Search results for: membrane filtration
919 Determination of the Phosphate Activated Glutaminase Localization in the Astrocyte Mitochondria Using Kinetic Approach
Authors: N. V. Kazmiruk, Y. R. Nartsissov
Abstract:
Phosphate activated glutaminase (GA, E.C. 3.5.1.2) plays a key role in glutamine/glutamate homeostasis in mammalian brain, catalyzing the hydrolytic deamidation of glutamine to glutamate and ammonium ions. GA is mainly localized in mitochondria, where it has the catalytically active form on the inner mitochondrial membrane (IMM) and the other soluble form, which is supposed to be dormant. At present time, the exact localization of the membrane glutaminase active site remains a controversial and an unresolved issue. The first hypothesis called c-side localization suggests that the catalytic site of GA faces the inter-membrane space and products of the deamidation reaction have immediate access to cytosolic metabolism. According to the alternative m-side localization hypothesis, GA orients to the matrix, making glutamate and ammonium available for the tricarboxylic acid cycle metabolism in mitochondria directly. In our study, we used a multi-compartment kinetic approach to simulate metabolism of glutamate and glutamine in the astrocytic cytosol and mitochondria. We used physiologically important ratio between the concentrations of glutamine inside the matrix of mitochondria [Glnₘᵢₜ] and glutamine in the cytosol [Glncyt] as a marker for precise functioning of the system. Since this ratio directly depends on the mitochondrial glutamine carrier (MGC) flow parameters, key observation was to investigate the dependence of the [Glnmit]/[Glncyt] ratio on the maximal velocity of MGC at different initial concentrations of mitochondrial glutamate. Another important task was to observe the similar dependence at different inhibition constants of the soluble GA. The simulation results confirmed the experimental c-side localization hypothesis, in which the glutaminase active site faces the outer surface of the IMM. Moreover, in the case of such localization of the enzyme, a 3-fold decrease in ammonium production was predicted.Keywords: glutamate metabolism, glutaminase, kinetic approach, mitochondrial membrane, multi-compartment modeling
Procedia PDF Downloads 120918 Backwash Optimization for Drinking Water Treatment Biological Filters
Authors: Sarra K. Ikhlef, Onita Basu
Abstract:
Natural organic matter (NOM) removal efficiency using drinking water treatment biological filters can be highly influenced by backwashing conditions. Backwashing has the ability to remove the accumulated biomass and particles in order to regenerate the biological filters' removal capacity and prevent excessive headloss buildup. A lab scale system consisting of 3 biological filters was used in this study to examine the implications of different backwash strategies on biological filtration performance. The backwash procedures were evaluated based on their impacts on dissolved organic carbon (DOC) removals, biological filters’ biomass, backwash water volume usage, and particle removal. Results showed that under nutrient limited conditions, the simultaneous use of air and water under collapse pulsing conditions lead to a DOC removal of 22% which was significantly higher (p>0.05) than the 12% removal observed under water only backwash conditions. Employing a bed expansion of 20% under nutrient supplemented conditions compared to a 30% reference bed expansion while using the same amount of water volume lead to similar DOC removals. On the other hand, utilizing a higher bed expansion (40%) lead to significantly lower DOC removals (23%). Also, a backwash strategy that reduced the backwash water volume usage by about 20% resulted in similar DOC removals observed with the reference backwash. The backwash procedures investigated in this study showed no consistent impact on biological filters' biomass concentrations as measured by the phospholipids and the adenosine tri-phosphate (ATP) methods. Moreover, none of these two analyses showed a direct correlation with DOC removal. On the other hand, dissolved oxygen (DO) uptake showed a direct correlation with DOC removals. The addition of the extended terminal subfluidization wash (ETSW) demonstrated no apparent impact on DOC removals. ETSW also successfully eliminated the filter ripening sequence (FRS). As a result, the additional water usage resulting from implementing ETSW was compensated by water savings after restart. Results from this study provide insight to researchers and water treatment utilities on how to better optimize the backwashing procedure for the goal of optimizing the overall biological filtration process.Keywords: biological filtration, backwashing, collapse pulsing, ETSW
Procedia PDF Downloads 273917 Deep Eutectic Solvent/ Polyimide Blended Membranes for Anaerobic Digestion Gas Separation
Authors: Glemarie C. Hermosa, Sheng-Jie You, Chien Chih Hu
Abstract:
Efficient separation technologies are required for the removal of carbon dioxide from natural gas streams. Membrane-based natural gas separation has emerged as one of the fastest growing technologies, due to the compactness, higher energy efficiency and economic advantages which can be reaped. The removal of Carbon dioxide from gas streams using membrane technology will also give the advantage like environmental friendly process compared to the other technologies used in gas separation. In this study, Polyimide membranes, which are mostly used in the separation of gases, are blended with a new kind of solvent: Deep Eutectic Solvents or simply DES. The three types of DES are used are choline chloride based mixed with three different hydrogen bond donors: Lactic acid, N-methylurea and Urea. The blending of the DESs to Polyimide gave out high permeability performance. The Gas Separation performance for all the membranes involving CO2/CH4 showed low performance while for CO2/N2 surpassed the performance of some studies. Among the three types of DES used the solvent Choline Chloride/Lactic acid exhibited the highest performance for both Gas Separation applications. The values are 10.5 for CO2/CH4 selectivity and 60.5 for CO2/N2. The separation results for CO2/CH4 may be due to the viscosity of the DESs affecting the morphology of the fabricated membrane thus also impacts the performance. DES/blended Polyimide membranes fabricated are novel and have the potential of a low-cost and environmental friendly application for gas separation.Keywords: deep eutectic solvents, gas separation, polyimide blends, polyimide membranes
Procedia PDF Downloads 310916 Preparation of hydrophobic silica membranes supported on alumina hollow fibers for pervaporation applications
Authors: Ami Okabe, Daisuke Gondo, Akira Ogawa, Yasuhisa Hasegawa, Koichi Sato, Sadao Araki, Hideki Yamamoto
Abstract:
Membrane separation draws attention as the energy-saving technology. Pervaporation (PV) uses hydrophobic ceramic membranes to separate organic compounds from industrial wastewaters. PV makes it possible to separate organic compounds from azeotropic mixtures and from aqueous solutions. For the PV separation of low concentrations of organics from aqueous solutions, hydrophobic ceramic membranes are expected to have high separation performance compared with that of conventional hydrophilic membranes. Membrane separation performance is evaluated based on the pervaporation separation index (PSI), which depends on both the separation factor and the permeate flux. Ingenuity is required to increase the PSI such that the permeate flux increases without reducing the separation factor or to increase the separation factor without reducing the flux. A thin separation layer without defects and pinholes is required. In addition, it is known that the flux can be increased without reducing the separation factor by reducing the diffusion resistance of the membrane support. In a previous study, we prepared hydrophobic silica membranes by a molecular templating sol−gel method using cetyltrimethylammonium bromide (CTAB) to form pores suitable for permitting the passage of organic compounds through the membrane. We separated low-concentration organics from aqueous solutions by PV using these membranes. In the present study, hydrophobic silica membranes were prepared on a porous alumina hollow fiber support that is thinner than the previously used alumina support. Ethyl acetate (EA) is used in large industrial quantities, so it was selected as the organic substance to be separated. Hydrophobic silica membranes were prepared by dip-coating porous alumina supports with a -alumina interlayer into a silica sol containing CTAB and vinyltrimethoxysilane (VTMS) as the silica precursor. Membrane thickness increases with the lifting speed of the sol in the dip-coating process. Different thicknesses of the γ-alumina layer were prepared by dip-coating the support into a boehmite sol at different lifting speeds (0.5, 1, 3, and 5 mm s-1). Silica layers were subsequently formed by dip-coating using an immersion time of 60 s and lifting speed of 1 mm s-1. PV measurements of the EA (5 wt.%)/water system were carried out using VTMS hydrophobic silica membranes prepared on -alumina layers of different thicknesses. Water and EA flux showed substantially constant value despite of the change of the lifting speed to form the γ-alumina interlayer. All prepared hydrophobic silica membranes showed the higher PSI compared with the hydrophobic membranes using the previous alumina support of hollow fiber.Keywords: membrane separation, pervaporation, hydrophobic, silica
Procedia PDF Downloads 404915 Membrane Spanning DNA Origami Nanopores for Protein Translocation
Authors: Genevieve Pugh, Johnathan Burns, Stefan Howorka
Abstract:
Single-molecule sensing via protein nanopores has achieved a step-change in portable and label-free DNA sequencing. However, protein pores of both natural or engineered origin are not able to produce the tunable diameters needed for effective protein sensing. Here, we describe a generic strategy to build synthetic DNA nanopores that are wide enough to accommodate folded protein. The pores are composed of interlinked DNA duplexes and carry lipid anchors to achieve the required membrane insertion. Our demonstrator pore has a contiguous cross-sectional channel area of 50 nm2 which is 6-times larger than the largest protein pore. Consequently, transport of folded protein across bilayers is possible. The modular design is amenable for different pore dimensions and can be adapted for protein sensing or to create molecular gates in synthetic biology.Keywords: biosensing, DNA nanotechnology, DNA origami, nanopore sensing
Procedia PDF Downloads 324914 [Keynote Talk]: Morphological Analysis of Continuous Graphene Oxide Fibers Incorporated with Carbon Nanotube and MnCl₂
Authors: Nuray Ucar, Pelin Altay, Ilkay Ozsev Yuksek
Abstract:
Graphene oxide fibers have recently received increasing attention due to their excellent properties such as high specific surface area, high mechanical strength, good thermal properties and high electrical conductivity. They have shown notable potential in various applications including batteries, sensors, filtration and separation and wearable electronics. Carbon nanotubes (CNTs) have unique structural, mechanical, and electrical properties and can be used together with graphene oxide fibers for several application areas such as lithium ion batteries, wearable electronics, etc. Metals salts that can be converted into metal ions and metal oxide can be also used for several application areas such as battery, purification natural gas, filtration, absorption. This study investigates the effects of CNT and metal complex compounds (MnCl₂, metal salts) on the morphological structure of graphene oxide fibers. The graphene oxide dispersion was manufactured by modified Hummers method, and continuous graphene oxide fibers were produced with wet spinning. The CNT and MnCl₂ were incorporated into the coagulation baths during wet spinning process. Produced composite continuous fibers were analyzed with SEM, SEM-EDS and AFM microscopies and as spun fiber counts were measured.Keywords: continuous graphene oxide fiber, Hummers' method, CNT, MnCl₂
Procedia PDF Downloads 176913 Use of Yeast-Chitosan Bio-Microcapsules with Ultrafiltration Membrane to Remove Ammonia Nitrogen and Organic Matter in Raw Water
Authors: Chao Ding, Jun Shi, Huiping Deng
Abstract:
This study reports the preparation of a new type yeast-chitosan bio-microcapsule coating sodium alginate and chitosan, with good biocompatibility and mechanical strength. Focusing on the optimum preparation conditions of bio-microcapsule, a dynamic test of yeast-chitosan bio-microcapsule combined with ultrafiltration membrane was established to evaluate both the removal efficiency of major pollutants from raw water and the applicability of this system. The results of orthogonal experiments showed that the optimum preparation procedure are as follows: mix sodium alginate solution (3%) with bacteria liquid in specific proportion, drop in calcium chloride solution (4%) and solidify for 30 min; put the plastic beads into chitosan liquid (1.8%) to overlay film for 10 min and then into glutaraldehyde solution (1%) to get cross-linked for 5 min. In dynamic test, the microcapsules were effective as soon as were added in the system, without any start-up time. The removal efficiency of turbidity, ammonia nitrogen and organic matter was 60%, 80%, and 40%. Besides, the bio-microcapsules were prospective adsorbent for heavy metal; they adsorb Pb and Cr⁶⁺ in water while maintaining high biological activity to degrade ammonia nitrogen and small molecular organics through assimilation. With the presence of bio-microcapsules, the internal yeast strains’ adaptability on the external environment and resistance ability on toxic pollutants will be increased.Keywords: ammonia nitrogen, bio-microcapsules, ultrafiltration membrane, yeast-chitosan
Procedia PDF Downloads 346912 Quality Control Assessment of X-Ray Equipment in Hospitals of Katsina State, Nigeria
Authors: Aminu Yakubu Umar
Abstract:
X-ray is the major contributor to the effective dose of both the patient and the personnel. Because of the radiological risks involved, it is usually recommended that dose to patient from X-ray be kept as low as reasonably achievable (ALARA) with adequate image quality. The implementation of quality assurance in diagnostic radiology can help greatly in achieving that, as it is a technique designed to reduce X-ray doses to patients undergoing radiological examination. In this study, quality control was carried out in six hospitals, which involved KVp test, evaluation of total filtration, test for constancy of radiation output, and check for mA linearity. Equipment used include KVp meter, Rad-check meter, aluminum sheets (0.1–1.0 mm) etc. The results of this study indicate that, the age of the X-ray machines in the hospitals ranges from 3-13 years, GHI and GH2 being the oldest and FMC being the newest. In the evaluation of total filtration, the HVL of the X-ray machines in the hospitals varied, ranging from 2.3-5.2 mm. The HVL was found to be highest in AHC (5.2 mm), while it was lowest in GH3 (2.3 mm). All HVL measurements were done at 80 KVp. The variation in voltage accuracy in the hospitals ranges from 0.3%-127.5%. It was only in GH1 that the % variation was below the allowed limit. The test for constancy of radiation output showed that, the coefficient of variation ranges from 0.005–0.550. In GH3, FMC and AHC, the coefficient of linearity were less than the allowed limit, while in GH1, GH2 and GH4 the coefficient of linearity had exceeded the allowed limit. As regard to mA linearity, FMC and AHC had their coefficients of linearity as 0.12 and 0.10 respectively, which were within the accepted limit, while GH1, GH3 and GH4 had their coefficients as 0.16, 0.69 and 0.98 respectively, which exceeded the allowed limit.Keywords: radiation, X-ray output, quality control, half-value layer, mA linearity, KVp variation
Procedia PDF Downloads 610911 Pervaporation of Dimethyl Carbonate / Methanol / Water Mixtures Using Zeolite Membranes
Authors: Jong-Ho Moon, Dong-Ho Lee, Hyunuk Kim, Young Cheol Park, Jong-Seop Lee, Jae-deok Jeon, Hyung-Keun Lee
Abstract:
A novel membrane reactor process for DMC synthesis from carbon dioxide has been developing in Korea Institute of Energy Research. The scheme of direct synthesis of DMC from CO₂ and Methanol is 'CO₂ + 2MeOH ↔ DMC + H₂O'. Among them, reactants are CO₂ and MeOH, product is DMC, and byproduct is H₂O (water). According to Le Chatelier’s principle, removing byproduct (water) can shift the reaction equilibrium to the right (DMC production). The main purpose of this process is removing water during the reaction. For efficient in situ water removal (dehydration) and DMC separation, zeolite 4A membranes with very small pore diameter and hydrophilicity were introduced. In this study, pervaporation performances of binary and ternary DMC / methanol / water mixtures were evaluated.Keywords: dimehtyl carbonate, methanol, water, zeolite membrane, pervaporation
Procedia PDF Downloads 362910 Studies on the Recovery of Calcium and Magnesium from Red Seawater by Nanofiltration Membrane
Authors: Mohamed H. Sorour, Hayam F. Shaalan, Heba A. Hani, Mahmoud A. El-Toukhy
Abstract:
This paper reports the results of nanofiltration (NF) polymeric membrane for the recovery of divalent ions (calcium and magnesium) from Red Seawater. Pilot plant experiments have been carried out using Alfa-Laval (NF 2517/48) membrane module. System was operated in both total recirculation mode (permeate and brine) and brine recirculation mode under hydraulic pressure of 15 bar. Impacts of some chelating agents on both flux and rejection have been also investigated. Results indicated that pure water permeability ranges from 17 to 85.5 L/m²h at 2-15 bar. Comparison with seawater permeability under the same operating pressure values reveals lower values of 8.9-31 L/m²h manifesting the effect of the osmotic pressure of seawater. Overall total dissolved solids (TDS) reduction was almost constant without incorporation of chelating agents. On the contrary of expectations, the use of chelating agents N-(2-hydroxyethyl) ethylene diamine-N,N´,N´-triacetic acid (HEDTA) and ethylene glycol bis (2-aminoethyl ether)-N,N,N´,N´-tetraacetic acid (EGTA) showed flux decline of about 3-15%. Analysis of rejection data of total recirculation mode showed reasonable rejection values of 35%, 59% and 90% for Ca, Mg and SO₄, respectively. Operating under brine recirculation mode only showed a decrease of rejection to 33%, 56% and 86% for Ca, Mg and SO₄, respectively. The use of chelating agents has no substantial effect on NF membrane performance except for increasing the total Ca rejection to 48 and 65% for EGTA and HEDTA, respectively. Results, in general, confirmed the powerful separation of NF technology for softening and recovery of divalent ions from seawater. It is anticipated that increasing operating pressure beyond the limits of our investigations would improve the rejection and flux values. A trade-off should be considered between operating cost (due to higher pressure and marginal benefits as manifested by expected improved performance). The experimental results fit well with the formulated rejection empirical correlations and the published ones.Keywords: nanofiltration, seawater, recovery, calcium, magnesium
Procedia PDF Downloads 165909 Investigation on Ultrahigh Heat Flux of Nanoporous Membrane Evaporation Using Dimensionless Lattice Boltzmann Method
Authors: W. H. Zheng, J. Li, F. J. Hong
Abstract:
Thin liquid film evaporation in ultrathin nanoporous membranes, which reduce the viscous resistance while still maintaining high capillary pressure and efficient liquid delivery, is a promising thermal management approach for high-power electronic devices cooling. Given the challenges and technical limitations of experimental studies for accurate interface temperature sensing, complex manufacturing process, and short duration of membranes, a dimensionless lattice Boltzmann method capable of restoring thermophysical properties of working fluid is particularly derived. The evaporation of R134a to its pure vapour ambient in nanoporous membranes with the pore diameter of 80nm, thickness of 472nm, and three porosities of 0.25, 0.33 and 0.5 are numerically simulated. The numerical results indicate that the highest heat transfer coefficient is about 1740kW/m²·K; the highest heat flux is about 1.49kW/cm² with only about the wall superheat of 8.59K in the case of porosity equals to 0.5. The dissipated heat flux scaled with porosity because of the increasing effective evaporative area. Additionally, the self-regulation of the shape and curvature of the meniscus under different operating conditions is also observed. This work shows a promising approach to forecast the membrane performance for different geometry and working fluids.Keywords: high heat flux, ultrathin nanoporous membrane, thin film evaporation, lattice Boltzmann method
Procedia PDF Downloads 163908 Digital Literacy Landscape of Islamic Boarding Schools in Indonesia
Authors: Zainuddin Abuhamid Muhammad Ghozali, Andrew Whitworth
Abstract:
Islamic boarding school or pesantren is a distinctive education institution in Indonesia focusing on religious teachings. Its stance in restricting access to the internet raises a question about its students’ development of digital literacy. Inspired by Luckin’s ecology of resource model, this study aims to map out the digital literacy situation of the institution based on the availability of learning resources, such as digital facilities, digital accessibility, and digital competence. This study was carried out through a survey method involving 50 teachers from pesantrens across the nation. The result shows that pesantrens have provided students with digital facilities at a moderate level, yet the accessibility to using them is still limited. They also incorporated digital competencies into their curriculum, with an emphasis on digital ethics. The study also identifies different patterns of pesantrens’ behavior based on types and educational levels, where certain school types and educational levels tend to give a stricter policy compared to others or vice versa. The restriction of digital resources in pesantren indicated that they had done a filtration process to design their learning environment. The filtration was mainly motivated by sociocultural factors, where they drew concern for the negative impact of the internet. Notably, this restriction also contributes to students’ poor development of digital literacy.Keywords: digital literacy, ecology of resources, Indonesia, Islamic boarding school
Procedia PDF Downloads 71907 The Effect of Particle Porosity in Mixed Matrix Membrane Permeation Models
Authors: Z. Sadeghi, M. R. Omidkhah, M. E. Masoomi
Abstract:
The purpose of this paper is to examine gas transport behavior of mixed matrix membranes (MMMs) combined with porous particles. Main existing models are categorized in two main groups; two-phase (ideal contact) and three-phase (non-ideal contact). A new coefficient, J, was obtained to express equations for estimating effect of the particle porosity in two-phase and three-phase models. Modified models evaluates with existing models and experimental data using Matlab software. Comparison of gas permeability of proposed modified models with existing models in different MMMs shows a better prediction of gas permeability in MMMs.Keywords: mixed matrix membrane, permeation models, porous particles, porosity
Procedia PDF Downloads 385906 The Effect of Some Macrofungi Extracts on Cytoplasmic Membrane of Multidrug Resistant Bacteria by Flow Cytometry
Authors: Yener Tekeli, Hayri Baba
Abstract:
The natural active compounds found in medicinal plants are belong to various chemical structures including polyphenolic compounds, flavonoids, essential oils, and vitamins and some of these compounds have anticancer, antioxidant, and antimicrobial activity. However, these compounds have been little known about mechanisms to confer antibacterial drug resistance. In this study; some macrofungi extracts (Pholiota lucifera, Gnaoderma applanatum and Pleurotus ostreatus) were investigated for their abilities to enhance bacterial permeability by flow cytometry. This experiments exhibited enhancement of these extracts to disrupt the cytoplasmic membrane of living bacterial (Listeria innocua and Escherichia coli) cells. These experiments were designed to detect uptake of PI&SYT by enhancing with a ranged concentration of herb extracts.Keywords: antimicrobial activity, flow cytometry, macrofungi, multidrug resistant
Procedia PDF Downloads 445905 Recovery of Proteins from EDAM Whey Using Membrane Ultrafiltration
Authors: F. Yelles-Allam, A. A. Nouani
Abstract:
In Algeria, whey is discarded without any treatment and this causes not only pollution problem, but also a loss in nutritive components of milk. In this paper, characterization of EDAM whey, which is resulted from pasteurised mixture of cow’s milk and skim milk, and recovery of whey protein by ultrafiltration / diafiltration, was studied. The physical-chemical analysis of whey has emphasized on its pollutant and nutritive characteristics. In fact, its DBO5 and DCO are 49.33, and 127.71 gr of O2/l of whey respectively. It contains: fat (1,90±0,1 gr/l), lactose (47.32±1,57 gr/l), proteins (8.04±0,2 gr/l) and ashes (5,20±0,15 gr/l), calcium (0,48±0,04 gr/l), Na (1.104gr/l), K (1.014 gr/l), Mg (0.118 gr/l) and P (0.482 gr/l). Ultrafiltration was carried out in a polyetersulfone membrane with a cut-off of 10K. Its hydraulic intrinsic resistance and permeability are respectively: 2.041.1012 m-1 and 176,32 l/h.m2 at PTM of 1 bar. The retentate obtained at FC6, contains 16,33g/l of proteins and 70,25 g/l of dry matter. The retention rate of protein is 97, 7% and the decrease in DBO5 and DCO are at 18.875 g /l and 42.818 g/l respectively. Diafiltration performed on protein concentrates allowed the complete removal of lactose and minerals. The ultrafiltration of the whey before the disposal is an alternative for Algéria dairy industry.Keywords: diafiltration, DBO, DCO, protein, ultrafiltration, whey
Procedia PDF Downloads 256904 An Automated Procedure for Estimating the Glomerular Filtration Rate and Determining the Normality or Abnormality of the Kidney Stages Using an Artificial Neural Network
Authors: Hossain A., Chowdhury S. I.
Abstract:
Introduction: The use of a gamma camera is a standard procedure in nuclear medicine facilities or hospitals to diagnose chronic kidney disease (CKD), but the gamma camera does not precisely stage the disease. The authors sought to determine whether they could use an artificial neural network to determine whether CKD was in normal or abnormal stages based on GFR values (ANN). Method: The 250 kidney patients (Training 188, Testing 62) who underwent an ultrasonography test to diagnose a renal test in our nuclear medical center were scanned using a gamma camera. Before the scanning procedure, the patients received an injection of ⁹⁹ᵐTc-DTPA. The gamma camera computes the pre- and post-syringe radioactive counts after the injection has been pushed into the patient's vein. The artificial neural network uses the softmax function with cross-entropy loss to determine whether CKD is normal or abnormal based on the GFR value in the output layer. Results: The proposed ANN model had a 99.20 % accuracy according to K-fold cross-validation. The sensitivity and specificity were 99.10 and 99.20 %, respectively. AUC was 0.994. Conclusion: The proposed model can distinguish between normal and abnormal stages of CKD by using an artificial neural network. The gamma camera could be upgraded to diagnose normal or abnormal stages of CKD with an appropriate GFR value following the clinical application of the proposed model.Keywords: artificial neural network, glomerular filtration rate, stages of the kidney, gamma camera
Procedia PDF Downloads 103903 Control of Biofilm Formation and Inorganic Particle Accumulation on Reverse Osmosis Membrane by Hypochlorite Washing
Authors: Masaki Ohno, Cervinia Manalo, Tetsuji Okuda, Satoshi Nakai, Wataru Nishijima
Abstract:
Reverse osmosis (RO) membranes have been widely used for desalination to purify water for drinking and other purposes. Although at present most RO membranes have no resistance to chlorine, chlorine-resistant membranes are being developed. Therefore, direct chlorine treatment or chlorine washing will be an option in preventing biofouling on chlorine-resistant membranes. Furthermore, if particle accumulation control is possible by using chlorine washing, expensive pretreatment for particle removal can be removed or simplified. The objective of this study was to determine the effective hypochlorite washing condition required for controlling biofilm formation and inorganic particle accumulation on RO membrane in a continuous flow channel with RO membrane and spacer. In this study, direct chlorine washing was done by soaking fouled RO membranes in hypochlorite solution and fluorescence intensity was used to quantify biofilm on the membrane surface. After 48 h of soaking the membranes in high fouling potential waters, the fluorescence intensity decreased to 0 from 470 using the following washing conditions: 10 mg/L chlorine concentration, 2 times/d washing interval, and 30 min washing time. The chlorine concentration required to control biofilm formation decreased as the chlorine concentration (0.5–10 mg/L), the washing interval (1–4 times/d), or the washing time (1–30 min) increased. For the sample solutions used in the study, 10 mg/L chlorine concentration with 2 times/d interval, and 5 min washing time was required for biofilm control. The optimum chlorine washing conditions obtained from soaking experiments proved to be applicable also in controlling biofilm formation in continuous flow experiments. Moreover, chlorine washing employed in controlling biofilm with suspended particles resulted in lower amounts of organic (0.03 mg/cm2) and inorganic (0.14 mg/cm2) deposits on the membrane than that for sample water without chlorine washing (0.14 mg/cm2 and 0.33 mg/cm2, respectively). The amount of biofilm formed was 79% controlled by continuous washing with 10 mg/L of free chlorine concentration, and the inorganic accumulation amount decreased by 58% to levels similar to that of pure water with kaolin (0.17 mg/cm2) as feed water. These results confirmed the acceleration of particle accumulation due to biofilm formation, and that the inhibition of biofilm growth can almost completely reduce further particle accumulation. In addition, effective hypochlorite washing condition which can control both biofilm formation and particle accumulation could be achieved.Keywords: reverse osmosis, washing condition optimization, hypochlorous acid, biofouling control
Procedia PDF Downloads 352902 Bruch’s Membrane Opening in High Myopia and Its Correlation with Axial Length
Authors: Sanjeeb Kumar Mishra, Aartee Jha, Madhu Thapa, Pragati Gautam
Abstract:
Introduction: High myopia has become a matter of global concern as it is a major risk factor for glaucoma. Various optic nerve head changes occur in high myopia over time. This might lead to difficulty in detecting pathologies associated with high myopia through conventional funduscopy examinations only. Bruch’s Membrane Opening (Area and Minimum Rim Width) is considered an anatomically more accurate and reliable landmark than the conventional clinical disc margin. Study Design: It was a hospital based cross-sectional and non-interventional type of study. Purpose: The purpose of our study was to measure Bruch’s Membrane Opening (area and Minimum Rim Width) in high myopic eyes and correlate it with axial length. Methods: A cross-sectional study was conducted at B.P Koirala Lions Center for Ophthalmic Studies, a tertiary-level eye center in Nepal. 80 eyes of 40 subjects (40% male and 60% female) aged 18-35 years with high myopia (Spherical Equivalent (SE) ≥ -6D) were taken as cases. Among them, RE of 39 and LE of 34 myopic subjects were included in the study. Spectral Domain-Optical Coherence Tomography of both the eyes of myopic patients was performed using Glaucoma Module Premiere Edition (GMPE) with Anatomic Positioning System (APS) to measure Bruch’s Membrane Opening (Area and Minimum Rim Width). Axial length in myopic patients was measured using Partial Coherence Interferometry (IOL Master). Results: Among 40 myopic subjects, 16 (40%) were males, whereas 24 (60%) were females. The mean age of myopic subjects was 24.64 ± 5.10 years, with minimum and maximum ages of 18 years and 35 years, respectively. The mean BMO area was 2.28 0.48 mm² in right eye and 2.15 0.59 mm² in left eye. BMO area in high myopic patient was significantly correlated with axial length. The correlation analysis of BMO area with axial length in RE and LE was found to be statistically significant at (r=0.465, p<0.003) and (r=0.374, p< 0.029), respectively. Likewise, the mean BMO-MRW was 325.69 ± 96µm in right eye and 339.20 ± 79.50µm in left eye. There was a significant correlation of BMO-MRW with axial length in both the eyes of myopic subjects. Moreover, a significant negative correlation of Inferior temporal, Nasal, and Inferior nasal quadrants (p<0.05) of BMO-MRW of right eye was found with axial length of right eye, whereas all the BMO-MRW quadrants of left eye were negatively correlated (p<0.05) with axial length in left eye. No significant differences were found between right eye and left eye on comparing means of refractive error, axial length, BMO area, and BMO-MRW. Conclusion: From this study, it can be concluded that BMO area enlarges in high myopia with an increase in axial length. Additionally, BMO-MRW thinning occurs along with the BMO enlargement and increases with axial length. There were no significant differences in refractive error, axial length, BMO area, and BMO-MRW between right eye and left eye.Keywords: high myopia, Bruch’s membrane opening, Bruch’s membrane opening minimum rim width, spectral domain optical coherence tomography
Procedia PDF Downloads 15901 Energy Management of Hybrid Energy Source Composed of a Fuel Cell and Supercapacitor for an Electric Vehicle
Authors: Mejri Achref
Abstract:
This paper proposes an energy management strategy for an electrical hybrid vehicle which is composed of a Proton Exchange Membrane (PEM) fuel cell and a supercapacitor storage device. In this paper, the mathematical model for the proposed power train, comprising the PEM Fuel Cell, supercapacitor, boost converter, inverter, and vehicular structure, was modeled in MATLAB/Simulink. The proposed algorithm is evaluated for the Highway Fuel Economy Test (HWFET) driving cycle. The obtained results demonstrate the effectiveness of the proposed energy management strategy in reduction of hydrogen consumption.Keywords: proton exchange membrane fuel cell, hybrid vehicle, hydrogen consumption, energy management strategy
Procedia PDF Downloads 178900 Curcumin and Its Analogues: Potent Natural Antibacterial Compounds against Staphylococcus aureus
Authors: Prince Kumar, Shamseer Kulangara Kandi, Diwan S. Rawat, Kasturi Mukhopadhyay
Abstract:
Staphylococcus aureus is the most pathogenic of all staphylococci, a major cause of nosocomial infections, and known for acquiring resistance towards various commonly used antibiotics. Due to the widespread use of synthetic drugs, clinicians are now facing a serious threat in healthcare. The increasing resistance in staphylococci has created a need for alternatives to these synthetic drugs. One of the alternatives is a natural plant-based medicine for both disease prevention as well as the treatment of chronic diseases. Among such natural compounds, curcumin is one of the most studied molecules and has been an integral part of traditional medicines and Ayurveda from ancient times. It is a natural polyphenolic compound with diverse pharmacological effects, including anti-inflammatory, antioxidant, anti-cancerous and antibacterial activities. In spite of its efficacy and potential, curcumin has not been approved as a therapeutic agent yet, because of its low solubility, low bioavailability, and rapid metabolism in vivo. The presence of central β-diketone moiety in curcumin is responsible for its rapid metabolism. To overcome this, in the present study, curcuminoids were designed by modifying the central β-diketone moiety of curcumin into mono carbonyl moiety and their antibacterial potency against S. aureus ATCC 29213 was determined. Further, the mode of action and hemolytic activity of the most potent curcuminoids were studied. Minimum inhibitory concentration (MIC) and in vitro killing kinetics were used to study the antibacterial activity of the designed curcuminoids. For hemolytic assay, mouse Red blood cells were incubated with curcuminoids and hemoglobin release was measured spectrophotometrically. The mode of action of curcuminoids was analysed by membrane depolarization assay using membrane potential sensitive dye 3,3’-dipropylthiacarbocyanine iodide (DiSC3(5)) through spectrofluorimetry and membrane permeabilization assay using calcein-AM through flow cytometry. Antibacterial screening of the designed library (61 curcuminoids) revealed excellent in vitro potency of six compounds against S. aureus (MIC 8 to 32 µg/ml). Moreover, these six compounds were found to be non-hemolytic up to 225 µg/ml that is much higher than their corresponding MIC values. The in vitro killing kinetics data showed five of these lead compounds to be bactericidal causing >3 log reduction in the viable cell count within 4 hrs at 5 × MIC while the sixth compound was found to be bacteriostatic. Depolarization assay revealed that all the six curcuminoids caused depolarization in their corresponding MIC range. Further, the membrane permeabilization assay showed that all the six curcuminoids caused permeabilization at 5 × MIC in 2 hrs. This membrane depolarization and permeabilization caused by curcuminoids found to be in correlation with their corresponding killing efficacy. Both these assays point out that membrane perturbations might be a primary mode of action for these curcuminoids. Overall, the present study leads us six water soluble, non-hemolytic, membrane-active curcuminoids and provided an impetus for further research on therapeutic use of these lead curcuminoids against S. aureus.Keywords: antibacterial, curcumin, minimum inhibitory concentration , Staphylococcus aureus
Procedia PDF Downloads 170899 Electronic Equipment Failure due to Corrosion
Authors: Yousaf Tariq
Abstract:
There are many reasons which are involved in electronic equipment failure i.e. temperature, humidity, dust, smoke etc. Corrosive gases are also one of the factor which may involve in failure of equipment. Sensitivity of electronic equipment increased when “lead-free” regulation enforced on manufacturers. In data center, equipment like hard disk, servers, printed circuit boards etc. have been exposed to gaseous contamination due to increase in sensitivity. There is a worldwide standard to protect electronic industrial electronic from corrosive gases. It is well known as “ANSI/ISA S71.04 – 1985 - Environmental Conditions for Control Systems: Airborne Contaminants. ASHRAE Technical Committee (TC) 9.9 members also recommended ISA standard in their whitepaper on Gaseous and Particulate Contamination Guideline for data centers. TC 9.9 members represented some of the major IT equipment manufacturers e.g. IBM, HP, Cisco etc. As per standard practices, first step is to monitor air quality in data center. If contamination level shows more than G1, it means that gas-phase air filtration is required other than dust/smoke air filtration. It is important that outside fresh air entering in data center should have pressurization/re-circulated process in order to absorb corrosive gases and to maintain level within specified limit. It is also important that air quality monitoring should be conducted once in a year. Temperature and humidity should also be monitored as per standard practices to maintain level within specified limit.Keywords: corrosive gases, corrosion, electronic equipment failure, ASHRAE, hard disk
Procedia PDF Downloads 330898 Hydrogen Production Using Solar Energy
Authors: I. M. Sakr, Ali M. Abdelsalam, K. A. Ibrahim, W. A. El-Askary
Abstract:
This paper presents an experimental study for hydrogen production using alkaline water electrolysis operated by solar energy. Two methods are used and compared for separation between the cathode and anode, which are acrylic separator and polymeric membrane. Further, the effects of electrolyte concentration, solar insolation, and space between the pair of electrodes on the amount of hydrogen produced and consequently on the overall electrolysis efficiency are investigated. It is found that the rate of hydrogen production increases using the polymeric membrane installed between the electrodes. The experimental results show also that, the performance of alkaline water electrolysis unit is dominated by the electrolyte concentration and the gap between the electrodes. Smaller gaps between the pair of electrodes are demonstrated to produce higher rates of hydrogen with higher system efficiency.Keywords: hydrogen production, water electrolysis, solar energy, concentration
Procedia PDF Downloads 378897 Highly Selective Polymeric Fluorescence Sensor for Cd(II) Ions
Authors: Soner Cubuk, Ozge Yilmaz, Ece Kok Yetimoglu, M. Vezir Kahraman
Abstract:
In this work, a polymer based highly selective fluorescence sensor membrane was prepared by the photopolymerization technique for the determination Cd(II) ion. Sensor characteristics such as effects of pH, response time and foreign ions on the fluorescence intensity of the sensor were also studied. Under optimized conditions, the polymeric sensor shows a rapid, stable and linear response for 4.45x10-⁹ mol L-¹ - 4.45x10-⁸ mol L-¹ Cd(II) ion with the detection limit of 6.23x10-¹⁰ mol L-¹. In addition, sensor membrane was selective which is not affected by common foreign metal ions. The concentrations of the foreign ions such as Pb²+, Co²+, Ag+, Zn²+, Cu²+, Cr³+ are 1000-fold higher than Cd(II) ions. Moreover, the developed polymeric sensor was successfully applied to the determination of cadmium ions in food and water samples. This work was supported by Marmara University, Commission of Scientific Research Project.Keywords: cadmium(II), fluorescence, photopolymerization, polymeric sensor
Procedia PDF Downloads 566896 Determination of Prostate Specific Membrane Antigen (PSMA) Based on Combination of Nanocomposite Fe3O4@Ag@JB303 and Magnetically Assisted Surface Enhanced Raman Spectroscopy (MA-SERS)
Authors: Zuzana Chaloupková, Zdeňka Marková, Václav Ranc, Radek Zbořil
Abstract:
Prostate cancer is now one of the most serious oncological diseases in men with an incidence higher than that of all other solid tumors combined. Diagnosis of prostate cancer usually involves detection of related genes or detection of marker proteins, such as PSA. One of the new potential markers is PSMA (prostate specific membrane antigen). PSMA is a unique membrane bound glycoprotein, which is considerably overexpressed on prostate cancer as well as neovasculature of most of the solid tumors. Commonly applied methods for a detection of proteins include techniques based on immunochemical approaches, including ELISA and RIA. Magnetically assisted surface enhanced Raman spectroscopy (MA-SERS) can be considered as an interesting alternative to generally accepted approaches. This work describes a utilization of MA-SERS in a detection of PSMA in human blood. This analytical platform is based on magnetic nanocomposites Fe3O4@Ag, functionalized by a low-molecular selector labeled as JB303. The system allows isolating the marker from the complex sample using application of magnetic force. Detection of PSMA is than performed by SERS effect given by a presence of silver nanoparticles. This system allowed us to analyze PSMA in clinical samples with limits of detection lower than 1 ng/mL.Keywords: diagnosis, cancer, PSMA, MA-SERS, Ag nanoparticles
Procedia PDF Downloads 229895 Bioactive Potentials of Peptides and Lipids from Green Mussel (Perna viridis), Horse Mussel (Modiolus philippinarum) and Charru Mussel (Mytella charruana)
Authors: Sharon N. Nuñal, May Flor S. Muegue, Nizzy Hope N. Cartago, Raymund B. Parcon, Sheina B. Logronio
Abstract:
The antioxidant and anti-inflammatory potentials of Perna Viridis, Modiolus philippinarum, and Mytella charruana found in the Philippines were assessed. Mussel protein samples were hydrolyzed using trypsin, maturase, alcalase and pepsin at 1% and 2% concentrations and then fractionated through membrane filtration (<10 kDa and <30 kDa). Antioxidant assays showed that pepsin hydrolysate at 2% enzyme concentration exhibited the maximum activities for both 2,2-Diphenyl-1-picrylhydrazyl (DPPH) Radical Scavenging Activity (155-176 µM TE/mg protein) and 2,2-azinobis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging (67-68 µM TE/mg protein) assays while trypsin hydrolysate dominated the Ferric Reducing Antioxidant Power (FRAP) for the three mussel species. Lower molecular weight peptide fractions at <10 kDa exhibited better antioxidant activities than the higher molecular weight fractions. The anti-inflammatory activities of M. philippinarum and M. charruana showed comparable protein denaturation inhibition potentials with the highest in P. Viridis samples (98.93%). The 5-Lipoxygenase (5-LOX) inhibitory activities of mussel samples showed no significant difference with inhibition exceeding 70%. P. Viridis demonstrated the highest inhibition against Cyclooxygenase-2 (COX-2) at 56.19%, while the rest showed comparable activities. This study showed that the three mussel species are potential sources of bioactive peptides and lipids with antioxidant and anti-inflammatory properties.Keywords: anti-inflammatory, antioxidant, bioactive properties, mussel
Procedia PDF Downloads 211894 The Effect of Air Filter Performance on Gas Turbine Operation
Authors: Iyad Al-Attar
Abstract:
Air filters are widely used in gas turbines applications to ensure that the large mass (500kg/s) of clean air reach the compressor. The continuous demand of high availability and reliability has highlighted the critical role of air filter performance in providing enhanced air quality. In addition to being challenged with different environments [tropical, coastal, hot], gas turbines confront wide array of atmospheric contaminants with various concentrations and particle size distributions that would lead to performance degradation and components deterioration. Therefore, the role of air filters is of a paramount importance since fouled compressor can reduce power output and availability of the gas turbine to over 70 % throughout operation. Consequently, accurate filter performance prediction is critical tool in their selection considering their role in minimizing the economic impact of outages. In fact, actual performance of Efficient Particulate Air [EPA] filters used in gas turbine tend to deviate from the performance predicted by laboratory results. This experimental work investigates the initial pressure drop and fractional efficiency curves of full-scale pleated V-shaped EPA filters used globally in gas turbine. The investigation involved examining the effect of different operational conditions such as flow rates [500 to 5000 m3/h] and design parameters such as pleat count [28, 30, 32 and 34 pleats per 100mm]. This experimental work has highlighted the underlying reasons behind the reduction in filter permeability due to the increase of flow rates and pleat density. The reasons, which led to surface area losses of filtration media, are due to one or combination of the following effects: pleat-crowding, deflection of the entire pleated panel, pleat distortion at the corner of the pleat and/or filtration medium compression. This paper also demonstrates that the effect of increasing the flow rate has more pronounced effect on filter performance compared to pleating density. This experimental work suggests that a valid comparison of the pleat densities should be based on the effective surface area, namely, the area that participates in the filtration process, and not the total surface area the pleat density provides. Throughout this study, optimal pleat count that satisfies both initial pressure drop and efficiency requirements may not have necessarily existed.Keywords: filter efficiency, EPA Filters, pressure drop, permeability
Procedia PDF Downloads 239893 Antiangiogenic Potential of Phellodendron amurense Bark Extract Observed on Chorioallantoic Membrane
Authors: Ľudmila Ballová, Slavomír Kurhajec, Eva Petrovová, Jarmila Eftimová
Abstract:
Angiogenesis, a formation of new blood vessels from a pre-existing vasculature, plays an important role in pathologic processes such as the growth and metastasis of tumours. Tumours cannot grow beyond a few millimetres without blood supply from the newly formed blood vessels from the host tissue, a process called tumour-induced angiogenesis. The successful research of antiangiogenic treatment of cancer has focused on nutraceuticals with angiogenesis-modulating properties. Berberine, as a major active component of the bark of Phellodendron amurense Rupr., has shown antitumour activity by intervening into different steps of carcinogenesis. The influence of ethanolic extract of Phellodendron amurese bark on the angiogenesis was tested in vivo on chick chorioallantoic membrane (CAM). The irritancy of the CAM after the application of the crude bark extract dissolved in normal saline (10 mg/mL) was investigated on embryonic day 7. No significant signs of the irritancy, such as vasoconstriction, hyperaemia, haemorrhage or coagulation were observed which indicates the harmless character of the extract. A significant reduction in vessel sprouting and higher percentage of avascular zone was observed in the case of CAM treated with the extract in comparison with non-treated CAM (control), which is a proof of the antiangiogenic potential of the extract. These results could contribute to the development of novel drugs for the treatment of cancer or other diseases, in which angiogenesis plays a significant role.Keywords: angiogenesis, berberine, chorioallantoic membrane, irritancy, phellodendron amurense
Procedia PDF Downloads 383892 Continuous Production of Prebiotic Pectic Oligosaccharides from Sugar Beet Pulp in a Continuous Cross Flow Membrane Bioreactor
Authors: Neha Babbar, S. Van Roy, W. Dejonghe, S. Sforza, K. Elst
Abstract:
Pectic oligosaccharides (a class of prebiotics) are non-digestible carbohydrates which benefits the host by stimulating the growth of healthy gut micro flora. Production of prebiotic pectic oligosaccharides (POS) from pectin rich agricultural residues involves a cutting of long chain polymer of pectin to oligomers of pectin while avoiding the formation of monosaccharides. The objective of the present study is to develop a two-step continuous biocatalytic membrane reactor (MER) for the continuous production of POS (from sugar beet pulp) in which conversion is combined with separation. Optimization of the ratio of POS/monosaccharides, stability and productivities of the process was done by testing various residence times (RT) in the reactor vessel with diluted (10 RT, 20 RT, and 30 RT) and undiluted (30 RT, 40 RT and 60 RT) substrate. The results show that the most stable processes (steady state) were 20 RT and 30 RT for diluted substrate and 40 RT and 60 RT for undiluted substrate. The highest volumetric and specific productivities of 20 g/L/h and 11 g/gE/h; 17 g/l/h and 9 g/gE/h were respectively obtained with 20 RT (diluted substrate) and 40 RT (undiluted substrate). Under these conditions, the permeates of the reactor test with 20 RT (diluted substrate) consisted of 80 % POS fractions while that of 40 RT (undiluted substrate) resulted in 70% POS fractions. A two-step continuous biocatalytic MER for the continuous POS production looks very promising for the continuous production of tailor made POS. Although both the processes i.e 20 RT (diluted substrate) and 40 RT (undiluted substrate) gave the best results, but for an Industrial application it is preferable to use an undiluted substrate.Keywords: pectic oligosaccharides, membrane reactor, residence time, specific productivity, volumetric productivity
Procedia PDF Downloads 440891 Study on Properties of Carbon-based Layer for Proton Exchange Membrane Fuel Cell Application
Authors: Pei-Jung Wu, Ching-Ying Huang, Chih-Chia Lin, Chun-Han Li, Chien-Yuan Wang
Abstract:
The fuel cell market has considerable development potential, but the cost is still less competitive. Replacing the traditional graphite plate with a stainless steel plate as a bipolar plate can greatly reduce the weight and volume of the stack, and has more cost advantages. However, the passivation layer on the surface of stainless steel makes the contact resistance reach the ohmic level and reduces the performance of the fuel cell. Therefore, it is necessary to reduce the interfacial contact resistance through the surface treatment. In this research, the thickness, uniformity, interfacial contact resistance (ICR), and adhesion of the carbon-based layer was analyzed. On the other hand, the effect of coating properties on the performance of the fuel cell was verified through I-V tests. The results show that after coating the contact resistance is greatly reduced by three stages to the microohm level, and as the film thickness is reduced, the contact resistance is reduced from 229~118 mΩ-cm² to 135~73 mΩ-cm² at a general assembly pressure of 1 to 2 MPa., and the current density at 0.6 V increased from 485.7 mA/cm² to 575.7 mA/cm². This study verifies the importance of the uniformity and ICR of the coating on proton exchange membrane fuel cell (PEMFC), and the surface coating technology is the key to affecting the characteristics of the coating.Keywords: contact resistance, proton exchange membrane fuel cell, PEMFC, SS bipolar plate, spray coating process
Procedia PDF Downloads 206890 An Implicit Methodology for the Numerical Modeling of Locally Inextensible Membranes
Authors: Aymen Laadhari
Abstract:
We present in this paper a fully implicit finite element method tailored for the numerical modeling of inextensible fluidic membranes in a surrounding Newtonian fluid. We consider a highly simplified version of the Canham-Helfrich model for phospholipid membranes, in which the bending force and spontaneous curvature are disregarded. The coupled problem is formulated in a fully Eulerian framework and the membrane motion is tracked using the level set method. The resulting nonlinear problem is solved by a Newton-Raphson strategy, featuring a quadratic convergence behavior. A monolithic solver is implemented, and we report several numerical experiments aimed at model validation and illustrating the accuracy of the proposed method. We show that stability is maintained for significantly larger time steps with respect to an explicit decoupling method.Keywords: finite element method, level set, Newton, membrane
Procedia PDF Downloads 330