Almahjoub, Dongyu Qiu

Abstract:

This paper deals with the random access procedure in next-generation networks and presents the solution to reduce total service time (TST) which is one of the most important performance metrics in current and future internet of things (IoT) based networks. The proposed solution focuses on the calculation of optimal transmission probability which maximizes the success probability and reduces TST. It uses the information of several idle preambles in every time slot, and based on it, it estimates the number of backlogged IoT devices using Naïve Bayes estimation which is a type of supervised learning in the machine learning domain. The estimation of backlogged devices is necessary since optimal transmission probability depends on it and the eNodeB does not have information about it. The simulations are carried out in MATLAB which verify that the proposed solution gives excellent performance.

Keywords: random access, LTE/LTE-A, 5G, machine learning, Naïve Bayes estimation

Procedia PDF Downloads 145
13314 A Conceptual Framework for Integrating Musical Instrument Digital Interface Composition in the Music Classroom

Authors: Aditi Kashi

Abstract:

While educational technologies have taken great strides, especially in Musical Instrument Digital Interface (MIDI) composition, teachers across the world are still adjusting to incorporate such technology into their curricula. While using MIDI in the classroom has become more common, limited class time and a strong focus on performance have made composition a lesser priority. The balance between music theory, performance time, and composition learning is delicate and difficult to maintain for many music educators. This makes including MIDI in the classroom. To address this issue, this paper aims to outline a general conceptual framework centered around a key element of music theory to integrate MIDI composition into the music classroom to not only introduce students to digital composition but also enhance their understanding of music theory and its applicability.

Keywords: educational framework, education technology, MIDI, music education

Procedia PDF Downloads 86
13313 2.5D Face Recognition Using Gabor Discrete Cosine Transform

Authors: Ali Cheraghian, Farshid Hajati, Soheila Gheisari, Yongsheng Gao

Abstract:

In this paper, we present a novel 2.5D face recognition method based on Gabor Discrete Cosine Transform (GDCT). In the proposed method, the Gabor filter is applied to extract feature vectors from the texture and the depth information. Then, Discrete Cosine Transform (DCT) is used for dimensionality and redundancy reduction to improve computational efficiency. The system is combined texture and depth information in the decision level, which presents higher performance compared to methods, which use texture and depth information, separately. The proposed algorithm is examined on publically available Bosphorus database including models with pose variation. The experimental results show that the proposed method has a higher performance compared to the benchmark.

Keywords: Gabor filter, discrete cosine transform, 2.5d face recognition, pose

Procedia PDF Downloads 328
13312 Voltage Stability Margin-Based Approach for Placement of Distributed Generators in Power Systems

Authors: Oludamilare Bode Adewuyi, Yanxia Sun, Isaiah Gbadegesin Adebayo

Abstract:

Voltage stability analysis is crucial to the reliable and economic operation of power systems. The power system of developing nations is more susceptible to failures due to the continuously increasing load demand, which is not matched with generation increase and efficient transmission infrastructures. Thus, most power systems are heavily stressed, and the planning of extra generation from distributed generation sources needs to be efficiently done so as to ensure the security of the power system. Some voltage stability index-based approach for DG siting has been reported in the literature. However, most of the existing voltage stability indices, though sufficient, are found to be inaccurate, especially for overloaded power systems. In this paper, the performance of a relatively different approach using a line voltage stability margin indicator, which has proven to have better accuracy, has been presented and compared with a conventional line voltage stability index for DG siting using the Nigerian 28 bus system. Critical boundary index (CBI) for voltage stability margin estimation was deployed to identify suitable locations for DG placement, and the performance was compared with DG placement using the Novel Line Stability Index (NLSI) approach. From the simulation results, both CBI and NLSI agreed greatly on suitable locations for DG on the test system; while CBI identified bus 18 as the most suitable at system overload, NLSI identified bus 8 to be the most suitable. Considering the effect of the DG placement at the selected buses on the voltage magnitude profile, the result shows that the DG placed on bus 18 identified by CBI improved the performance of the power system better.

Keywords: voltage stability analysis, voltage collapse, voltage stability index, distributed generation

Procedia PDF Downloads 93
13311 Leading to Attract, Retain, Motivate, Inspire your Employees to Peak Performance

Authors: David Suson

Abstract:

In today's work environment, it becomes harder and harder to attract top talent, motivate them to achieve your goals, create a collaborative work environment and then retain them. It is especially challenging when you have remote employees, manage virtually, have different personalities, ages, work ethics and especially when there is a lure of better opportunities elsewhere. Leaders want results. All the strategies and tactics in the world won't make a difference if your people don't execute and "follow you into battle". The key to better leadership is motivating your teams to want to execute, want to work harder, want to work as a team, all while improving morale. Anyone can force employees by threatening them. This session teaches a 180-degree approach. Objectives/Outcomes: 1. Learn the 3 ways this leadership approach differs from traditional leadership, 2. Use a simple process to increase engagement and loyalty, 3. Implement strategies to drive performance. The approach being taught inspires, motivates, engages, and helps to attract better employees.

Keywords: leadership, success, communication, skills

Procedia PDF Downloads 134
13310 Mind-Wandering and Attention: Evidence from Behavioral and Subjective Perspective

Authors: Riya Mishra, Trayambak Tiwari, Anju Lata Singh, I. L. Singh, Tara Singh

Abstract:

Decrement in vigilance task performance echoes impediment in effortful attention; here attention fluctuated in the realm of external and internal milieu of a person. To examine this fluctuation across time period, we employed two experiments of vigilance task with variation in thought probing rate, which was embedded in the task. The thought probe varies in terms of <2 minute per thought probe and <4 minute per thought probe during vigilance task. A 2x4 repeated measure factorial design was used. 15 individuals participated in this study with an age range of 20-26 years. It was found that thought probing rate has a negative trend with vigilance task performance whereas the subjective measures of mind-wandering have a positive relation with thought probe rate.

Keywords: criterion response, mental status, mind-wandering, thought probe, vigilance

Procedia PDF Downloads 426
13309 The Promoting of Early Childhood Development in Local Government Child Center

Authors: Vorapoj Promasatayaprot, Sumattana Glangkarn

Abstract:

Background: Early childhood, the first five years of life, is a time of rapid cognitive, linguistic, social, emotional and motor development. This study was descriptive research which the main purpose of this research was to study early childhood development in Child Center of Local Government in order to emphasize the public citizen and communities participate in the Child Development Center. Method: The study designed was Action Research and divided into four steps consisted of (1) Planning (2) Acting (3) Observing and (4) Reflecting. This study was employed the areas and the subjects consisted of 10 committees of the Child Center in Thakhonyang municipality, Kantharawichai District, Maha Sarakham Province, Thailand and 50 representative parents by using the purposive sampling technique. The instrument used in this study were questionnaires. The data were analyzed using descriptive statistic; percentage, mean, standard deviation, maximum value, minimum, median. Qualitative data was collected using the observation and interview and was analysed by content analysis. Results: The results of this research were as follows: The promoting of early childhood development in child center at Thakhonyang Municipality, Kantharawichai District, Maha Sarakham Province, Thailand were 6 procedures ; (1) workshop participation (2) workshop in action plan (3) performing in action plan (4) following supervision (5) self – assessment (6) knowledge sharing seminar. The service model of the Local Fund Health Security in Thailand was passed the qualifications of local fund health security by 6 procedures to be the high potential local fund health security. Conclusion: The key success is that the commission will have to respond the performance at all process of plan to address the issue in the future. Factor of success is to community participate with transparent procedure. Coordination committee should manipulate the child center benefits among stake holders.

Keywords: child center, develop, early childhood development, local government, promote

Procedia PDF Downloads 194
13308 Sexual Cognitive Behavioral Therapy: Psychological Performance and Openness to Experience

Authors: Alireza Monzavi Chaleshtari, Mahnaz Aliakbari Dehkordi, Amin Asadi Hieh, Majid Kazemnezhad

Abstract:

This research was conducted with the aim of determining the effectiveness of sexual cognitive behavioral therapy on psychological performance and openness to experience in women. The type of research was experimental in the form of pre-test-post-test. The statistical population of this research was made up of all working and married women with membership in the researcher's Instagram social network who had problems in marital-sexual relationships (N=900). From the statistical community, which includes working and married women who are members of the researcher's Instagram social network who have problems in marital-sexual relationships, there are 30 people including two groups (15 people in the experimental group and 15 people in the control group) as available sampling and selected randomly. They were placed in two experimental and control groups. The anxiety, stress, and depression scale (DASS) and the Costa and McCree personality questionnaire were used to collect data, and the cognitive behavioral therapy protocol of Dr. Mehrnaz Ali Akbari was used for the treatment sessions. To analyze the data, the covariance test was used in the SPSS22 software environment. The results showed that sexual cognitive behavioral therapy has a positive and significant effect on psychological performance and openness to experience in women. Conclusion: It can be concluded that interventions such as cognitive-behavioral sex can be used to treat marital problems.

Keywords: sexual cognitive behavioral therapy, psychological function, openness to experience, women

Procedia PDF Downloads 78
13307 Performance of AquaCrop Model for Simulating Maize Growth and Yield Under Varying Sowing Dates in Shire Area, North Ethiopia

Authors: Teklay Tesfay, Gebreyesus Brhane Tesfahunegn, Abadi Berhane, Selemawit Girmay

Abstract:

Adjusting the proper sowing date of a crop at a particular location with a changing climate is an essential management option to maximize crop yield. However, determining the optimum sowing date for rainfed maize production through field experimentation requires repeated trials for many years in different weather conditions and crop management. To avoid such long-term experimentation to determine the optimum sowing date, crop models such as AquaCrop are useful. Therefore, the overall objective of this study was to evaluate the performance of AquaCrop model in simulating maize productivity under varying sowing dates. A field experiment was conducted for two consecutive cropping seasons by deploying four maize seed sowing dates in a randomized complete block design with three replications. Input data required to run this model are stored as climate, crop, soil, and management files in the AquaCrop database and adjusted through the user interface. Observed data from separate field experiments was used to calibrate and validate the model. AquaCrop model was validated for its performance in simulating the green canopy and aboveground biomass of maize for the varying sowing dates based on the calibrated parameters. Results of the present study showed that there was a good agreement (an overall R2 =, Ef= d= RMSE =) between measured and simulated values of the canopy cover and biomass yields. Considering the overall values of the statistical test indicators, the performance of the model to predict maize growth and biomass yield was successful, and so this is a valuable tool help for decision-making. Hence, this calibrated and validated model is suggested to use for determining optimum maize crop sowing date for similar climate and soil conditions to the study area, instead of conducting long-term experimentation.

Keywords: AquaCrop model, calibration, validation, simulation

Procedia PDF Downloads 71
13306 Scoring System for the Prognosis of Sepsis Patients in Intensive Care Units

Authors: Javier E. García-Gallo, Nelson J. Fonseca-Ruiz, John F. Duitama-Munoz

Abstract:

Sepsis is a syndrome that occurs with physiological and biochemical abnormalities induced by severe infection and carries a high mortality and morbidity, therefore the severity of its condition must be interpreted quickly. After patient admission in an intensive care unit (ICU), it is necessary to synthesize the large volume of information that is collected from patients in a value that represents the severity of their condition. Traditional severity of illness scores seeks to be applicable to all patient populations, and usually assess in-hospital mortality. However, the use of machine learning techniques and the data of a population that shares a common characteristic could lead to the development of customized mortality prediction scores with better performance. This study presents the development of a score for the one-year mortality prediction of the patients that are admitted to an ICU with a sepsis diagnosis. 5650 ICU admissions extracted from the MIMICIII database were evaluated, divided into two groups: 70% to develop the score and 30% to validate it. Comorbidities, demographics and clinical information of the first 24 hours after the ICU admission were used to develop a mortality prediction score. LASSO (least absolute shrinkage and selection operator) and SGB (Stochastic Gradient Boosting) variable importance methodologies were used to select the set of variables that make up the developed score; each of this variables was dichotomized and a cut-off point that divides the population into two groups with different mean mortalities was found; if the patient is in the group that presents a higher mortality a one is assigned to the particular variable, otherwise a zero is assigned. These binary variables are used in a logistic regression (LR) model, and its coefficients were rounded to the nearest integer. The resulting integers are the point values that make up the score when multiplied with each binary variables and summed. The one-year mortality probability was estimated using the score as the only variable in a LR model. Predictive power of the score, was evaluated using the 1695 admissions of the validation subset obtaining an area under the receiver operating characteristic curve of 0.7528, which outperforms the results obtained with Sequential Organ Failure Assessment (SOFA), Oxford Acute Severity of Illness Score (OASIS) and Simplified Acute Physiology Score II (SAPSII) scores on the same validation subset. Observed and predicted mortality rates within estimated probabilities deciles were compared graphically and found to be similar, indicating that the risk estimate obtained with the score is close to the observed mortality, it is also observed that the number of events (deaths) is indeed increasing as the outcome go from the decile with the lowest probabilities to the decile with the highest probabilities. Sepsis is a syndrome that carries a high mortality, 43.3% for the patients included in this study; therefore, tools that help clinicians to quickly and accurately predict a worse prognosis are needed. This work demonstrates the importance of customization of mortality prediction scores since the developed score provides better performance than traditional scoring systems.

Keywords: intensive care, logistic regression model, mortality prediction, sepsis, severity of illness, stochastic gradient boosting

Procedia PDF Downloads 222
13305 Hydrothermal Synthesis of Mesoporous Carbon Nanospheres and Their Electrochemical Properties for Glucose Detection

Authors: Ali Akbar Kazemi Asl, Mansour Rahsepar

Abstract:

Mesoporous carbon nanospheres (MCNs) with uniform particle size distribution having an average of 290 nm and large specific surface area (274.4 m²/g) were synthesized by a one-step hydrothermal method followed by the calcination process and then utilized as an enzyme-free glucose biosensor. Morphology, crystal structure, and porous nature of the synthesized nanospheres were characterized by scanning electron microscopy (SEM), X-Ray diffraction (XRD), and Brunauer–Emmett–Teller (BET) analysis, respectively. Also, the electrochemical performance of the MCNs@GCE electrode for the measurement of glucose concentration in alkaline media was investigated by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and chronoamperometry (CA). MCNs@GCE electrode shows good sensing performance, including a rapid glucose oxidation response within 3.1 s, a wide linear range of 0.026-12 mM, a sensitivity of 212.34 μA.mM⁻¹.cm⁻², and a detection limit of 25.7 μM with excellent selectivity.

Keywords: biosensor, electrochemical, glucose, mesoporous carbon, non-enzymatic

Procedia PDF Downloads 190
13304 Comparative Analysis of Hybrid and Non-hybrid Cooled 185 KW High-Speed Permanent Magnet Synchronous Machine for Air Suspension Blower

Authors: Usman Abubakar, Xiaoyuan Wang, Sayyed Haleem Shah, Sadiq Ur Rahman, Rabiu Saleh Zakariyya

Abstract:

High-speed Permanent magnet synchronous machine (HSPMSM) uses in different industrial applications like blowers, compressors as a result of its superb performance. Nevertheless, the over-temperature rise of both winding and PM is one of their substantial problem for a high-power HSPMSM, which affects its lifespan and performance. According to the literature, HSPMSM with a Hybrid cooling configuration has a much lower temperature rise than non-hybrid cooling. This paper presents the design 185kW, 26K rpm with two different cooling configurations, i.e., hybrid cooling configuration (forced air and housing spiral water jacket) and non-hybrid (forced air cooling assisted with winding’s potting material and sleeve’s material) to enhance the heat dissipation of winding and PM respectively. Firstly, the machine’s electromagnetic design is conducted by the finite element method to accurately account for machine losses. Then machine’s cooling configurations are introduced, and their effectiveness is validated by lumped parameter thermal network (LPTN). Investigation shows that using potting, sleeve materials to assist non-hybrid cooling configuration makes the machine’s winding and PM temperature closer to hybrid cooling configuration. Therefore, the machine with non-hybrid cooling is prototyped and tested due to its simplicity, lower energy consumption and can still maintain the lifespan and performance of the HSPMSM.

Keywords: airflow network, axial ventilation, high-speed PMSM, thermal network

Procedia PDF Downloads 232
13303 Modeling Engagement with Multimodal Multisensor Data: The Continuous Performance Test as an Objective Tool to Track Flow

Authors: Mohammad H. Taheri, David J. Brown, Nasser Sherkat

Abstract:

Engagement is one of the most important factors in determining successful outcomes and deep learning in students. Existing approaches to detect student engagement involve periodic human observations that are subject to inter-rater reliability. Our solution uses real-time multimodal multisensor data labeled by objective performance outcomes to infer the engagement of students. The study involves four students with a combined diagnosis of cerebral palsy and a learning disability who took part in a 3-month trial over 59 sessions. Multimodal multisensor data were collected while they participated in a continuous performance test. Eye gaze, electroencephalogram, body pose, and interaction data were used to create a model of student engagement through objective labeling from the continuous performance test outcomes. In order to achieve this, a type of continuous performance test is introduced, the Seek-X type. Nine features were extracted including high-level handpicked compound features. Using leave-one-out cross-validation, a series of different machine learning approaches were evaluated. Overall, the random forest classification approach achieved the best classification results. Using random forest, 93.3% classification for engagement and 42.9% accuracy for disengagement were achieved. We compared these results to outcomes from different models: AdaBoost, decision tree, k-Nearest Neighbor, naïve Bayes, neural network, and support vector machine. We showed that using a multisensor approach achieved higher accuracy than using features from any reduced set of sensors. We found that using high-level handpicked features can improve the classification accuracy in every sensor mode. Our approach is robust to both sensor fallout and occlusions. The single most important sensor feature to the classification of engagement and distraction was shown to be eye gaze. It has been shown that we can accurately predict the level of engagement of students with learning disabilities in a real-time approach that is not subject to inter-rater reliability, human observation or reliant on a single mode of sensor input. This will help teachers design interventions for a heterogeneous group of students, where teachers cannot possibly attend to each of their individual needs. Our approach can be used to identify those with the greatest learning challenges so that all students are supported to reach their full potential.

Keywords: affective computing in education, affect detection, continuous performance test, engagement, flow, HCI, interaction, learning disabilities, machine learning, multimodal, multisensor, physiological sensors, student engagement

Procedia PDF Downloads 94
13302 Tips for Effective Intercultural Collaboration on the Evaluation of an International Program

Authors: Athanase Gahungu, Karen Freeman

Abstract:

Different groups of stakeholders expect the evaluation of an international, grant-funded program to inform them of the worth of the program - the funder, the agency operating the program and its community, and the citizens of the country where the program is implemented. This paper summarizes the challenges that intercultural teams of researchers faced as they crisscrossed a host country while evaluating a teaching and learning materials program, and offers useful tips for effective collaboration. Firstly, was recommended that the teams be representative of the cultures involved, and have the required research and program evaluation skills. Secondly, cultures involved must consistently establish and maintain a shared performance system. Thirdly, successful team members must be self-aware, inter-culturally knowledgeable, not just in communication, but in conceptualizing the political and social context of international grant-funded projects.

Keywords: program evaluation, international collaboration, intercultural, shared performance

Procedia PDF Downloads 539
13301 Analyzing the Heat Transfer Mechanism in a Tube Bundle Air-PCM Heat Exchanger: An Empirical Study

Authors: Maria De Los Angeles Ortega, Denis Bruneau, Patrick Sebastian, Jean-Pierre Nadeau, Alain Sommier, Saed Raji

Abstract:

Phase change materials (PCM) present attractive features that made them a passive solution for thermal comfort assessment in buildings during summer time. They show a large storage capacity per volume unit in comparison with other structural materials like bricks or concrete. If their use is matched with the peak load periods, they can contribute to the reduction of the primary energy consumption related to cooling applications. Despite these promising characteristics, they present some drawbacks. Commercial PCMs, as paraffines, offer a low thermal conductivity affecting the overall performance of the system. In some cases, the material can be enhanced, adding other elements that improve the conductivity, but in general, a design of the unit that optimizes the thermal performance is sought. The material selection is the departing point during the designing stage, and it does not leave plenty of room for optimization. The PCM melting point depends highly on the atmospheric characteristics of the building location. The selection must relay within the maximum, and the minimum temperature reached during the day. The geometry of the PCM container and the geometrical distribution of these containers are designing parameters, as well. They significantly affect the heat transfer, and therefore its phenomena must be studied exhaustively. During its lifetime, an air-PCM unit in a building must cool down the place during daytime, while the melting of the PCM occurs. At night, the PCM must be regenerated to be ready for next uses. When the system is not in service, a minimal amount of thermal exchanges is desired. The aforementioned functions result in the presence of sensible and latent heat storage and release. Hence different types of mechanisms drive the heat transfer phenomena. An experimental test was designed to study the heat transfer phenomena occurring in a circular tube bundle air-PCM exchanger. An in-line arrangement was selected as the geometrical distribution of the containers. With the aim of visual identification, the containers material and a section of the test bench were transparent. Some instruments were placed on the bench for measuring temperature and velocity. The PCM properties were also available through differential scanning calorimeter (DSC) tests. An evolution of the temperature during both cycles, melting and solidification were obtained. The results showed some phenomena at a local level (tubes) and on an overall level (exchanger). Conduction and convection appeared as the main heat transfer mechanisms. From these results, two approaches to analyze the heat transfer were followed. The first approach described the phenomena in a single tube as a series of thermal resistances, where a pure conduction controlled heat transfer was assumed in the PCM. For the second approach, the temperature measurements were used to find some significant dimensionless numbers and parameters as Stefan, Fourier and Rayleigh numbers, and the melting fraction. These approaches allowed us to identify the heat transfer phenomena during both cycles. The presence of natural convection during melting might have been stated from the influence of the Rayleigh number on the correlations obtained.

Keywords: phase change materials, air-PCM exchangers, convection, conduction

Procedia PDF Downloads 179
13300 Single and Combined Effects of Diclofenac and Ibuprofen on Daphnia Magna and Some Phytoplankton Species

Authors: Ramatu I. Sha’aba, Mathias A. Chia, Abdullahi B. Alhassan, Yisa A. Gana, Ibrahim M. Gadzama

Abstract:

Globally, Diclofenac (DLC) and Ibuprofen (IBU) are the most prescribed drugs due to their antipyretic and analgesic properties. They are, however, highly toxic at elevated doses, with the involvement of an already described oxidative stress pathway. As a result, there is rising concern about the ecological fate of analgesics on non-target organisms such as Daphnia magna and Phytoplankton species. Phytoplankton is a crucial component of the aquatic ecosystem that serves as the primary producer at the base of the food chain. However, the increasing presence and levels of micropollutants such as these analgesics can disrupt their community structure, dynamics, and ecosystem functions. This study presents a comprehensive series of the physiology, antioxidant response, immobilization, and risk assessment of Diclofenac and Ibuprofen’s effects on Daphnia magna and the Phytoplankton community using a laboratory approach. The effect of DLC and IBU at 27.16 µg/L and 20.89 µg/L, respectively, for a single exposure and 22.39 µg/L for combined exposure of DLC and IBU for the experimental setup. The antioxidant response increased with increasing levels of stress. The highest stressor to the organism was 1000 µg/L of DLC and 10,000 µg/L of IBU. Peroxidase and glutathione -S-transferase activity was higher for Diclofenac + Ibuprofen. The study showed 60% and 70% immobilization of the organism at 1000 g L-1 of DLC and IBU. The two drugs and their combinations adversely impacted Phytoplankton biomass with increased exposure time. However, combining the drugs resulted in more significant adverse effects on physiological and pigment content parameters. The risk assessment calculation for the risk quotient and toxic unit of the analgesic reveals from this study was RQ Diclofenac = 8.41, TU Diclofenac = 3.68, and RQ Ibuprofen = 718.05 and TU Ibuprofen = 487.70. Hence, these findings demonstrate that the current exposure concentrations of Diclofenac and Ibuprofen can immobilize D. magna. This study shows the dangers of multiple drugs in the aquatic environment because their combinations could have additive effects on the structure and functions of Phytoplankton and are capable of immobilizing D. magna.

Keywords: algae, analgesic drug, daphnia magna, toxicity

Procedia PDF Downloads 79
13299 Mobile Agents-Based Framework for Dynamic Resource Allocation in Cloud Computing

Authors: Safia Rabaaoui, Héla Hachicha, Ezzeddine Zagrouba

Abstract:

Nowadays, cloud computing is becoming the more popular technology to various companies and consumers, which benefit from its increased efficiency, cost optimization, data security, unlimited storage capacity, etc. One of the biggest challenges of cloud computing is resource allocation. Its efficiency directly influences the performance of the whole cloud environment. Finding an effective method to address these critical issues and increase cloud performance was necessary. This paper proposes a mobile agents-based framework for dynamic resource allocation in cloud computing to minimize both the cost of using virtual machines and the makespan. Furthermore, its impact on the best response time and power consumption has been studied. The simulation showed that our method gave better results than here.

Keywords: cloud computing, multi-agent system, mobile agent, dynamic resource allocation, cost, makespan

Procedia PDF Downloads 104
13298 Optimization of a Flexible Thermoelectric Generator for Energy Harvesting from Human Skin to Power Wearable Electronics

Authors: Dessalegn Abera Waktole, Boru Jia, Zhengxing Zuo, Wei Wang, Nianling Kuang

Abstract:

A flexible thermoelectric generator is one method for recycling waste heat. This research provides the optimum performance of a flexible thermoelectric generator with optimal geometric parameters and a detailed structural design. In this research, a numerical simulation and experiment were carried out to develop an efficient, flexible thermoelectric generator for energy harvesting from human skin. Heteromorphic electrodes and a polyimide substrate with a copper-printed circuit board were introduced into the structural design of a flexible thermoelectric generator. The heteromorphic electrode was used as a heat sink and component of a flexible thermoelectric generator to enhance the temperature difference within the thermoelectric legs. Both N-type and P-type thermoelectric legs were made of bismuth selenium telluride (Bi1.7Te3.7Se0.3) and bismuth antimony telluride (Bi0.4Sb1.6Te3). The output power of the flexible thermoelectric generator was analyzed under different heat source temperatures and heat dissipation conditions. The COMSOL Multiphysics 5.6 software was used to conduct the simulation, which was validated by experiment. It is recorded that the maximum power output of 232.064μW was obtained by considering different wind speed conditions, the ambient temperature of 20℃, and the heat source temperature of 36℃ under various load resistance conditions, which range from 0.24Ω to 0. 91Ω. According to this finding, heteromorphic electrodes have a significant impact on the performance of the device.

Keywords: flexible thermoelectric generator, optimization, performance, temperature gradient, waste heat recovery

Procedia PDF Downloads 168
13297 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Lao Xuerui, Li Junjie, Jiang Yike, Wang Hanwei, Zeng Zihao

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behaviour recognition models, to provide empirical data such as 'pedestrian flow data and human behavioural characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, convolutional neural network

Procedia PDF Downloads 150
13296 Supplier Risk Management: A Multivariate Statistical Modelling and Portfolio Optimization Based Approach for Supplier Delivery Performance Development

Authors: Jiahui Yang, John Quigley, Lesley Walls

Abstract:

In this paper, the authors develop a stochastic model regarding the investment in supplier delivery performance development from a buyer’s perspective. The authors propose a multivariate model through a Multinomial-Dirichlet distribution within an Empirical Bayesian inference framework, representing both the epistemic and aleatory uncertainties in deliveries. A closed form solution is obtained and the lower and upper bound for both optimal investment level and expected profit under uncertainty are derived. The theoretical properties provide decision makers with useful insights regarding supplier delivery performance improvement problems where multiple delivery statuses are involved. The authors also extend the model from a single supplier investment into a supplier portfolio, using a Lagrangian method to obtain a theoretical expression for an optimal investment level and overall expected profit. The model enables a buyer to know how the marginal expected profit/investment level of each supplier changes with respect to the budget and which supplier should be invested in when additional budget is available. An application of this model is illustrated in a simulation study. Overall, the main contribution of this study is to provide an optimal investment decision making framework for supplier development, taking into account multiple delivery statuses as well as multiple projects.

Keywords: decision making, empirical bayesian, portfolio optimization, supplier development, supply chain management

Procedia PDF Downloads 288
13295 Performance and Nutritional Evaluation of Moringa Leaves Dried in a Solar-Assisted Heat Pump Dryer Integrated with Thermal Energy Storage

Authors: Aldé Belgard Tchicaya Loemba, Baraka Kichonge, Thomas Kivevele, Juma Rajabu Selemani

Abstract:

Plants used for medicinal purposes are extremely perishable, owing to moisture-enhanced enzymatic and microorganism activity, climate change, and improper handling and storage. Experiments have shown that drying the medicinal plant without affecting the active nutrients and controlling the moisture content as much as possible can extend its shelf life. Different traditional and modern drying techniques for preserving medicinal plants have been developed, with some still being improved in Sub-Saharan Africa. However, many of these methods fail to address the most common issues encountered when drying medicinal plants, such as nutrient loss, long drying times, and a limited capacity to dry during the evening or cloudy hours. Heat pump drying is an alternate drying method that results in no nutritional loss. Furthermore, combining a heat pump dryer with a solar energy storage system appears to be a viable option for all-weather drying without affecting the nutritional values of dried products. In this study, a solar-assisted heat pump dryer integrated with thermal energy storage is developed for drying moringa leaves. The study also discusses the performance analysis of the developed dryer as well as the proximate analysis of the dried moringa leaves. All experiments were conducted from 11 a.m. to 4 p.m. to assess the dryer's performance in “daytime mode”. Experiment results show that the drying time was significantly reduced, and the dryer demonstrated high performance in preserving all of the nutrients. In 5 hours of the drying process, the moisture content was reduced from 75.7 to 3.3%. The average COP value was 3.36, confirming the dryer's low energy consumption. The findings also revealed that after drying, the content of protein, carbohydrates, fats, fiber, and ash greatly increased.

Keywords: heat pump dryer, efficiency, moringa leaves, proximate analysis

Procedia PDF Downloads 82
13294 Clinical Profile, Evaluation, Management and Visual Outcome of Idiopathic Intracranial Hypertension in a Neuro-Ophthalmology Clinic in Jeddah, Saudi Arabia

Authors: Rahaf Mandura

Abstract:

Background: Idiopathic intracranial hypertension (IIH) is a disorder with elevated intracranial pressure (ICP) more than 250 mm H₂O, without evidence of meningeal inflammation, space-occupying lesion, or venous thrombosis. The aim of this research is to study the clinical profile, evaluation, management, and visual outcome in a hospital-based population of IIH cases in Jeddah. Methodology: This is a retrospective observational study that included the medical records of all patients referred to neuro-ophthalmology service for evaluation of papilledema. The medical records have been reviewed from October 2018 to February 2020 at Jeddah Eye Hospital (JEH), Saudi Arabia. A total of fifty-one patients presented with papilledema in the studied period. Forty-seven patients met our inclusion criteria and were included in the study. Results: Most of the patients were females (43, 91.5%) with a mean age of presentation of 30.83±11.40 years. The most common presenting symptom was headache (40 patients, 85.1%), followed by transient visual obscuration (20 patients, 42.6%), and reduced visual acuity (15 patients, 31.9%). All 47 patients were started on medical treatment with oral acetazolamide with four patients (8.5%) shifted to topiramate because of the lack of response or intolerance to acetazolamide while four patients (8.5%) underwent lumbar-peritoneal shunt because of inadequate control of the disease despite the treatment with medical therapy. For both eyes, the change in visual acuity across all assessment points was statistically significant. Nevertheless, there were no significant changes in the visual field findings among all of the compared assessment points. Conclusion: The present study has shown that IIH-related papilledema is common in young female patients with headaches, transient visual obscurations and reduced visual acuity. Those are the commonest symptoms in our IIH population. Medical treatment of IIH is significantly efficacious and should be considered in order to enhance the prognosis of IIH-related complications. Therefore, the visual status should be frequently monitored for these patients.

Keywords: idiopathic intracranial hypertension, intracranial hypertension, papilledema, headache

Procedia PDF Downloads 191
13293 Rheological Properties of Thermoresponsive Poly(N-Vinylcaprolactam)-g-Collagen Hydrogel

Authors: Serap Durkut, A. Eser Elcin, Y. Murat Elcin

Abstract:

Stimuli-sensitive polymeric hydrogels have received extensive attention in the biomedical field due to their sensitivity to physical and chemical stimuli (temperature, pH, ionic strength, light, etc.). This study describes the rheological properties of a novel thermoresponsive poly(N-vinylcaprolactam)-g-collagen hydrogel. In the study, we first synthesized a facile and novel synthetic carboxyl group-terminated thermo-responsive poly(N-vinylcaprolactam)-COOH (PNVCL-COOH) via free radical polymerization. Further, this compound was effectively grafted with native collagen, by utilizing the covalent bond between the carboxylic acid groups at the end of the chains and amine groups of the collagen using cross-linking agent (EDC/NHS), forming PNVCL-g-Col. Newly-formed hybrid hydrogel displayed novel properties, such as increased mechanical strength and thermoresponsive characteristics. PNVCL-g-Col showed low critical solution temperature (LCST) at 38ºC, which is very close to the body temperature. Rheological studies determine structural–mechanical properties of the materials and serve as a valuable tool for characterizing. The rheological properties of hydrogels are described in terms of two dynamic mechanical properties: the elastic modulus G′ (also known as dynamic rigidity) representing the reversible stored energy of the system, and the viscous modulus G″, representing the irreversible energy loss. In order to characterize the PNVCL-g-Col, the rheological properties were measured in terms of the function of temperature and time during phase transition. Below the LCST, favorable interactions allowed the dissolution of the polymer in water via hydrogen bonding. At temperatures above the LCST, PNVCL molecules within PNVCL-g-Col aggregated due to dehydration, causing the hydrogel structure to become dense. When the temperature reached ~36ºC, both the G′ and G″ values crossed over. This indicates that PNVCL-g-Col underwent a sol-gel transition, forming an elastic network. Following temperature plateau at 38ºC, near human body temperature the sample displayed stable elastic network characteristics. The G′ and G″ values of the PNVCL-g-Col solutions sharply increased at 6-9 minute interval, due to rapid transformation into gel-like state and formation of elastic networks. Copolymerization with collagen leads to an increase in G′, as collagen structure contains a flexible polymer chain, which bestows its elastic properties. Elasticity of the proposed structure correlates with the number of intermolecular cross-links in the hydrogel network, increasing viscosity. However, at 8 minutes, G′ and G″ values sharply decreased for pure collagen solutions due to the decomposition of the elastic and viscose network. Complex viscosity is related to the mechanical performance and resistance opposing deformation of the hydrogel. Complex viscosity of PNVCL-g-Col hydrogel was drastically changed with temperature and the mechanical performance of PNVCL-g-Col hydrogel network increased, exhibiting lesser deformation. Rheological assessment of the novel thermo-responsive PNVCL-g-Col hydrogel, exhibited that the network has stronger mechanical properties due to both permanent stable covalent bonds and physical interactions, such as hydrogen- and hydrophobic bonds depending on temperature.

Keywords: poly(N-vinylcaprolactam)-g-collagen, thermoresponsive polymer, rheology, elastic modulus, stimuli-sensitive

Procedia PDF Downloads 243
13292 Experimental Assessment of the Effectiveness of Judicial Instructions and of Expert Testimony in Improving Jurors’ Evaluation of Eyewitness Evidence

Authors: Alena Skalon, Jennifer L. Beaudry

Abstract:

Eyewitness misidentifications can sometimes lead to wrongful convictions of innocent people. This occurs in part because jurors tend to believe confident eyewitnesses even when the identification took place under suggestive conditions. Empirical research demonstrated that jurors are often unaware of the factors that can influence the reliability of eyewitness identification. Most common legal safeguards that are designed to educate jurors about eyewitness evidence are judicial instructions and expert testimony. To date, very few studies assessed the effectiveness of judicial instructions and most of them found that judicial instructions make jurors more skeptical of eyewitness evidence or do not have any effect on jurors’ judgments. Similar results were obtained for expert testimony. However, none of the previous studies focused on the ability of legal safeguards to improve jurors’ assessment of evidence obtained from suggestive identification procedures—this is one of the gaps addressed by this paper. Furthermore, only three studies investigated whether legal safeguards improve the ultimate accuracy of jurors’ judgments—that is, whether after listening to judicial instructions or expert testimony jurors can differentiate between accurate and inaccurate eyewitnesses. This presentation includes two studies. Both studies used genuine eyewitnesses (i.e., eyewitnesses who watched the crime) and manipulated the suggestiveness of identification procedures. The first study manipulated the presence of judicial instructions; the second study manipulated the presence of one of two types of expert testimony: a traditional, verbal expert testimony or expert testimony accompanied by visual aids. All participant watched a video-recording of an identification procedure and of an eyewitness testimony. The results indicated that neither judicial instructions nor expert testimony affected jurors’ judgments. However, consistent with the previous findings, when the identification procedure was non-suggestive, jurors believed accurate eyewitnesses more often than inaccurate eyewitnesses. When the procedure was suggestive, jurors believed accurate and inaccurate eyewitnesses at the same rate. The paper will discuss the implications of these studies and directions for future research.

Keywords: expert testimony, eyewitness evidence, judicial instructions, jurors’ decision making, legal safeguards

Procedia PDF Downloads 178
13291 Climate Change Adaptation: Methodologies and Tools to Define Resilience Scenarios for Existing Buildings in Mediterranean Urban Areas

Authors: Francesca Nicolosi, Teresa Cosola

Abstract:

Climate changes in Mediterranean areas, such as the increase of average seasonal temperatures, the urban heat island phenomenon, the intensification of solar radiation and the extreme weather threats, cause disruption events, so that climate adaptation has become a pressing issue. Due to the strategic role that the built heritage holds in terms of environmental impact and energy waste and its potentiality, it is necessary to assess the vulnerability and the adaptive capacity of the existing building to climate change, in order to define different mitigation scenarios. The aim of this research work is to define an optimized and integrated methodology for the assessment of resilience levels and adaptation scenarios for existing buildings in Mediterranean urban areas. Moreover, the study of resilience indicators allows us to define building environmental and energy performance in order to identify the design and technological solutions for the improvement of the building and its urban area potentialities. The methodology identifies step-by-step different phases, starting from the detailed study of characteristic elements of urban system: climatic, natural, human, typological and functional components are analyzed in their critical factors and their potential. Through the individuation of the main perturbing factors and the vulnerability degree of the system to the risks linked to climate change, it is possible to define mitigation and adaptation scenarios. They can be different, according to the typological, functional and constructive features of the analyzed system, divided into categories of intervention, and characterized by different analysis levels (from the single building to the urban area). The use of software simulations allows obtaining information on the overall behavior of the building and the urban system, to generate predictive models in the medium and long-term environmental and energy retrofit and to make a comparative study of the mitigation scenarios identified. The studied methodology is validated on a case study.

Keywords: climate impact mitigation, energy efficiency, existing building heritage, resilience

Procedia PDF Downloads 240