Search results for: memory duration
2286 Experimental Evaluation of Succinct Ternary Tree
Authors: Dmitriy Kuptsov
Abstract:
Tree data structures, such as binary or in general k-ary trees, are essential in computer science. The applications of these data structures can range from data search and retrieval to sorting and ranking algorithms. Naive implementations of these data structures can consume prohibitively large volumes of random access memory limiting their applicability in certain solutions. Thus, in these cases, more advanced representation of these data structures is essential. In this paper we present the design of the compact version of ternary tree data structure and demonstrate the results for the experimental evaluation using static dictionary problem. We compare these results with the results for binary and regular ternary trees. The conducted evaluation study shows that our design, in the best case, consumes up to 12 times less memory (for the dictionary used in our experimental evaluation) than a regular ternary tree and in certain configuration shows performance comparable to regular ternary trees. We have evaluated the performance of the algorithms using both 32 and 64 bit operating systems.Keywords: algorithms, data structures, succinct ternary tree, per- formance evaluation
Procedia PDF Downloads 1602285 A Case Report on Cognitive-Communication Intervention in Traumatic Brain Injury
Authors: Nikitha Francis, Anjana Hoode, Vinitha George, Jayashree S. Bhat
Abstract:
The interaction between cognition and language, referred as cognitive-communication, is very intricate, involving several mental processes such as perception, memory, attention, lexical retrieval, decision making, motor planning, self-monitoring and knowledge. Cognitive-communication disorders are difficulties in communicative competencies that result from underlying cognitive impairments of attention, memory, organization, information processing, problem solving, and executive functions. Traumatic brain injury (TBI) is an acquired, non - progressive condition, resulting in distinct deficits of cognitive communication abilities such as naming, word-finding, self-monitoring, auditory recognition, attention, perception and memory. Cognitive-communication intervention in TBI is individualized, in order to enhance the person’s ability to process and interpret information for better functioning in their family and community life. The present case report illustrates the cognitive-communicative behaviors and the intervention outcomes of an adult with TBI, who was brought to the Department of Audiology and Speech Language Pathology, with cognitive and communicative disturbances, consequent to road traffic accident. On a detailed assessment, she showed naming deficits along with perseverations and had severe difficulty in recalling the details of the accident, her house address, places she had visited earlier, names of people known to her, as well as the activities she did each day, leading to severe breakdowns in her communicative abilities. She had difficulty in initiating, maintaining and following a conversation. She also lacked orientation to time and place. On administration of the Manipal Manual of Cognitive Linguistic Abilities (MMCLA), she exhibited poor performance on tasks related to visual and auditory perception, short term memory, working memory and executive functions. She attended 20 sessions of cognitive-communication intervention which followed a domain-general, adaptive training paradigm, with tasks relevant to everyday cognitive-communication skills. Compensatory strategies such as maintaining a dairy with reminders of her daily routine, names of people, date, time and place was also recommended. MMCLA was re-administered and her performance in the tasks showed significant improvements. Occurrence of perseverations and word retrieval difficulties reduced. She developed interests to initiate her day-to-day activities at home independently, as well as involve herself in conversations with her family members. Though she lacked awareness about her deficits, she actively involved herself in all the therapy activities. Rehabilitation of moderate to severe head injury patients can be done effectively through a holistic cognitive retraining with a focus on different cognitive-linguistic domains. Selection of goals and activities should have relevance to the functional needs of each individual with TBI, as highlighted in the present case report.Keywords: cognitive-communication, executive functions, memory, traumatic brain injury
Procedia PDF Downloads 3472284 Effect of Varying Diets on Growth, Development and Survival of Queen Bee (Apis mellifera L.) in Captivity
Authors: Muhammad Anjum Aqueel, Zaighum Abbas, Mubasshir Sohail, Muhammad Abubakar, Hafiz Khurram Shurjeel, Abu Bakar Muhammad Raza, Muhammad Afzal, Sami Ullah
Abstract:
Keeping in view the increasing demand, queen of Apis mellifera L. (Hymenoptera: Apidae) was reared artificially in this experiment at varying diets including royal jelly. Larval duration, pupal duration, weight, and size of pupae were evaluated at different diets including royal jelly. Queen larvae were raised by Doo Little grafting method. Four different diets were mixed with royal jelly and applied to larvae. Fructose, sugar, yeast, and honey were provided to rearing queen larvae along with same amount of royal jelly. Larval and pupal duration were longest (6.15 and 7.5 days, respectively) at yeast and shortest on honey (5.05 and 7.02 days, respectively). Heavier and bigger pupae were recorded on yeast (168.14 mg and 1.76 cm, respectively) followed by diets having sugar and honey. Due to production of heavier and bigger pupae, yeast was considered as best artificial diet for the growing queen larvae. So, in the second part of experiment, different amounts of yeast were provided to growing larvae along with fixed amount (0.5 g) of royal jelly. Survival rates of the larvae and queen bee were 70% and 40% in the 4-g food, 86.7% and 53.3% in the 6-g food, and 76.7% and 50% in the 8-g food. Weight of adult queen bee (1.459±0.191 g) and the number of ovarioles (41.7±21.3) were highest at 8 g of food. Results of this study are helpful for bee-keepers in producing fitter queen bees.Keywords: apis melifera l, dietary effect, survival and development, honey bee queen
Procedia PDF Downloads 4902283 Subspace Rotation Algorithm for Implementing Restricted Hopfield Network as an Auto-Associative Memory
Authors: Ci Lin, Tet Yeap, Iluju Kiringa
Abstract:
This paper introduces the subspace rotation algorithm (SRA) to train the Restricted Hopfield Network (RHN) as an auto-associative memory. Subspace rotation algorithm is a gradient-free subspace tracking approach based on the singular value decomposition (SVD). In comparison with Backpropagation Through Time (BPTT) on training RHN, it is observed that SRA could always converge to the optimal solution and BPTT could not achieve the same performance when the model becomes complex, and the number of patterns is large. The AUTS case study showed that the RHN model trained by SRA could achieve a better structure of attraction basin with larger radius(in general) than the Hopfield Network(HNN) model trained by Hebbian learning rule. Through learning 10000 patterns from MNIST dataset with RHN models with different number of hidden nodes, it is observed that an several components could be adjusted to achieve a balance between recovery accuracy and noise resistance.Keywords: hopfield neural network, restricted hopfield network, subspace rotation algorithm, hebbian learning rule
Procedia PDF Downloads 1172282 Cognitive Dysfunctioning and the Fronto-Limbic Network in Bipolar Disorder Patients: A Fmri Meta-Analysis
Authors: Rahele Mesbah, Nic Van Der Wee, Manja Koenders, Erik Giltay, Albert Van Hemert, Max De Leeuw
Abstract:
Introduction: Patients with bipolar disorder (BD), characterized by depressive and manic episodes, often suffer from cognitive dysfunction. An up-to-date meta-analysis of functional Magnetic Resonance Imaging (fMRI) studies examining cognitive function in BD is lacking. Objective: The aim of the current fMRI meta-analysis is to investigate brain functioning of bipolar patients compared with healthy subjects within three domains of emotion processing, reward processing, and working memory. Method: Differences in brain regions activation were tested within whole-brain analysis using the activation likelihood estimation (ALE) method. Separate analyses were performed for each cognitive domain. Results: A total of 50 fMRI studies were included: 20 studies used an emotion processing (316 BD and 369 HC) task, 9 studies a reward processing task (215 BD and 213 HC), and 21 studies used a working memory task (503 BD and 445 HC). During emotion processing, BD patients hyperactivated parts of the left amygdala and hippocampus as compared to HC’s, but showed hypoactivation in the inferior frontal gyrus (IFG). Regarding reward processing, BD patients showed hyperactivation in part of the orbitofrontal cortex (OFC). During working memory, BD patients showed increased activity in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC). Conclusions: This meta-analysis revealed evidence for activity disturbances in several brain areas involved in the cognitive functioning of BD patients. Furthermore, most of the found regions are part of the so-called fronto-limbic network which is hypothesized to be affected as a result of BD candidate genes' expression.Keywords: cognitive functioning, fMRI analysis, bipolar disorder, fronto-limbic network
Procedia PDF Downloads 4612281 Another Beautiful Sounds: Building the Memory of Sound of Peddling in Beijing with Digital Technology
Authors: Dan Wang, Qing Ma, Xiaodan Wang, Tianjiao Qi
Abstract:
The sound of peddling in Beijing, also called “yo-heave-ho” or “cry of one's ware”, is a unique folk culture and usually found in Beijing hutong. For the civilians in Beijing, sound of peddling is part of their childhood. And for those who love the traditional culture of Beijing, it is an old song singing the local conditions and customs of the ancient city. For example, because of his great appreciation, the British poet Osbert Stewart once put sound of peddling which he had heard in Beijing as a street orchestra performance in the article named "Beijing's sound and color".This research aims to collect and integrate the voice/photo resources and historical materials of sound concerning peddling in Beijing by digital technology in order to protect the intangible cultural heritage and pass on the city memory. With the goal in mind, the next stage is to collect and record all the materials and resources based on the historical documents study and interviews with civilians or performers. Then set up a metadata scheme (which refers to the domestic and international standards such as "Audio Data Processing Standards in the National Library", DC, VRA, and CDWA, etc.) to describe, process and organize the sound of peddling into a database. In order to fully show the traditional culture of sound of peddling in Beijing, web design and GIS technology are utilized to establish a website and plan holding offline exhibitions and events for people to simulate and learn the sound of peddling by using VR/AR technology. All resources are opened to the public and civilians can share the digital memory through not only the offline experiential activities, but also the online interaction. With all the attempts, a multi-media narrative platform has been established to multi-dimensionally record the sound of peddling in old Beijing with text, images, audio, video and so on.Keywords: sound of peddling, GIS, metadata scheme, VR/AR technology
Procedia PDF Downloads 3042280 Spatial Data Mining by Decision Trees
Authors: Sihem Oujdi, Hafida Belbachir
Abstract:
Existing methods of data mining cannot be applied on spatial data because they require spatial specificity consideration, as spatial relationships. This paper focuses on the classification with decision trees, which are one of the data mining techniques. We propose an extension of the C4.5 algorithm for spatial data, based on two different approaches Join materialization and Querying on the fly the different tables. Similar works have been done on these two main approaches, the first - Join materialization - favors the processing time in spite of memory space, whereas the second - Querying on the fly different tables- promotes memory space despite of the processing time. The modified C4.5 algorithm requires three entries tables: a target table, a neighbor table, and a spatial index join that contains the possible spatial relationship among the objects in the target table and those in the neighbor table. Thus, the proposed algorithms are applied to a spatial data pattern in the accidentology domain. A comparative study of our approach with other works of classification by spatial decision trees will be detailed.Keywords: C4.5 algorithm, decision trees, S-CART, spatial data mining
Procedia PDF Downloads 6122279 Dynamic Variation in Nano-Scale CMOS SRAM Cells Due to LF/RTS Noise and Threshold Voltage
Authors: M. Fadlallah, G. Ghibaudo, C. G. Theodorou
Abstract:
The dynamic variation in memory devices such as the Static Random Access Memory can give errors in read or write operations. In this paper, the effect of low-frequency and random telegraph noise on the dynamic variation of one SRAM cell is detailed. The effect on circuit noise, speed, and length of time of processing is examined, using the Supply Read Retention Voltage and the Read Static Noise Margin. New test run methods are also developed. The obtained results simulation shows the importance of noise caused by dynamic variation, and the impact of Random Telegraph noise on SRAM variability is examined by evaluating the statistical distributions of Random Telegraph noise amplitude in the pull-up, pull-down. The threshold voltage mismatch between neighboring cell transistors due to intrinsic fluctuations typically contributes to larger reductions in static noise margin. Also the contribution of each of the SRAM transistor to total dynamic variation has been identified.Keywords: low-frequency noise, random telegraph noise, dynamic variation, SRRV
Procedia PDF Downloads 1762278 Deep Learning-Based Channel Estimation for RIS-Assisted Unmanned Aerial Vehicle-Enabled Wireless Communication System
Authors: Getaneh Berie Tarekegn
Abstract:
Wireless communication via unmanned aerial vehicles (UAVs) has drawn a great deal of attention due to its flexibility in establishing line-of-sight (LoS) communications. However, in complex urban and dynamic environments, the movement of UAVs can be blocked by trees and high-rise buildings that obstruct directional paths. With reconfigurable intelligent surfaces (RIS), this problem can be effectively addressed. To achieve this goal, accurate channel estimation in RIS-assisted UAV-enabled wireless communications is crucial. This paper proposes an accurate channel estimation model using long short-term memory (LSTM) for a multi-user RIS-assisted UAV-enabled wireless communication system. According to simulation results, LSTM can improve the channel estimation performance of RIS-assisted UAV-enabled wireless communication.Keywords: channel estimation, reconfigurable intelligent surfaces, long short-term memory, unmanned aerial vehicles
Procedia PDF Downloads 572277 Analyze of Nanoscale Materials and Devices for Future Communication and Telecom Networks in the Gas Refinery
Authors: Mohamad Bagher Heidari, Hefzollah Mohammadian
Abstract:
New discoveries in materials on the nanometer-length scale are expected to play an important role in addressing ongoing and future challenges in the field of communication. Devices and systems for ultra-high speed short and long range communication links, portable and power efficient computing devices, high-density memory and logics, ultra-fast interconnects, and autonomous and robust energy scavenging devices for accessing ambient intelligence and needed information will critically depend on the success of next-generation emerging nonmaterials and devices. This article presents some exciting recent developments in nonmaterials that have the potential to play a critical role in the development and transformation of future intelligent communication and telecom networks in the gas refinery. The industry is benefiting from nanotechnology advances with numerous applications including those in smarter sensors, logic elements, computer chips, memory storage devices, optoelectronics.Keywords: nonmaterial, intelligent communication, nanoscale, nanophotonic, telecom
Procedia PDF Downloads 3332276 FISCEAPP: FIsh Skin Color Evaluation APPlication
Authors: J. Urban, Á. S. Botella, L. E. Robaina, A. Bárta, P. Souček, P. Císař, Š. Papáček, L. M. Domínguez
Abstract:
Skin coloration in fish is of great physiological, behavioral and ecological importance and can be considered as an index of animal welfare in aquaculture as well as an important quality factor in the retail value. Currently, in order to compare color in animals fed on different diets, biochemical analysis, and colorimetry of fished, mildly anesthetized or dead body, are very accurate and meaningful measurements. The noninvasive method using digital images of the fish body was developed as a standalone application. This application deals with the computation burden and memory consumption of large input files, optimizing piece wise processing and analysis with the memory/computation time ratio. For the comparison of color distributions of various experiments and different color spaces (RGB, CIE L*a*b*) the comparable semi-equidistant binning of multi channels representation is introduced. It is derived from the knowledge of quantization levels and Freedman-Diaconis rule. The color calibrations and camera responsivity function were necessary part of the measurement process.Keywords: color distribution, fish skin color, piecewise transformation, object to background segmentation
Procedia PDF Downloads 2622275 Early versus Late Percutaneous Tracheostomy in Critically Ill Adult Mechanically Ventilated Patients
Authors: Kamel Abd Elaziz Mohamed, Ahmed Yehia Mousa, Ahmed Samir ElSawy, Adel Mohamed Saleem
Abstract:
Introduction: Critically ill patients frequently require tracheostomy to simplify long term air way management. While tracheostomy indications have remained unchanged, the timing of elective tracheostomy for the ventilated patient has been questioned. Aim of the work: This study was performed to compare the differences between early and late percutaneous dilatational tracheostomy (PDT) regarding, mechanical ventilation duration (MVD), length of ICU stay, length of hospital stay, incidence of ventilator associated pneumonia and hospital outcome. Patients and methods: Forty patients who met the inclusion criteria were randomly divided into early PDT who had the tracheostomy within the first 10 days of mechanical ventilation (MV) and the late PDT who had the tracheostomy after 10 days of MV. On admission, demographic data and Acute Physiology and Chronic ill Health II and GCS were collected. The duration of mechanical ventilation, ICU length of stay (LOS) and hospital LOS were all calculated. Results: Total of 40 patients were randomized to either early PDT (n= 20) or late PDT (n= 20). There were no significant differences between both groups regarding demographic data or the scores: APACHE II (22.75± 7 vs 24.35 ± 8) and GCS (6.10 ±2 vs 7.10 ± 2.71). An early PDT showed fewer complications vs late procedure, however it was insignificant. There were significant differences between the two groups regarding mean (MVD) which was shorter in early PDT than the late PDT group (32.2± 10.5) vs (20.6 ± 13 days; p= 0.004). Mean ICU stay was shorter in early PDT than late PDT (21 .0± 513.4) vs (40.15 ±12.7 days; p 6 0.001). Mean hospital stay was shorter in early PDT than late PDT (34.60± 18.37) vs (55.60± 25.73 days; p=0.005). Patients with early PDT suffered less sepsis and VAP than late PDT, there was no difference regarding the mortality rate between the two groups. Conclusion: Early PDT is recommended for patients who require prolonged tracheal intubation in the ICU as outcomes like the duration of mechanical ventilation length of ICU stay and hospital stay were significantly shorter in early tracheostomy.Keywords: intensive care unit, early PDT, late PDT, intubation
Procedia PDF Downloads 6002274 Shape Memory Alloy Structural Damper Manufactured by Selective Laser Melting
Authors: Tiziana Biasutti, Daniela Rigamonti, Lorenzo Palmiotti, Adelaide Nespoli, Paolo Bettini
Abstract:
Aerospace industry is based on the continuous development of new technologies and solutions that allows constant improvement of the systems. Shape Memory Alloys are smart materials that can be used as dampers due to their pseudoelastic effect. The purpose of the research was to design a passive damper in Nitinol, manufactured by Selective Laser Melting, for space applications to reduce vibration between different structural parts in space structures. The powder is NiTi (50.2 at.% of Ni). The structure manufactured by additive technology allows us to eliminate the presence of joint and moving parts and to have a compact solution with high structural strength. The designed dampers had single or double cell structures with three different internal angles (30°, 45° and 60°). This particular shape has damping properties also without the pseudoelastic effect. For this reason, the geometries were reproduced in different materials, SS316L and Ti6Al4V, to test the geometry loss factor. The mechanical performances of these specimens were compared to the ones of NiTi structures, pointing out good damping properties of the designed structure and the highest performances of the NiTi pseudoelastic effect. The NiTi damper was mechanically characterized by static and dynamic tests and with DSC and microscope observations. The experimental results were verified with numerical models and with some scaled steel specimens in which optical fibers were embedded. The realized structure presented good mechanical and damping properties. It was observed that the loss factor and the dissipated energy increased with the angles of the cells.Keywords: additive manufacturing, damper, nitinol, pseudo elastic effect, selective laser melting, shape memory alloys
Procedia PDF Downloads 1072273 NUX: A Lightweight Block Cipher for Security at Wireless Sensor Node Level
Authors: Gaurav Bansod, Swapnil Sutar, Abhijit Patil, Jagdish Patil
Abstract:
This paper proposes an ultra-lightweight cipher NUX. NUX is a generalized Feistel network. It supports 128/80 bit key length and block length of 64 bit. For 128 bit key length, NUX needs only 1022 GEs which is less as compared to all existing cipher design. NUX design results into less footprint area and minimal memory size. This paper presents security analysis of NUX cipher design which shows cipher’s resistance against basic attacks like Linear and Differential Cryptanalysis. Advanced attacks like Biclique attack is also mounted on NUX cipher design. Two different F function in NUX cipher design results in high diffusion mechanism which generates large number of active S-boxes in minimum number of rounds. NUX cipher has total 31 rounds. NUX design will be best-suited design for critical application like smart grid, IoT, wireless sensor network, where memory size, footprint area and the power dissipation are the major constraints.Keywords: lightweight cryptography, Feistel cipher, block cipher, IoT, encryption, embedded security, ubiquitous computing
Procedia PDF Downloads 3722272 Phonological Processing and Its Role in Pseudo-Word Decoding in Children Learning to Read Kannada Language between 5.6 to 8.6 Years
Authors: Vangmayee. V. Subban, Somashekara H. S, Shwetha Prabhu, Jayashree S. Bhat
Abstract:
Introduction and Need: Phonological processing is critical in learning to read alphabetical and non-alphabetical languages. However, its role in learning to read Kannada an alphasyllabary is equivocal. The literature has focused on the developmental role of phonological awareness on reading. To the best of authors knowledge, the role of phonological memory and phonological naming has not been addressed in alphasyllabary Kannada language. Therefore, there is a need to evaluate the comprehensive role of the phonological processing skills in Kannada on word decoding skills during the early years of schooling. Aim and Objectives: The present study aimed to explore the phonological processing abilities and their role in learning to decode pseudowords in children learning to read the Kannada language during initial years of formal schooling between 5.6 to 8.6 years. Method: In this cross sectional study, 60 typically developing Kannada speaking children, 20 each from Grade I, Grade II, and Grade III between the age range of 5.6 to 6.6 years, 6.7 to 7.6 years and 7.7 to 8.6 years respectively were selected from Kannada medium schools. Phonological processing abilities were assessed using an assessment tool specifically developed to address the objectives of the present research. The assessment tool was content validated by subject experts and had good inter and intra-subject reliability. Phonological awareness was assessed at syllable level using syllable segmentation, blending, and syllable stripping at initial, medial and final position. Phonological memory was assessed using pseudoword repetition task and phonological naming was assessed using rapid automatized naming of objects. Both phonological awareneness and phonological memory measures were scored for the accuracy of the response, whereas Rapid Automatized Naming (RAN) was scored for total naming speed. Results: The mean scores comparison using one-way ANOVA revealed a significant difference (p ≤ 0.05) between the groups on all the measures of phonological awareness, pseudoword repetition, rapid automatized naming, and pseudoword reading. Subsequent post-hoc grade wise comparison using Bonferroni test revealed significant differences (p ≤ 0.05) between each of the grades for all the tasks except (p ≥ 0.05) for syllable blending, syllable stripping, and pseudoword repetition between Grade II and Grade III. The Pearson correlations revealed a highly significant positive correlation (p=0.000) between all the variables except phonological naming which had significant negative correlations. However, the correlation co-efficient was higher for phonological awareness measures compared to others. Hence, phonological awareness was chosen a first independent variable to enter in the hierarchical regression equation followed by rapid automatized naming and finally, pseudoword repetition. The regression analysis revealed syllable awareness as a single most significant predictor of pseudoword reading by explaining the unique variance of 74% and there was no significant change in R² when RAN and pseudoword repetition were added subsequently to the regression equation. Conclusion: Present study concluded that syllable awareness matures completely by Grade II, whereas the phonological memory and phonological naming continue to develop beyond Grade III. Amongst phonological processing skills, phonological awareness, especially syllable awareness is crucial for word decoding than phonological memory and naming during initial years of schooling.Keywords: phonological awareness, phonological memory, phonological naming, phonological processing, pseudo-word decoding
Procedia PDF Downloads 1752271 The Autonomy Use of Preparatory School Students to Learn English Language
Authors: Mi̇hri̇ban Müge Aras
Abstract:
The present study aims to investigate the learner autonomy usage of prep school students. This research focuses on the prep school students' autonomy habits according to their self-regulated studies, age and duration of learning English. The research also analyzes whether prep school students have strong autonomy to learn the English language or depend on teachers and English classes only. The participants of the study consisted of 32 prep school students. The "Likert- type of questionnaire " was adopted by the researcher from the survey of Dede (2017). The scale was a one-dimensional 4-Likert type, which has the options of 1=never, 2= sometimes, 3=often, and 4=always. There are 19 questions in the questionnaire to understand the autonomy of students when they try to learn English. Descriptive statistics and OneANOVA were used to analyze the data. The results of the study showed that there is no significant correlation between their ages and their duration of learning English according to their autonomy studies for English.Keywords: learner autonomy, self-regulated learning, independent learning, English language learning, prep school students
Procedia PDF Downloads 2422270 Generating Swarm Satellite Data Using Long Short-Term Memory and Generative Adversarial Networks for the Detection of Seismic Precursors
Authors: Yaxin Bi
Abstract:
Accurate prediction and understanding of the evolution mechanisms of earthquakes remain challenging in the fields of geology, geophysics, and seismology. This study leverages Long Short-Term Memory (LSTM) networks and Generative Adversarial Networks (GANs), a generative model tailored to time-series data, for generating synthetic time series data based on Swarm satellite data, which will be used for detecting seismic anomalies. LSTMs demonstrated commendable predictive performance in generating synthetic data across multiple countries. In contrast, the GAN models struggled to generate synthetic data, often producing non-informative values, although they were able to capture the data distribution of the time series. These findings highlight both the promise and challenges associated with applying deep learning techniques to generate synthetic data, underscoring the potential of deep learning in generating synthetic electromagnetic satellite data.Keywords: LSTM, GAN, earthquake, synthetic data, generative AI, seismic precursors
Procedia PDF Downloads 322269 DNA Damage and Apoptosis Induced in Drosophila melanogaster Exposed to Different Duration of 2400 MHz Radio Frequency-Electromagnetic Fields Radiation
Authors: Neha Singh, Anuj Ranjan, Tanu Jindal
Abstract:
Over the last decade, the exponential growth of mobile communication has been accompanied by a parallel increase in density of electromagnetic fields (EMF). The continued expansion of mobile phone usage raises important questions as EMF, especially radio frequency (RF), have long been suspected of having biological effects. In the present experiments, we studied the effects of RF-EMF on cell death (apoptosis) and DNA damage of a well- tested biological model, Drosophila melanogaster exposed to 2400 MHz frequency for different time duration i.e. 2 hrs, 4 hrs, 6 hrs,8 hrs, 10 hrs, and 12 hrs each day for five continuous days in ambient temperature and humidity conditions inside an exposure chamber. The flies were grouped into control, sham-exposed, and exposed with 100 flies in each group. In this study, well-known techniques like Comet Assay and TUNEL (Terminal deoxynucleotide transferase dUTP Nick End Labeling) Assay were used to detect DNA damage and for apoptosis studies, respectively. Experiments results showed DNA damage in the brain cells of Drosophila which increases as the duration of exposure increases when observed under the observed when we compared results of control, sham-exposed, and exposed group which indicates that EMF radiation-induced stress in the organism that leads to DNA damage and cell death. The process of apoptosis and mutation follows similar pathway for all eukaryotic cells; therefore, studying apoptosis and genotoxicity in Drosophila makes similar relevance for human beings as well.Keywords: cell death, apoptosis, Comet Assay, DNA damage, Drosophila, electromagnetic fields, EMF, radio frequency, RF, TUNEL assay
Procedia PDF Downloads 1692268 Electrical Machine Winding Temperature Estimation Using Stateful Long Short-Term Memory Networks (LSTM) and Truncated Backpropagation Through Time (TBPTT)
Authors: Yujiang Wu
Abstract:
As electrical machine (e-machine) power density re-querulents become more stringent in vehicle electrification, mounting a temperature sensor for e-machine stator windings becomes increasingly difficult. This can lead to higher manufacturing costs, complicated harnesses, and reduced reliability. In this paper, we propose a deep-learning method for predicting electric machine winding temperature, which can either replace the sensor entirely or serve as a backup to the existing sensor. We compare the performance of our method, the stateful long short-term memory networks (LSTM) with truncated backpropagation through time (TBTT), with that of linear regression, as well as stateless LSTM with/without residual connection. Our results demonstrate the strength of combining stateful LSTM and TBTT in tackling nonlinear time series prediction problems with long sequence lengths. Additionally, in industrial applications, high-temperature region prediction accuracy is more important because winding temperature sensing is typically used for derating machine power when the temperature is high. To evaluate the performance of our algorithm, we developed a temperature-stratified MSE. We propose a simple but effective data preprocessing trick to improve the high-temperature region prediction accuracy. Our experimental results demonstrate the effectiveness of our proposed method in accurately predicting winding temperature, particularly in high-temperature regions, while also reducing manufacturing costs and improving reliability.Keywords: deep learning, electrical machine, functional safety, long short-term memory networks (LSTM), thermal management, time series prediction
Procedia PDF Downloads 992267 Effect of UV-B Light Treatment on Nutraceutical Potential of an Indigenous Mushroom Calocybe Indica
Authors: Himanshi Rathore, Shalinee Prasad, Satyawati Sharma, Ajay Singh Yadav
Abstract:
Medicinal mushrooms are acceptable all over the world not only because they have a unique flavour and texture but also due to the presence of great nutritional, nutraceutical and functional properties. High content of physiologically active substances like ergosterol, vitamin D, phenolic compounds, triterpenoids and steroids make these medicinal mushrooms a key source of nutraceuticals. Calocybe indica is a popular medicinal mushroom of India which is known to possess high amount of secondary metabolites including ergosterol (vitamin D2). The ergosterol gets converted to vitamin D in the presence of UV rays by a photochemical reaction. In lieu of the above facts the present study was undertaken to investigate the effect of UV-B light treatment on the vitamin D2 concentration, phenolic content and non volatile compounds in Calocybe indica. For this study, UV-B light source of intensity 5.3w/m2 was used to expose mushrooms for the time period of 0min, 30min, 60min and 90 min. It was found that the vitamin D2 concentration increased with the time duration i.e. 85±0.15 (0 min), 182±1.6 (30 min), 187±0.4 (60 min) and 182 ±0.8 (90 min) μg/g (dry weight). Highest concentration of vitamin D2 was found at 60 min duration. No discoloration in sliced mushrooms was observed during the exposure time. The results revealed that the exposure of mushrooms for a minimum of 30 min duration under UVB source can be a novel, convenient and cheapest way to increase the vitamin D content in mushrooms. This can be one of richest source to fulfil the recommended dietary allowances of vitamin D in our daily diets. The paper provides information on the enhancement of vitamin D content by UV lights and its effects on the non volatile (soluble sugars, free amino acids, 5′-nucleotides and phenolics) compounds will also be presented.Keywords: Calocybe indica, ergosterol, nutraceutical, phenolics
Procedia PDF Downloads 4692266 The Impact of Study Abroad Experience on Interpreting Performance
Authors: Ruiyuan Wang, Jing Han, Bruno Di Biase, Mark Antoniou
Abstract:
The purpose of this study is to explore the relationship between working memory (WM) capacity and Chinese-English consecutive interpreting (CI) performance in interpreting learners with different study abroad experience (SAE). Such relationship is not well understood. This study also examines whether Chinese interpreting learners with SAE in English-speaking countries, demonstrate a better performance in inflectional morphology and agreement, notoriously unstable in Chinese speakers of English L2, in their interpreting output than learners without SAE. Fifty Chinese university students, majoring in Chinese-English Interpreting, were recruited in Australia (n=25) and China (n=25). The two groups matched in age, language proficiency, and interpreting training period. Study abroad (SA) group has been studying in an English-speaking country (Australia) for over 12 months, and none of the students recruited in China (the no study abroad = NSA group) had ever studied or lived in an English-speaking country. Data on language proficiency and training background were collected via a questionnaire. Lexical retrieval performance and working memory (WM) capacity data were collected experimentally, and finally, interpreting data was elicited via a direct CI task. Main results of the study show that WM significantly correlated with participants' CI performance independently of learning context. Moreover, SA outperformed NSA learners in terms of subject-verb number agreement. Apart from that, WM capacity was also found to correlate significantly with their morphosyntactic accuracy. This paper sheds some light on the relationship between study abroad, WM capacity, and CI performance. Exploring the effect of study abroad on interpreting trainees and how various important factors correlate may help interpreting educators bring forward more targeted teaching paradigms for participants with different learning experiences.Keywords: study abroad experience, consecutive interpreting, working memory, inflectional agreement
Procedia PDF Downloads 1002265 The Destruction of Memory: Ataturk Cultural Centre
Authors: Birge Yildirim Okta
Abstract:
This paper aims to narrate the story of Atatürk Cultural Center in Taksim Square, which was demolished in 2018, and discuss its architectonic as a social place of memory and its existence and demolishment as the space of politics. Focusing on the timeline starting from early republican period till today, the paper uses narrative discourse analysis to research Atatürk Cultural Center as a place of memory and a space of politics in its existence. After the establishment of Turkish Republic, one of most important implementation in Taksim Square, reflecting the internationalist style, was the construction of Opera Building in Prost Plan. The first design of the opera building belonged to Aguste Perret, which could not be implemented due to economic hardship during World War II. Later the project was designed by architects Feridun Kip and Rüknettin Güney in 1946 but could not be completed due to 1960 military coup. Later the project was shifted to another architect Hayati Tabanlıoglu, with a change in its function as a cultural center. Eventually, the construction of the building was completed in 1969 in a completely different design. AKM became a symbol of republican modernism not only with its modern architectural style but also with it is function as the first opera building of the republic, reflecting the western, modern cultural heritage by professional groups, artists and the intelligentsia. In 2005, Istanbul’s council for the protection of cultural heritage decided to list AKM as a grade 1 cultural heritage, ending a period of controversy which saw calls for the demolition of the center as it was claimed it ended its useful lifespan. In 2008 the building was announced to be closed for repairs and restoration. Over the following years, the building was demolished piece by piece silently while Taksim mosque has been built just in front of Atatürk Cultural Center. Belonging to the early republican period, AKM was a representation of a cultural production of a modern society for the emergence and westward looking, secular public space in Turkey. Its erasure from Taksim scene under the rule of the conservative government, Justice and Development Party and the construction of Taksim mosque in front of AKM’s parcel is also representational. The question of governing the city through space has always been an important aspect for governments, those holding political power since cities are the chaotic environments that are seen as a threat for the governments, carrying the tensions of proletariat or the contradictory groups. The story of AKM as a dispositive or a regulatory apparatus demonstrates how space itself is becoming a political medium, to transform the socio-political condition. The article aims to discuss the existence and demolishment of Atatürk Cultural Center by discussing the constructed and demolished building as a place of memory and a space of politics.Keywords: space of politics, place of memory, atatürk cultural center, taksim square
Procedia PDF Downloads 822264 Nutrients Removal Control via an Intermittently Aerated Membrane Bioreactor
Authors: Junior B. N. Adohinzin, Ling Xu
Abstract:
Nitrogen is among the main nutrients encouraging the growth of organic matter and algae which cause eutrophication in water bodies. Therefore, its removal from wastewater has become a worldwide emerging concern. In this research, an innovative Membrane Bioreactor (MBR) system named “moving bed membrane bioreactor (MBMBR)” was developed and investigated under intermittently-aerated mode for simultaneous removal of organic carbon and nitrogen. Results indicated that the variation of the intermittently aerated duration did not have an apparent impact on COD and NH4+–N removal rate, yielding the effluent with average COD and NH4+–N removal efficiency of more than 92 and 91% respectively. However, in the intermittently aerated cycle of (continuously aeration/0s mix), (aeration 90s/mix 90s) and (aeration 90s/mix 180s); the average TN removal efficiency was 67.6%, 69.5% and 87.8% respectively. At the same time, their nitrite accumulation rate was 4.5%, 49.1% and 79.4% respectively. These results indicate that the intermittently aerated mode is an efficient way to controlling the nitrification to stop at nitrition; and also the length of anoxic duration is a key factor in improving TN removal.Keywords: membrane bioreactor (MBR), moving bed biofilm reactor (MBBR), nutrients removal, simultaneous nitrification and denitrification
Procedia PDF Downloads 3472263 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models
Authors: Haya Salah, Srinivas Sharan
Abstract:
Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time
Procedia PDF Downloads 1212262 Relative Clause Attachment Ambiguity Resolution in L2: the Role of Semantics
Authors: Hamideh Marefat, Eskandar Samadi
Abstract:
This study examined the effect of semantics on processing ambiguous sentences containing Relative Clauses (RCs) preceded by a complex Determiner Phrase (DP) by Persian-speaking learners of L2 English with different proficiency and Working Memory Capacities (WMCs). The semantic relationship studied was one between the subject of the main clause and one of the DPs in the complex DP to see if, as predicted by Spreading Activation Model, priming one of the DPs through this semantic manipulation affects the L2ers’ preference. The results of a task using Rapid Serial Visual Processing (time-controlled paradigm) showed that manipulation of the relationship between the subject of the main clause and one of the DPs in the complex DP preceding RC has no effect on the choice of the antecedent; rather, the L2ers' processing is guided by the phrase structure information. Moreover, while proficiency did not have any effect on the participants’ preferences, WMC brought about a difference in their preferences, with a DP1 preference by those with a low WMC. This finding supports the chunking hypothesis and the predicate proximity principle, which is the strategy also used by monolingual Persian speakers.Keywords: semantics, relative clause processing, ambiguity resolution, proficiency, working memory capacity
Procedia PDF Downloads 6232261 Effect of Co-doping on Polycrystalline Ni-Mn-Ga
Authors: Mahsa Namvari, Kari Ullakko
Abstract:
It is well-known that the Co-doping of ferromagnetic shape memory alloys (FSMAs) is a crucial tool to control their multifunctional properties. The present work investigates the use of small quantities of Co to fine-tune the transformation, structure, microstructure, mechanical and magnetic properties of the polycrystalline Ni₄₉.₈Mn₂₈.₅Ga₂₁.₇ (at.%) alloy, At Co concentrations of 1-1.5 at.%, a microstructure with an average grain size of about 2.00 mm was formed with a twin structure, enabling the experimental observation of magnetic-field-induced twin variant rearrangement. At higher levels of Co-doping, the grain size was essentially reduced, and the crystal structure of the martensitic phase became 2M martensite. The decreasing grain size and changing crystal structure are attributed to the progress of γ-phase precipitates. Alongside the academic aspect, the results of the present work point to the commercial advantage of fabricating 10M Co-doped Ni-Mn-Ga actuating elements made from large grains of polycrystalline ingots obtained by a standard melting facility instead of grown single crystals.Keywords: Ni-Mn-Ga, ferromagnetic shape memory, martensitic phase transformation, grain growth
Procedia PDF Downloads 952260 The Relationship of the Marketing Mix, Brand Image and Consumer Behavior of the Low-Cost Airline Service
Authors: Bundit Pungnirund
Abstract:
This research aimed to investigate the relationship between attitude towards marketing mix, brand image and consumer behavior of the passengers of low-cost airlines service. This study employed by quantitative research and the questionnaire was used to collect the data from 400 sampled of the passengers who have ever used the low-cost airline services based in Bangkok, Thailand. The descriptive statistics and Pearson’s correlation analysis were used to analyze data. The research results revealed that the attitude of the marketing mix of the low-cost airline services including product, price, place, promotion and process had related to the consumer behavior on the aspects of duration of service and frequency of service. While, the brand image of the low cost airline including the characteristics of organization, service quality and company identity had related to the consumer behavior on duration of service, frequency of service and cost of service at the significant statistically acceptable levels.Keywords: brand image, consumer behavior, low-cost airline, marketing mix
Procedia PDF Downloads 3122259 Deep Learning-Based Channel Estimation for Reconfigurable Intelligent Surface-Assisted Unmanned Aerial Vehicle-Enabled Wireless Communication System
Authors: Getaneh Berie Tarekegn
Abstract:
Wireless communication via unmanned aerial vehicles (UAVs) has drawn a great deal of attention due to its flexibility in establishing line-of-sight (LoS) communications. However, in complex urban and dynamic environments, the movement of UAVs can be blocked by trees and high-rise buildings that obstruct directional paths. With reconfigurable intelligent surfaces (RIS), this problem can be effectively addressed. To achieve this goal, accurate channel estimation in RIS-assisted UAV-enabled wireless communications is crucial. This paper proposes an accurate channel estimation model using long short-term memory (LSTM) for a multi-user RIS-assisted UAV-enabled wireless communication system. According to simulation results, LSTM can improve the channel estimation performance of RIS-assisted UAV-enabled wireless communication.Keywords: channel estimation, reconfigurable intelligent surfaces, long short-term memory, unmanned aerial vehicles
Procedia PDF Downloads 1092258 A Study on the Small Biped Soft Robot with Two Insect-Like Nails
Authors: Mami Nishida
Abstract:
This paper presented a study on the development and control of a small biped soft robot using shape memory alloys (SMAs). Author proposed a flexible flat plate (FFP) actuators consisting of a thin polyethylene plate and SMAs. This actuator has a nail like an insect. This robot moves from the front to back and from left to right using two nails. The walking robot has two degrees of freedom and is controlled by switching the ON-OFF current signals to the SMA based FFPs. The resulting small biped soft robot weighs a mere 4.7 g (with a height of 67 mm). The small robot realizes biped walking by transferring the elastic potential energy (generated by deflections of the SMA based FFPs) to kinematic energy. Experimental results demonstrated the viability and utility of the small biped soft robot with the proposed SMA-based FFPs and the control strategy to achieve walking behavior.Keywords: biped soft robot with nails, flexible flat plate (FFP) actuators, ON-OFF control strategy, shape memory alloys (SMA)
Procedia PDF Downloads 5022257 SC-LSH: An Efficient Indexing Method for Approximate Similarity Search in High Dimensional Space
Authors: Sanaa Chafik, Imane Daoudi, Mounim A. El Yacoubi, Hamid El Ouardi
Abstract:
Locality Sensitive Hashing (LSH) is one of the most promising techniques for solving nearest neighbour search problem in high dimensional space. Euclidean LSH is the most popular variation of LSH that has been successfully applied in many multimedia applications. However, the Euclidean LSH presents limitations that affect structure and query performances. The main limitation of the Euclidean LSH is the large memory consumption. In order to achieve a good accuracy, a large number of hash tables is required. In this paper, we propose a new hashing algorithm to overcome the storage space problem and improve query time, while keeping a good accuracy as similar to that achieved by the original Euclidean LSH. The Experimental results on a real large-scale dataset show that the proposed approach achieves good performances and consumes less memory than the Euclidean LSH.Keywords: approximate nearest neighbor search, content based image retrieval (CBIR), curse of dimensionality, locality sensitive hashing, multidimensional indexing, scalability
Procedia PDF Downloads 321