Search results for: vertical earthquake coefficient
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3952

Search results for: vertical earthquake coefficient

3562 Seismic Reinforcement of Existing Japanese Wooden Houses Using Folded Exterior Thin Steel Plates

Authors: Jiro Takagi

Abstract:

Approximately 90 percent of the casualties in the near-fault-type Kobe earthquake in 1995 resulted from the collapse of wooden houses, although a limited number of collapses of this type of building were reported in the more recent off-shore-type Tohoku Earthquake in 2011 (excluding direct damage by the Tsunami). Kumamoto earthquake in 2016 also revealed the vulnerability of old wooden houses in Japan. There are approximately 24.5 million wooden houses in Japan and roughly 40 percent of them are considered to have the inadequate seismic-resisting capacity. Therefore, seismic strengthening of these wooden houses is an urgent task. However, it has not been quickly done for various reasons, including cost and inconvenience during the reinforcing work. Residents typically spend their money on improvements that more directly affect their daily housing environment (such as interior renovation, equipment renewal, and placement of thermal insulation) rather than on strengthening against extremely rare events such as large earthquakes. Considering this tendency of residents, a new approach to developing a seismic strengthening method for wooden houses is needed. The seismic reinforcement method developed in this research uses folded galvanized thin steel plates as both shear walls and the new exterior architectural finish. The existing finish is not removed. Because galvanized steel plates are aesthetic and durable, they are commonly used in modern Japanese buildings on roofs and walls. Residents could feel a physical change through the reinforcement, covering existing exterior walls with steel plates. Also, this exterior reinforcement can be installed with only outdoor work, thereby reducing inconvenience for residents since they would not be required to move out temporarily during construction. The Durability of the exterior is enhanced, and the reinforcing work can be done efficiently since perfect water protection is not required for the new finish. In this method, the entire exterior surface would function as shear walls and thus the pull-out force induced by seismic lateral load would be significantly reduced as compared with a typical reinforcement scheme of adding braces in selected frames. Consequently, reinforcing details of anchors to the foundations would be less difficult. In order to attach the exterior galvanized thin steel plates to the houses, new wooden beams are placed next to the existing beams. In this research, steel connections between the existing and new beams are developed, which contain a gap for the existing finish between the two beams. The thin steel plates are screwed to the new beams and the connecting vertical members. The seismic-resisting performance of the shear walls with thin steel plates is experimentally verified both for the frames and connections. It is confirmed that the performance is high enough for bracing general wooden houses.

Keywords: experiment, seismic reinforcement, thin steel plates, wooden houses

Procedia PDF Downloads 226
3561 Seismic Protection of Automated Stocker System by Customized Viscous Fluid Dampers

Authors: Y. P. Wang, J. K. Chen, C. H. Lee, G. H. Huang, M. C. Wang, S. W. Chen, Y. T. Kuan, H. C. Lin, C. Y. Huang, W. H. Liang, W. C. Lin, H. C. Yu

Abstract:

The hi-tech industries in the Science Park at southern Taiwan were heavily damaged by a strong earthquake early 2016. The financial loss in this event was attributed primarily to the automated stocker system handling fully processed products, and recovery of the automated stocker system from the aftermath proved to contribute major lead time. Therefore, development of effective means for protection of stockers against earthquakes has become the highest priority for risk minimization and business continuity. This study proposes to mitigate the seismic response of the stockers by introducing viscous fluid dampers in between the ceiling and the top of the stockers. The stocker is expected to vibrate less violently with a passive control force on top. Linear damper is considered in this application with an optimal damping coefficient determined from a preliminary parametric study. The damper is small in size in comparison with those adopted for building or bridge applications. Component test of the dampers has been carried out to make sure they meet the design requirement. Shake table tests have been further conducted to verify the proposed scheme under realistic earthquake conditions. Encouraging results have been achieved by effectively reducing the seismic responses of up to 60% and preventing the FOUPs from falling off the shelves that would otherwise be the case if left unprotected. Effectiveness of adopting a viscous fluid damper for seismic control of the stocker on top against the ceiling has been confirmed. This technique has been adopted by Macronix International Co., LTD for seismic retrofit of existing stockers. Demonstrative projects on the application of the proposed technique are planned underway for other companies in the display industry as well.

Keywords: hi-tech industries, seismic protection, automated stocker system, viscous fluid damper

Procedia PDF Downloads 357
3560 Design and Performance Evaluation of Hybrid Corrugated-GFRP Infill Panels

Authors: Woo Young Jung, Sung Min Park, Ho Young Son, Viriyavudh Sim

Abstract:

This study presents a way to reduce earthquake damage and emergency rehabilitation of critical structures such as schools, high-tech factories, and hospitals due to strong ground motions associated with climate changes. Regarding recent trend, a strong earthquake causes serious damage to critical structures and then the critical structure might be influenced by sequence aftershocks (or tsunami) due to fault plane adjustments. Therefore, in order to improve seismic performance of critical structures, retrofitted or strengthening study of the structures under aftershocks sequence after emergency rehabilitation of the structures subjected to strong earthquakes is widely carried out. Consequently, this study used composite material for emergency rehabilitation of the structure rather than concrete and steel materials because of high strength and stiffness, lightweight, rapid manufacturing, and dynamic performance. Also, this study was to develop or improve the seismic performance or seismic retrofit of critical structures subjected to strong ground motions and earthquake aftershocks, by utilizing GFRP-Corrugated Infill Panels (GCIP).

Keywords: aftershock, composite material, GFRP, infill panel

Procedia PDF Downloads 334
3559 Parametric Non-Linear Analysis of Reinforced Concrete Frames with Supplemental Damping Systems

Authors: Daniele Losanno, Giorgio Serino

Abstract:

This paper focuses on parametric analysis of reinforced concrete structures equipped with supplemental damping braces. Practitioners still luck sufficient data for current design of damper added structures and often reduce the real model to a pure damper braced structure even if this assumption is neither realistic nor conservative. In the present study, the damping brace is modelled as made by a linear supporting brace connected in series with the viscous/hysteretic damper. Deformation capacity of existing structures is usually not adequate to undergo the design earthquake. In spite of this, additional dampers could be introduced strongly limiting structural damage to acceptable values, or in some cases, reducing frame response to elastic behavior. This work is aimed at providing useful considerations for retrofit of existing buildings by means of supplemental damping braces. The study explicitly takes into consideration variability of (a) relative frame to supporting brace stiffness, (b) dampers’ coefficient (viscous coefficient or yielding force) and (c) non-linear frame behavior. Non-linear time history analysis has been run to account for both dampers’ behavior and non-linear plastic hinges modelled by Pivot hysteretic type. Parametric analysis based on previous studies on SDOF or MDOF linear frames provide reference values for nearly optimal damping systems design. With respect to bare frame configuration, seismic response of the damper-added frame is strongly improved, limiting deformations to acceptable values far below ultimate capacity. Results of the analysis also demonstrated the beneficial effect of stiffer supporting braces, thus highlighting inadequacy of simplified pure damper models. At the same time, the effect of variable damping coefficient and yielding force has to be treated as an optimization problem.

Keywords: brace stiffness, dissipative braces, non-linear analysis, plastic hinges, reinforced concrete frames

Procedia PDF Downloads 290
3558 Study of the Tribological Behavior of a Pin on Disc Type of Contact

Authors: S. Djebali, S. Larbi, A. Bilek

Abstract:

The present work aims at contributing to the study of the complex phenomenon of wear of pin on disc contact in dry sliding friction between two material couples (bronze/steel and unsaturated polyester virgin and charged with graphite powder/steel). The work consists of the determination of the coefficient of friction, the study of the influence of the tribological parameters on this coefficient and the determination of the mass loss and the wear rate of the pin. This study is also widened to the highlighting of the influence of the addition of graphite powder on the tribological properties of the polymer constituting the pin. The experiments are carried out on a pin-disc type tribometer that we have designed and manufactured. Tests are conducted according to the standards DIN 50321 and DIN EN 50324. The discs are made of annealed XC48 steel and quenched and tempered XC48 steel. The main results are described here after. The increase of the normal load and the sliding speed causes the increase of the friction coefficient, whereas the increase of the percentage of graphite and the hardness of the disc surface contributes to its reduction. The mass loss also increases with the normal load. The influence of the normal load on the friction coefficient is more significant than that of the sliding speed. The effect of the sliding speed decreases for large speed values. The increase of the amount of graphite powder leads to a decrease of the coefficient of friction, the mass loss and the wear rate. The addition of graphite to the UP resin is beneficial; it plays the role of solid lubricant.

Keywords: bronze, friction coefficient, graphite, mass loss, polyester, steel, wear rate

Procedia PDF Downloads 345
3557 Investigation of Building Pounding during Earthquake and Calculation of Impact Force between Two Adjacent Structures

Authors: H. Naderpour, R. C. Barros, S. M. Khatami

Abstract:

Seismic excitation is naturally caused large horizontal relative displacements, which is able to provide collisions between two adjacent buildings due to insufficient separation distance and severe damages are occurred due to impact especially in tall buildings. In this paper, an impact is numerically simulated and two needed parameters are calculated, including impact force and energy absorption. In order to calculate mentioned parameters, mathematical study needs to model an unreal link element, which is logically assumed to be spring and dashpot to determine lateral displacement and damping ratio of impact. For the determination of dynamic response of impact, a new equation of motion is theoretically suggested to evaluate impact force and energy dissipation. In order to confirm the rendered equation, a series of parametric study are performed and the accuracy of formula is confirmed.

Keywords: pounding, impact, dissipated energy, coefficient of restitution

Procedia PDF Downloads 357
3556 Seamless Mobility in Heterogeneous Mobile Networks

Authors: Mohab Magdy Mostafa Mohamed

Abstract:

The objective of this paper is to introduce a vertical handover (VHO) algorithm between wireless LANs (WLANs) and LTE mobile networks. The proposed algorithm is based on the fuzzy control theory and takes into consideration power level, subscriber velocity, and target cell load instead of only power level in traditional algorithms. Simulation results show that network performance in terms of number of handovers and handover occurrence distance is improved.

Keywords: vertical handover, fuzzy control theory, power level, speed, target cell load

Procedia PDF Downloads 353
3555 The Necessity of Retrofitting for Masonry Buildings in Turkey

Authors: Soner Güler, Mustafa Gülen, Eylem Güzel

Abstract:

Masonry buildings constitute major part of building stock in Turkey. Masonry buildings were built up especially in rural areas and underdeveloped regions due to economic reasons. Almost all of these masonry buildings are not designed and detailed according to any design guidelines by designers. As a result of this, masonry buildings were totally collapsed or heavily damaged when subjected to destructive earthquake effects. Thus, these masonry buildings that were built up in our country must be retrofitted to improve their seismic performance. In this study, new seismic retrofitting techniques that is easy to apply and low-cost are summarized and the importance of seismic retrofitting is also emphasized for existing masonry buildings in Turkey.

Keywords: masonry buildings, earthquake effects, seismic retrofitting techniques, seismic performance

Procedia PDF Downloads 343
3554 Effect of Control Lasers Polarization on Absorption Coefficient and Refractive Index of a W-Type 4- Level Cylindrical Quantum Dot in the Presence Of Electromagnetically Induced Transparency (ETI)

Authors: Marziehossadat Moezzi

Abstract:

In this paper, electromagnetically induced transparency (EIT) is investigated in a cylindrical quantum dot (QD) with a parabolic confinement potential. We study the effect of control lasers polarization on absorption coefficient, refractive index and also on the generation of the double transparency windows in this system. Considering an effective mass method, the time-independent Schrödinger equation is solved to obtain the energy structure of the QD. Also, we study the effect of structural characteristics of the QD on refraction and absorption of the QD in the presence of EIT.

Keywords: electromagnetically induced transparency, cylindrical quantum dot, absorption coefficient, refractive index

Procedia PDF Downloads 198
3553 Sky Farming: The Alternative Concept of Green Building Using Vertical Landscape Model in Urban Area as an Effort to Achieve Sustainable Development

Authors: Nadiah Yola Putri, Nesia Putri Sharfina, Traviata Prakarti

Abstract:

This paper is a literature review presented descriptively to review the concept of green building to face the challenge of sustainable development and food in urban areas. In this paper, researchers initiated the concept of green building with sky farming method. Sky farming use vertical landscape system in order to realizing food self-sufficient green city. Sky farming relying on plantings and irrigation system efficiency in the building which is adopted the principles of green building. Planting system is done by applying hydroponic plants with Nutrient Film Technique (NFT) using energy source of solar cell and grey water from the processing of waste treatment plant. The application of sky farming in urban areas can be a recommendation for the design of environmental-friendly construction. In order to keep the land and distance efficiency, this system is a futuristic idea that would be the connector of human civilization in the future.

Keywords: green building, urban area, sky farming, vertical landscape

Procedia PDF Downloads 361
3552 Analysis Rescuers' Viewpoint about Victims Tracking in Earthquake by Using Radio Frequency Identification (RFID)

Authors: Sima Ajami, Batool Akbari

Abstract:

Background: Radio frequency identification (RFID) system has been successfully applied to the areas of manufacturing, supply chain, agriculture, transportation, healthcare, and services. The RFID is already used to track and trace the victims in a disaster situation. Data can be collected in real time and be immediately available to emergency personnel and saves time by the RFID. Objectives: The aim of this study was, first, to identify stakeholders and customers for rescuing earthquake victims, second, to list key internal and external factors to use RFID to track earthquake victims, finally, to assess SWOT for rescuers' viewpoint. Materials and Methods: This study was an applied and analytical study. The study population included scholars, experts, planners, policy makers and rescuers in the "red crescent society of Isfahan province", "disaster management Isfahan province", "maintenance and operation department of Isfahan", "fire and safety services organization of Isfahan municipality", and "medical emergencies and disaster management center of Isfahan". After that, researchers held a workshop to teach participants about RFID and its usages in tracking earthquake victims. In the meanwhile of the workshop, participants identified, listed, and weighed key internal factors (strengths and weaknesses; SW) and external factors (opportunities and threats; OT) to use RFID in tracking earthquake victims. Therefore, participants put weigh strengths, weaknesses, opportunities, and threats (SWOT) and their weighted scales were calculated. Then, participants' opinions about this issue were assessed. Finally, according to the SWOT matrix, strategies to solve the weaknesses, problems, challenges, and threats through opportunities and strengths were proposed by participants. Results: The SWOT analysis showed that the total weighted score for internal and external factors were 3.91 (Internal Factor Evaluation) and 3.31 (External Factor Evaluation) respectively. Therefore, it was in a quadrant SO strategies cell in the SWOT analysis matrix and aggressive strategies were resulted. Organizations, scholars, experts, planners, policy makers and rescue workers should plan to use RFID technology in order to save more victims and manage their life. Conclusions: Researchers suppose to apply SO strategies and use a firm’s internal strength to take advantage of external opportunities. It is suggested, policy maker should plan to use the most developed technologies to save earthquake victims and deliver the easiest service to them. To do this, education, informing, and encouraging rescuers to use these technologies is essential. Originality/ Value: This study was a research paper that showed how RFID can be useful to track victims in earthquake.

Keywords: frequency identification system, strength, weakness, earthquake, victim

Procedia PDF Downloads 322
3551 A Lifeline Vulnerability Study of Constantine, Algeria

Authors: Mounir Ait Belkacem, Mehdi Boukri, Omar Amellal, Nacim Yousfi, Abderrahmane Kibboua, Med Naboussi Farsi, Mounir Naili

Abstract:

The North of Algeria is located in a seismic zone, then earthquakes are probably the most likely natural disaster that would lead to major lifeline disruption. The adequate operation of lifelines is vital for the economic development of regions under moderate to high seismic activity. After an earthquake, the proper operation of all vital systems is necessary, for instance hospitals for medical attention of the wounded and highways for communication and assistance for victims.In this work we apply the knowledge of pipeline vulnerability to the water supply system, sanitary sewer pipelines (waste water), and telephone in Constantine (Algeria).

Keywords: lifeline, earthquake, vulnerability, pipelines

Procedia PDF Downloads 564
3550 Monitoring Potential Temblor Localities as a Supplemental Risk Control System

Authors: Mikhail Zimin, Svetlana Zimina, Maxim Zimin

Abstract:

Without question, the basic method of prevention of human and material losses is the provision for adequate strength of constructions. At the same time, seismic load has a stochastic character. So, at all times, there is little danger of earthquake forces exceeding the selected design load. This risk is very low, but the consequences of such events may be extremely serious. Very dangerous are also occasional mistakes in seismic zoning, soil conditions changing before temblors, and failure to take into account hazardous natural phenomena caused by earthquakes. Besides, it is known that temblors detrimentally affect the environmental situation in regions where they occur, resulting in panic and worsening various disease courses. It may lead to mistakes of personnel of hazardous production facilities like the production and distribution of gas and oil, which may provoke severe accidents. In addition, gas and oil pipelines often have long mileage and cross many perilous zones by contrast with buildings. This situation increases the risk of heavy accidents. In such cases, complex monitoring of potential earthquake localities would be relevant. Even though the number of successful real-time forecasts of earthquakes is not great, it is well in excess, such as may be under random guessing. Experimental performed time-lapse study and analysis consist of searching seismic, biological, meteorological, and light earthquake precursors, processing such data with the help of fuzzy sets, collecting weather information, utilizing a database of terrain, and computing risk of slope processes under the temblor in a given setting. Works were done in a real-time environment and broadly acceptable results took place. Observations from already in-place seismic recording systems are used. Furthermore, a look back study of precursors of known earthquakes is done. Situations before Ashkhabad, Tashkent, and Haicheng seismic events are analyzed. Fairish findings are obtained. Results of earthquake forecasts can be used for predicting dangerous natural phenomena caused by temblors such as avalanches and mudslides. They may also be utilized for prophylaxis of some diseases and their complications. Relevant software is worked out too. It should be emphasized that such control does not require serious financial expenses and can be performed by a small group of professionals. Thus, complex monitoring of potential earthquake localities, including short-term earthquake forecasts and analysis of possible hazardous consequences of temblors, may further the safety of pipeline facilities.

Keywords: risk, earthquake, monitoring, forecast, precursor

Procedia PDF Downloads 23
3549 3D Numerical Analysis of Stone Columns Reinforced with Horizontal and Vertical Geosynthetic Materials

Authors: R. Ziaie Moayed, A. Khalili

Abstract:

Improvement and reinforcement of soils with poor strength and engineering properties for constructing low height structures or structures such as liquid storage tanks, bridge columns, and heavy structures have necessitated applying particular techniques. Stone columns are among the well-known methods applied in such soils. This method provides an economically justified way for improving engineering properties of soft clay and loose sandy soils. Stone column implementation in these soils increases their bearing capacity and reduces the settlement of foundation build on them. In the present study, the finite difference based FLAC3D software was used to investigate the performance and effect of soil reinforcement through stone columns without lining and those with geosynthetic lining with different levels of stiffness in horizontal and vertical modes in clayey soils. The results showed that soil improvement using stone columns with lining in vertical and horizontal modes results in improvement of bearing capacity and foundation settlement.

Keywords: bearing capacity, FLAC3D, geosynthetic, settlement, stone column

Procedia PDF Downloads 172
3548 Permissible Horizontal Displacements during the Construction of Vertical Shafts in Soft Soils at the Valley of Mexico: Case History

Authors: Joel M. De La Rosa R.

Abstract:

In this paper, the results obtained when monitoring the horizontal deformations of the soil mass are detailed, during each of the construction stages of several vertical shafts located in the soft soils of the Valley of Mexico, by means of the flotation method. From the analysis of these results, the magnitude and percentage relationship with respect to the diameter and depth of excavation of the horizontal deformations that occurred during the monitoring period is established. Based on the horizontal deformation monitoring system and the information provided by the supervisor's site log, the construction stages that have the greatest impact on deformations are established. Additionally, an analysis of the deformations is carried out, which takes into account the resistance and deformability characteristics of the excavated soils, as well as the prevailing hydraulic conditions. This work will allow construction engineers and institutions in charge of infrastructure works in the Valley of Mexico to establish permissible ranges for horizontal deformations that can occur in very soft and saturated soils, during the different construction stages; improving response protocols to potentially dangerous behaviors.

Keywords: vertical shaft, flotation method, very soft clays, construction supervision

Procedia PDF Downloads 189
3547 Empirical Green’s Function Technique for Accelerogram Synthesis: The Problem of the Use for Marine Seismic Hazard Assessment

Authors: Artem A. Krylov

Abstract:

Instrumental seismological researches in water areas are complicated and expensive, that leads to the lack of strong motion records in most offshore regions. In the same time the number of offshore industrial infrastructure objects, such as oil rigs, subsea pipelines, is constantly increasing. The empirical Green’s function technique proved to be very effective for accelerograms synthesis under the conditions of poorly described seismic wave propagation medium. But the selection of suitable small earthquake record in offshore regions as an empirical Green’s function is a problem because of short seafloor instrumental seismological investigation results usually with weak micro-earthquakes recordings. An approach based on moving average smoothing in the frequency domain is presented for preliminary processing of weak micro-earthquake records before using it as empirical Green’s function. The method results in significant waveform correction for modeled event. The case study for 2009 L’Aquila earthquake was used to demonstrate the suitability of the method. This work was supported by the Russian Foundation of Basic Research (project № 18-35-00474 mol_a).

Keywords: accelerogram synthesis, empirical Green's function, marine seismology, microearthquakes

Procedia PDF Downloads 324
3546 Improvement of Oran Sebkha Soil by Dredged Sediments from Chorfa Dam in Algeria

Authors: Z. Aloui-Labiod, H. Trouzine, M. S. Ghembaza

Abstract:

Geotechnical properties of dredged sediment from Chorfa dam in Algeria and their mixtures (5%, 10%, 15%, 20%, and 25%)with bentonite were investigated through with bentonite were investigated through a series of laboratory experimental tests in order to investigate possibilities of their usage as a barrier against the spread out of the Sebkha of Oran in the northwest of Algeria. Grain size and Atterberg limits tests, chemical and mineral analyses, and compaction, vertical swelling, and horizontal and vertical permeability tests were performed on the soils and their mixtures using tap water and the salty Sebkha water. The results indicate that the bentonite specimens remolded and inundated with Sebkha salty water have less swell potential than those prepared with tap water. The addition of bentonite to Chorfa sediment increases the density, limit liquid, specific surface, and swell potential of the mixtures. Compaction tests show a decrease in the optimum moisture and an increase in maximum dry densities as the bentonite content increases. The horizontal and vertical permeabilities decrease relatively with the addition of bentonite.

Keywords: dredged sediment, bentonite, salty water, barrier

Procedia PDF Downloads 428
3545 Scaling Analysis for the Liquefaction Phenomena Generated by Water Waves

Authors: E. Arcos, E. Bautista, F. Méndez

Abstract:

In this work, a scaling analysis of the liquefaction phenomena is presented. The characteristic scales are obtained by balancing term by term of the well-known partial dynamics governing equations, (U − P). From the above, the order of magnitude of the horizontal displacement is very smaller compared with the vertical displacement and therefore the governing equation is only a function of the dependent vertical variables. The U − P approximation is reduced and presented in its dimensionless version. This scaling analysis can be used to obtain analytical solutions of the liquefaction phenomena under the action of the water waves.

Keywords: approximation U-P, porous seabed, scaling analysis, water waves

Procedia PDF Downloads 349
3544 Human Behaviour During an Earthquake: Descriptive Analysis on Indoor Video Recordings

Authors: Mazlum Çelik, Burcu Gürkan Ercan, Ahmet Ayaz, Hilal Yakut İpekoğlu, Furkan Baltacı, Mustafa Kurtoğlu, Bilge Kalkavan, Sinem Küçükyılmaz, Hikmet Çağrı Yardımcı, Şeyma Sevgican, Cemile Gökçe Elkovan, Bilal Çayır, Mehmet Emin Düzcan

Abstract:

The earthquake research literature generally examines emotional, cognitive, and behavioral responses after an earthquake. Studies concerning the behavioral responses to earthquakes reveal that after the earthquake, people either flee in a panic or do not act according to the stereotype that they act irrationally and anti-socially and sometimes give rational and adaptive reactions. However, the rareness of research dealing with human behavior experiencing the earthquake moment makes it necessary to pay particular attention to these behavior patterns. In this direction, this study aims to examine human behavior indoors in case of rising earthquake intensity. In Turkey, located on geography in the earthquake zone, devastating earthquakes took place, such as in "Istanbul" with a magnitude of 7.4 in 1999 and in "Elazığ" with a magnitude of 6.8 in 2020. Occurred recently, the "Kahramanmaraş" earthquake affected 11 provinces, with a magnitude of 7.7 and 7.6 in 2023. In addition, there is expected to be a devastating earthquake in Istanbul, experts warn. For this reason, it is essential to understand human behavior for disaster risk. Management and pre-disaster preparedness to be effective and efficient and to take realistic measures to protect human life. Mazlum Çelik, Burcu Gürkan Ercan, Ahmet Ayaz, Hilal Yakut İpekoğlu, Furkan Baltacı, Mustafa Kurtoğlu, Bilge Kalkavan, Sinem Küçükyılmaz, Hikmet Çağrı Yardımcı, Şeyma Sevgican, Cemile Gökçe Elkovan, Bilal Çayır, Mehmet Emin Düzcan. In this study, which is currently part of a project supported by The Scientific and Technological Council of Turkey (TUBITAK), the indoor recordings during the earthquakes in Elazig on January 24, 2020, and in İzmir on October 30, 2020, are examined, and the people's behavior during the earthquake is analyzed. In this direction, video recordings taken from the YouTube archives of İzmir and Elazığ Disaster and Emergency Management Presidency (AFAD) Directorates and metropolitan municipalities are examined. The researchers have created an observation form in line with the information in the relevant literature to classify people's behavior during an earthquake. It is intended to determine the behavioral patterns by classifying according to the form and video analysis of the people heading toward the door, remaining stable, taking protective measures, turning to people, and engaging in "other" behaviors outside of these behaviors during the earthquake. A total of 60 video analyzes are carried out from Elazığ and İzmir. The descriptive statistic has been used with the SPSS 23.0 package program in the data analysis. It is found that in the event of an increase in the severity of the earthquake, unlike Elazığ, in İzmir, protective action is preferred to the act of remaining stable. In addition, it is observed that with the increase in the earthquake's intensity, women attempt to take more protective action while men head toward the door. In contrast, a rise is observed in the behavior of young people heading toward the door and taking protective actions, while there is a decrease in their behavior directing to people. These findings, unlike the literature, reveal that human behavior during earthquakes cannot be reduced to a single behavior pattern, such as drop-cover-hold-on. The results show that it is necessary to understand the behaviors of individuals during the earthquake and to develop practical policy proposals for combating earthquakes by considering sociocultural, geographical, and demographic variables.

Keywords: descriptive analysis, earthquake, human behaviour, disaster policy.

Procedia PDF Downloads 103
3543 A Theory of Vertical Partnerships Model as Responsive Failure in Alternative Arrangement for Infrastructural Development in the Third World Countries: A Comparative Public Administration Analysis

Authors: Cyril Ekuaze

Abstract:

This paper was instigated by a set of assumption drawn at the introduction to a research work on alternative institutional arrangements for sustaining rural infrastructure in developing countries. Of one of such assumption is the one held that, a problem facing developing countries is the sustaining of infrastructural investment long enough to allow the facility to at least repay the cost of the development as been due to insufficient maintenance. On the contrary, this work argues that, most international partnerships relation with developing nations in developing infrastructures is “vertical modeling” with the hierarchical authority and command flow from top to bottom. The work argued that where international donor partners/agencies set out infrastructural development agenda in the developing nations without cognizance of design suitability and capacity for maintenance by the recipient nations; and where public administrative capacity building in the field of science, technology and engineering requisite for design, development and sustenance of infrastructure in the recipient countries are negated, prospective output becomes problematic.

Keywords: vertical partnerships, responsive failure, infrastructural development, developing countries

Procedia PDF Downloads 329
3542 Numerical Simulation of the Rotating Vertical Bridgman Growth

Authors: Nouri Sabrina

Abstract:

Numerical parametric study is conducted to study the effects of ampoule rotation on the flows and the dopant segregation in Vertical Bridgman (VB) crystal growth. Calculations were performed in unsteady state. The extended darcy model, whıch includes the time derivative and coriolis terms, has been employed in the momentum equation. It is found that the convection, and dopant segregation can be affected significantly by ampoule rotation, and the effect is similar to that by an axial magnetıc field. Ampoule rotation decreases the intensity of convection and stretches the flow cell axıally. When the convectıon is weak, the flow can be suppressed almost completely by moderate ampoule rotation and the dopant segregation becomes diffusion-controlled. For stronger convection, the elongated flow cell by ampoule rotation may bring dopant mixing into the bulk melt reducing axial segregation at the early stage of the growth. However, if the cellular flow cannot be suppressed completely, ampoule rotation may induce larger radial segregation due to poor mixing.

Keywords: rotating vertical solidification, Finite Volume Method, heat and mass transfer, porous medium, phase change

Procedia PDF Downloads 431
3541 Experimental Demonstration of an Ultra-Low Power Vertical-Cavity Surface-Emitting Laser for Optical Power Generation

Authors: S. Nazhan, Hassan K. Al-Musawi, Khalid A. Humood

Abstract:

This paper reports on an experimental investigation into the influence of current modulation on the properties of a vertical-cavity surface-emitting laser (VCSEL) with a direct square wave modulation. The optical output power response, as a function of the pumping current, modulation frequency, and amplitude, is measured for an 850 nm VCSEL. We demonstrate that modulation frequency and amplitude play important roles in reducing the VCSEL’s power consumption for optical generation. Indeed, even when the biasing current is below the static threshold, the VCSEL emits optical power under the square wave modulation. The power consumed by the device to generate light is significantly reduced to > 50%, which is below the threshold current, in response to both the modulation frequency and amplitude. An operating VCSEL device at low power is very desirable for less thermal effects, which are essential for a high-speed modulation bandwidth.

Keywords: vertical-cavity surface-emitting lasers, VCSELs, optical power generation, power consumption, square wave modulation

Procedia PDF Downloads 166
3540 Post Earthquake Volunteer Learning That Build up Caring Learning Communities

Authors: Naoki Okamura

Abstract:

From a perspective of moral education, this study has examined the experiences of a group of college students who volunteered in disaster areas after the magnitude 9.0 Earthquake, which struck the Northeastern region of Japan in March, 2011. The research, utilizing the method of grounded theory, has uncovered that most of the students have gone through positive changes in their development of moral and social characters, such as attaining deeper sense of empathy and caring personalities. The study expresses, in identifying the nature of those transformations, that the importance of volunteer work should strongly be recognized by the colleges and universities in Japan, in fulfilling their public responsibility of creating and building learning communities that are responsible and caring.

Keywords: moral development, moral education, service learning, volunteer learning

Procedia PDF Downloads 320
3539 A Systematic Approach for Identifying Turning Center Capabilities with Vertical Machining Center in Milling Operation

Authors: Joseph Chen, N. Hundal

Abstract:

Conventional machining is a form of subtractive manufacturing, in which a collection of material-working processes utilizing power-driven machine tools are used to remove undesired material to achieve a desired geometry. This paper presents an approach for comparison between turning center and vertical machining center by optimization of cutting parameters at cylindrical workpieces leading to minimum surface roughness by using taguchi methodology. Aluminum alloy was taken to conduct experiments due to its unique high strength-weight ratio that is maintained at elevated temperatures and their exceptional corrosion resistance. During testing, the effects of the cutting parameters on the surface roughness were investigated. Additionally, by using taguchi methodology for each of the cutting parameters (spindle speed, depth of cut, insert diameter, and feed rate) minimum surface roughness for the process of turn-milling was determined according to the cutting parameters. A confirmation experiment demonstrates the effectiveness of taguchi method.

Keywords: surface roughness, Taguchi parameter design, turning center, turn-milling operations, vertical machining center

Procedia PDF Downloads 329
3538 Influence of Strengthening with Perforated Steel Plates on the Behavior of Infill Walls and RC Frame

Authors: Eray Ozbek, Ilker Kalkan, S. Oguzhan Akbas, Sabahattin Aykac

Abstract:

The contribution of the infill walls to the overall earthquake response of a structure is limited and this contribution is generally ignored in the analyses. Strengthening of the infill walls through different techniques has been and is being studied extensively in the literature to increase this limited contribution and the ductilities and energy absorption capacities of the infill walls to create non-structural components where the earthquake-induced energy can be absorbed without damaging the bearing components of the structural frame. The present paper summarizes an extensive research project dedicated to investigate the effects of strengthening the brick infill walls of a reinforced concrete (RC) frame on its lateral earthquake response. Perforated steel plates were used in strengthening due to several reasons, including the ductility and high deformation capacity of these plates, the fire resistant, recyclable and non-cancerogenic nature of mild steel, and the ease of installation and removal of the plates to the wall with the help of anchor bolts only. Furthermore, epoxy, which increases the cost and amount of labor of the strengthening process, is not needed in this technique. The individual behavior of the strengthened walls under monotonic diagonal and lateral reversed cyclic loading was investigated within the scope of the study. Upon achieving brilliant results, RC frames with strengthened infill walls were tested and are being tested to examine the influence of this strengthening technique on the overall behavior of the RC frames. Tests on the wall and frame specimens indicated that the perforated steel plates contribute to the lateral strength, rigidity, ductility and energy absorption capacity of the wall and the infilled frame to a major extent.

Keywords: infill wall, strengthening, external plate, earthquake behavior

Procedia PDF Downloads 450
3537 Connotation Reform and Problem Response of Rural Social Relations under the Influence of the Earthquake: With a Review of Wenchuan Decade

Authors: Yanqun Li, Hong Geng

Abstract:

The occurrence of Wenchuan earthquake in 2008 has led to severe damage to the rural areas of Chengdu city, such as the rupture of the social network, the stagnation of economic production and the rupture of living space. The post-disaster reconstruction has become a sustainable issue. As an important link to maintain the order of rural social development, social network should be an important content of post-disaster reconstruction. Therefore, this paper takes rural reconstruction communities in earthquake-stricken areas of Chengdu as the research object and adopts sociological research methods such as field survey, observation and interview to try to understand the transformation of rural social relations network under the influence of earthquake and its impact on rural space. It has found that rural societies under the earthquake generally experienced three phases: the break of stable social relations, the transition of temporary non-normal state, and the reorganization of social networks. The connotation of phased rural social relations also changed accordingly: turn to a new division of labor on the social orientation, turn to a capital flow and redistribution in new production mode on the capital orientation, and turn to relative decentralization after concentration on the spatial dimension. Along with such changes, rural areas have emerged some social issues such as the alienation of competition in the new industry division, the low social connection, the significant redistribution of capital, and the lack of public space. Based on a comprehensive review of these issues, this paper proposes the corresponding response mechanism. First of all, a reasonable division of labor should be established within the villages to realize diversified commodity supply. Secondly, the villages should adjust the industrial type to promote the equitable participation of capital allocation groups. Finally, external public spaces should be added to strengthen the field of social interaction within the communities.

Keywords: social relations, social support networks, industrial division, capital allocation, public space

Procedia PDF Downloads 156
3536 Investigation of the Role of Friction in Reducing Pedestrian Injuries in Accidents at Intersections

Authors: Seyed Abbas Tabatabaei, Afshin Ghanbarzadeh, Mehdi Abidizadeh

Abstract:

Nowadays the subject of road traffic accidents and the high social and economic costs due to them is the most fundamental problem that experts and providers of transport and traffic brought to a challenge. One of the most effective measures is to enhance the skid resistance of road surface. This research aims to study the intersection of one case in Ahwaz and the effect of increasing the skid resistance in reducing pedestrian injuries in accidents at intersections. In this research the device was developed to measure the coefficient of friction and tried the rules and practices of it have a high similarity with the Locked Wheel Trailer. This device includes a steel frame, wheels, hydration systems, and force gauge. The output of the device is that the force gauge registers. By investigate this data and applying the relationships relative surface coefficient of friction is obtained. Friction coefficient data for the current state and the state of the new pavement are obtained and plotted on the graphs based on the graphs we can compare the two situations and speed at the moment of collision between the two modes are compared. The results show that increasing the coefficient of friction to what extent can be effective on the severity and number of accidents.

Keywords: intersection, coefficient of friction, skid resistance, locked wheels, accident, pedestrian

Procedia PDF Downloads 328
3535 The Dark Side of Tourism's Implications: A Structural Equation Modeling Study of the 2016 Earthquake in Central Italy

Authors: B. Kulaga, A. Cinti, F. J. Mazzocchini

Abstract:

Despite the fact that growing academic attention on dark tourism is a fairly recent phenomenon, among the various reasons for travelling death-related ones, are very ancient. Furthermore, the darker side of human nature has always been fascinated and curious regarding death, or at least, man has always tried to learn lessons from death. This study proposes to describe the phenomenon of dark tourism related to the 2016 earthquake in Central Italy, deadly for 302 people and highly destructive for the rural areas of Lazio, Marche, and Umbria Regions. The primary objective is to examine the motivation-experience relationship in a dark tourism site, using the structural equation model, applied for the first time to a dark tourism research in 2016, in a study conducted after the Beichuan earthquake. The findings of the current study are derived from the calculations conducted on primary data compiled from 350 tourists in the areas mostly affected by the 2016 earthquake, including the town of Amatrice, near the epicenter, Castelluccio, Norcia, Ussita and Visso, through conducting a Likert scale survey. Furthermore, we use the structural equation model to examine the motivation behind dark travel and how this experience can influence the motivation and emotional reaction of tourists. Expected findings are in line with the previous study mentioned above, indicating that: not all tourists visit the thanatourism sites for dark tourism purpose, tourists’ emotional reactions influence more heavily the emotional tourist experience than cognitive experiences do, and curious visitors are likely to engage cognitively by learning about the incident or related issues.

Keywords: dark tourism, emotional reaction, experience, motivation, structural equation model

Procedia PDF Downloads 144
3534 Structural Health Monitoring of Buildings–Recorded Data and Wave Method

Authors: Tzong-Ying Hao, Mohammad T. Rahmani

Abstract:

This article presents the structural health monitoring (SHM) method based on changes in wave traveling times (wave method) within a layered 1-D shear beam model of structure. The wave method measures the velocity of shear wave propagating in a building from the impulse response functions (IRF) obtained from recorded data at different locations inside the building. If structural damage occurs in a structure, the velocity of wave propagation through it changes. The wave method analysis is performed on the responses of Torre Central building, a 9-story shear wall structure located in Santiago, Chile. Because events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded at this building, therefore it can serve as a full-scale benchmark to validate the structural health monitoring method utilized. The analysis of inter-story drifts and the Fourier spectra for the EW and NS motions during 2010 Chile earthquake are presented. The results for the NS motions suggest the coupling of translation and torsion responses. The system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) were detected initially decreasing approximately 24% in the EW motion. Near the end of shaking, an increase of about 17% was detected. These analysis and results serve as baseline indicators of the occurrence of structural damage. The detected changes in wave velocities of the shear beam model are consistent with the observed damage. However, the 1-D shear beam model is not sufficient to simulate the coupling of translation and torsion responses in the NS motion. The wave method is proven for actual implementation in structural health monitoring systems based on carefully assessing the resolution and accuracy of the model for its effectiveness on post-earthquake damage detection in buildings.

Keywords: Chile earthquake, damage detection, earthquake response, impulse response function, shear beam model, shear wave velocity, structural health monitoring, torre central building, wave method

Procedia PDF Downloads 368
3533 Material Fracture Dynamic of Vertical Axis Wind Turbine Blade

Authors: Samir Lecheb, Ahmed Chellil, Hamza Mechakra, Brahim Safi, Houcine Kebir

Abstract:

In this paper we studied fracture and dynamic behavior of vertical axis wind turbine blade, the VAWT is a historical machine, it has many properties, structure, advantage, component to be able to produce the electricity. We modeled the blade design then imported to Abaqus software for analysis the modes shapes, frequencies, stress, strain, displacement and stress intensity factor SIF, after comparison we chose the idol material. Finally, the CTS test of glass epoxy reinforced polymer plates to obtain the material fracture toughness Kc.

Keywords: blade, crack, frequency, material, SIF

Procedia PDF Downloads 550