Search results for: measurement and analysis
29345 Experimental Investigation of On-Body Channel Modelling at 2.45 GHz
Authors: Hasliza A. Rahim, Fareq Malek, Nur A. M. Affendi, Azuwa Ali, Norshafinash Saudin, Latifah Mohamed
Abstract:
This paper presents the experimental investigation of on-body channel fading at 2.45 GHz considering two effects of the user body movement; stationary and mobile. A pair of body-worn antennas was utilized in this measurement campaign. A statistical analysis was performed by comparing the measured on-body path loss to five well-known distributions; lognormal, normal, Nakagami, Weibull and Rayleigh. The results showed that the average path loss of moving arm varied higher than the path loss in sitting position for upper-arm-to-left-chest link, up to 3.5 dB. The analysis also concluded that the Nakagami distribution provided the best fit for most of on-body static link path loss in standing still and sitting position, while the arm movement can be best described by log-normal distribution.Keywords: on-body channel communications, fading characteristics, statistical model, body movement
Procedia PDF Downloads 35829344 Offshore Wind Assessment and Analysis for South Western Mediterranean Sea
Authors: Abdallah Touaibia, Nachida Kasbadji Merzouk, Mustapha Merzouk, Ryma Belarbi
Abstract:
accuracy assessment and a better understand of the wind resource distribution are the most important tasks for decision making before installing wind energy operating systems in a given region, there where our interest come to the Algerian coastline and its Mediterranean sea area. Despite its large coastline overlooking the border of Mediterranean Sea, there is still no strategy encouraging the development of offshore wind farms in Algerian waters. The present work aims to estimate the offshore wind fields for the Algerian Mediterranean Sea based on wind data measurements ranging from 1995 to 2018 provided of 24 years of measurement by seven observation stations focusing on three coastline cities in Algeria under a different measurement time step recorded from 30 min, 60 min, and 180 min variate from one to each other, two stations in Spain, two other ones in Italy and three in the coast of Algeria from the east Annaba, at the center Algiers, and to Oran taken place at the west of it. The idea behind consists to have multiple measurement points that helping to characterize this area in terms of wind potential by the use of interpolation method of their average wind speed values between these available data to achieve the approximate values of others locations where aren’t any available measurement because of the difficulties against the implementation of masts within the deep depth water. This study is organized as follow: first, a brief description of the studied area and its climatic characteristics were done. After that, the statistical properties of the recorded data were checked by evaluating wind histograms, direction roses, and average speeds using MatLab programs. Finally, ArcGIS and MapInfo soft-wares were used to establish offshore wind maps for better understanding the wind resource distribution, as well as to identify windy sites for wind farm installation and power management. The study pointed out that Cap Carbonara is the windiest site with an average wind speed of 7.26 m/s at 10 m, inducing a power density of 902 W/m², then the site of Cap Caccia with 4.88 m/s inducing a power density of 282 W/m². The average wind speed of 4.83 m/s is occurred for the site of Oran, inducing a power density of 230 W/m². The results indicated also that the dominant wind direction where the frequencies are highest for the site of Cap Carbonara is the West with 34%, an average wind speed of 9.49 m/s, and a power density of 1722 W/m². Then comes the site of Cap Caccia, where the prevailing wind direction is the North-west, about 20% and 5.82 m/s occurring a power density of 452 W/m². The site of Oran comes in third place with the North dominant direction with 32% inducing an average wind speed of 4.59 m/s and power density of 189 W/m². It also shown that the proposed method is either crucial in understanding wind resource distribution for revealing windy sites over a large area and more effective for wind turbines micro-siting.Keywords: wind ressources, mediterranean sea, offshore, arcGIS, mapInfo, wind maps, wind farms
Procedia PDF Downloads 15029343 The Impact of Direct and Indirect Pressure Measuring Systems on the Pressure Mapping for the Medical Compression Garments
Authors: Arash M. Shahidi, Tilak Dias, Gayani K. Nandasiri
Abstract:
While graduated compression is the foundation of treatment and management of many medical complications such as leg ulcer, varicose veins, and lymphedema, monitoring the interface pressure has been conducted using different sensors that operate based on diverse approaches. The variations existed from the pressure readings collected using different interface pressure measurement systems would cause difficulties in taking a decision regarding the compression therapy. It is crucial to acknowledge the differences existing between direct and indirect pressure measurement systems while considering the commercially available systems such as AMI, Picopress and OPM which are under direct measurements systems, and HATRA (BSI), HOSY (RAL-GZ) and FlexiForce which comes under the indirect measurement system. Furthermore, Piezo-resistive sensors (Flexiforce) can measure the changes in resistance corresponding to the applied force on the sensing area. Direct pressure measuring systems are capable of measuring interface pressure on the three-dimensional states, while the indirect pressure measuring systems stretch the fabric in the two-dimensional direction and extrapolate pressure from surface tension measured on the device and neglect the vital factor which is the radius of curvature. In this study, a leg mannequin of known dimensions is selected with a knitted class 3 compression stocking. It has been decided to evaluate the data collected from different available systems (AMI, PicoPress, FlexiForce, and HATRA) and compare the results. The results showed a discrepancy between Hatra, AMI, Picopress, and Flexiforce against the pressure standard used to generate class 3 compression stocking. As predicted a higher pressure value with direct interface measuring systems were monitored against HATRA due to the effect of the radius of curvature.Keywords: AMI, FlexiForce, graduated compression, HATRA, interface pressure, PicoPress
Procedia PDF Downloads 35629342 Measurement of VIP Edge Conduction Using Vacuum Guarded Hot Plate
Authors: Bongsu Choi, Tae-Ho Song
Abstract:
Vacuum insulation panel (VIP) is a promising thermal insulator for buildings, refrigerator, LNG carrier and so on. In general, it has the thermal conductivity of 2~4 mW/m•K. However, this thermal conductivity is that measured at the center of VIP. The total effective thermal conductivity of VIP is larger than this value due to the edge conduction through the envelope. In this paper, the edge conduction of VIP is examined theoretically, numerically and experimentally. To confirm the existence of the edge conduction, numerical analysis is performed for simple two-dimensional VIP model and a theoretical model is proposed to calculate the edge conductivity. Also, the edge conductivity is measured using the vacuum guarded hot plate and the experiment is validated against numerical analysis. The results show that the edge conductivity is dependent on the width of panel and thickness of Al-foil. To reduce the edge conduction, it is recommended that the VIP should be made as big as possible or made of thin Al film envelope.Keywords: envelope, edge conduction, thermal conductivity, vacuum insulation panel
Procedia PDF Downloads 40829341 High-Frequency Monitoring Results of a Piled Raft Foundation under Wind Loading
Authors: Laurent Pitteloud, Jörg Meier
Abstract:
Piled raft foundations represent an efficient and reliable technique for transferring high vertical and horizontal loads to the subsoil. Piled raft foundations were successfully implemented for several high-rise buildings worldwide over the last decades. For the structural design of this foundation type the stiffnesses of both the piles and the raft have to be determined for the static (e.g. dead load, live load) and the dynamic load cases (e.g. earthquake). In this context the question often arises, to which proportion wind loads are to be considered as dynamic loads. Usually a piled raft foundation has to be monitored in order to verify the design hypotheses. As an additional benefit, the analysis of this monitoring data may lead to a better understanding of the behaviour of this foundation type for future projects in similar subsoil conditions. In case the measurement frequency is high enough, one may also draw conclusions on the effect of wind loading on the piled raft foundation. For a 41-storey office building in Basel, Switzerland, the preliminary design showed that a piled raft foundation was the best solution to satisfy both design requirements, as well as economic aspects. A high-frequency monitoring of the foundation including pile loads, vertical stresses under the raft, as well as pore water pressures was performed over 5 years. In windy situations the analysis of the measurements shows that the pile load increment due to wind consists of a static and a cyclic load term. As piles and raft react with different stiffnesses under static and dynamic loading, these measurements are useful for the correct definition of stiffnesses of future piled raft foundations. This paper outlines the design strategy and the numerical modelling of the aforementioned piled raft foundation. The measurement results are presented and analysed. Based on the findings, comments and conclusions on the definition of pile and raft stiffnesses for vertical and wind loading are proposed.Keywords: design, dynamic, foundation, monitoring, pile, raft, wind load
Procedia PDF Downloads 20029340 Measurement of Operational and Environmental Performance of the Coal-Fired Power Plants in India by Using Data Envelopment Analysis
Authors: Vijay Kumar Bajpai, Sudhir Kumar Singh
Abstract:
In this study, the performance analyses of the twenty five coal-fired power plants (CFPPs) used for electricity generation are carried out through various data envelopment analysis (DEA) models. Three efficiency indices are defined and pursued. During the calculation of the operational performance, energy and non-energy variables are used as input, and net electricity produced is used as desired output. CO2 emitted to the environment is used as the undesired output in the computation of the pure environmental performance while in Model-3 CO2 emissions is considered as detrimental input in the calculation of operational and environmental performance. Empirical results show that most of the plants are operating in increasing returns to scale region and Mettur plant is efficient one with regards to energy use and environment. The result also indicates that the undesirable output effect is insignificant in the research sample. The present study will provide clues to plant operators towards raising the operational and environmental performance of CFPPs.Keywords: coal fired power plants, environmental performance, data envelopment analysis, operational performance
Procedia PDF Downloads 45829339 Increase Productivity by Using Work Measurement Technique
Authors: Mohammed Al Awadh
Abstract:
In order for businesses to take advantage of the opportunities for expanded production and trade that have arisen as a result of globalization and increased levels of competition, productivity growth is required. The number of available sources is decreasing with each passing day, which results in an ever-increasing demand. In response to this, there will be an increased demand placed on firms to improve the efficiency with which they utilise their resources. As a scientific method, work and time research techniques have been employed in all manufacturing and service industries to raise the efficiency of use of the factors of production. These approaches focus on work and time. The goal of this research is to improve the productivity of a manufacturing industry's production system by looking at ways to measure work. The work cycles were broken down into more manageable and quantifiable components. On the observation sheet, these aspects were noted down. The operation has been properly analysed in order to identify value-added and non-value-added components, and observations have been recorded for each of the different trails.Keywords: time study, work measurement, work study, efficiency
Procedia PDF Downloads 7429338 Analysis of Transformer by Gas and Moisture Sensor during Laboratory Time Monitoring
Authors: Miroslav Gutten, Daniel Korenciak, Milan Simko, Milan Chupac
Abstract:
Ensure the reliable and correct function of transformers is the main essence of on-line non-destructive diagnostic tool, which allows the accurately track of the status parameters. Devices for on-line diagnostics are very costly. However, there are devices, whose price is relatively low and when used correctly, they can be executed a complex diagnostics. One of these devices is sensor HYDRAN M2, which is used to detect the moisture and gas content in the insulation oil. Using the sensor HYDRAN M2 in combination with temperature, load measurement, and physicochemical analysis can be made the economically inexpensive diagnostic system, which use is not restricted to distribution transformers. This system was tested in educational laboratory environment at measured oil transformer 22/0.4 kV. From the conclusions referred in article is possible to determine, which kind of fault was occurred in the transformer and how was an impact on the temperature, evolution of gases and water content.Keywords: transformer, diagnostics, gas and moisture sensor, monitoring
Procedia PDF Downloads 38929337 Prototype of Over Dimension Over Loading (ODOL) Freight Transportation Monitoring System Based on Arduino Mega 'Sabrang': A Case Study in Klaten, Indonesia
Authors: Chairul Fajar, Muhammad Nur Hidayat, Muksalmina
Abstract:
The issue of Over Dimension Over Loading (ODOL) in Indonesia remains a significant challenge, causing traffic accidents, disrupting traffic flow, accelerating road damage, and potentially leading to bridge collapses. Klaten Regency, located on the slopes of Mount Merapi along the Woro River in Kemalang District, has potential Class C excavation materials such as sand and stone. Data from the Klaten Regency Transportation Department indicates that ODOL violations account for 72%, while non-violating vehicles make up only 28%. ODOL involves modifying factory-standard vehicles beyond the limits specified in the Type Test Registration Certificate (SRUT) to save costs and travel time. This study aims to develop a prototype ‘Sabrang’ monitoring system based on Arduino Mega to control and monitor ODOL freight transportation in the mining of Class C excavation materials in Klaten Regency. The prototype is designed to automatically measure the dimensions and weight of objects using a microcontroller. The data analysis techniques used in this study include the Normality Test and Paired T-Test, comparing sensor measurement results on scaled objects. The study results indicate differences in measurement validation under room temperature and ambient temperature conditions. Measurements at room temperature showed that the majority of H0 was accepted, meaning there was no significant difference in measurements when the prototype tool was used. Conversely, measurements at ambient temperature showed that the majority of H0 was rejected, indicating a significant difference in measurements when the prototype tool was used. In conclusion, the ‘Sabrang’ monitoring system prototype is effective for controlling ODOL, although measurement results are influenced by temperature conditions. This study is expected to assist in the monitoring and control of ODOL, thereby enhancing traffic safety and road infrastructure.Keywords: over dimension over loading, prototype, microcontroller, Arduino, normality test, paired t-test
Procedia PDF Downloads 4029336 Effect of Filter Paper Technique in Measuring Hydraulic Capacity of Unsaturated Expansive Soil
Authors: Kenechi Kurtis Onochie
Abstract:
This paper shows the use of filter paper technique in the measurement of matric suction of unsaturated expansive soil around the Haspolat region of Lefkosa, North Cyprus in other to establish the soil water characteristics curve (SWCC) or soil water retention curve (SWRC). The dry filter paper approach which is standardized by ASTM, 2003, D 5298-03 in which the filter paper is initially dry was adopted. The whatman No. 42 filter paper was used in the matric suction measurement. The maximum dry density of the soil was obtained as 2.66kg/cm³ and the optimum moisture content as 21%. The soil was discovered to have high air entry value of 1847.46KPa indicating finer particles and 25% hydraulic capacity using filter paper technique. The filter paper technique proved to be very useful for measuring the hydraulic capacity of unsaturated expansive soil.Keywords: SWCC, matric suction, filter paper, expansive soil
Procedia PDF Downloads 18329335 Airport Pavement Crack Measurement Systems and Crack Density for Pavement Evaluation
Authors: Ali Ashtiani, Hamid Shirazi
Abstract:
This paper reviews the status of existing practice and research related to measuring pavement cracking and using crack density as a pavement surface evaluation protocol. Crack density for pavement evaluation is currently not widely used within the airport community and its use by the highway community is limited. However, surface cracking is a distress that is closely monitored by airport staff and significantly influences the development of maintenance, rehabilitation and reconstruction plans for airport pavements. Therefore crack density has the potential to become an important indicator of pavement condition if the type, severity and extent of surface cracking can be accurately measured. A pavement distress survey is an essential component of any pavement assessment. Manual crack surveying has been widely used for decades to measure pavement performance. However, the accuracy and precision of manual surveys can vary depending upon the surveyor and performing surveys may disrupt normal operations. Given the variability of manual surveys, this method has shown inconsistencies in distress classification and measurement. This can potentially impact the planning for pavement maintenance, rehabilitation and reconstruction and the associated funding strategies. A substantial effort has been devoted for the past 20 years to reduce the human intervention and the error associated with it by moving toward automated distress collection methods. The automated methods refer to the systems that identify, classify and quantify pavement distresses through processes that require no or very minimal human intervention. This principally involves the use of a digital recognition software to analyze and characterize pavement distresses. The lack of established protocols for measurement and classification of pavement cracks captured using digital images is a challenge to developing a reliable automated system for distress assessment. Variations in types and severity of distresses, different pavement surface textures and colors and presence of pavement joints and edges all complicate automated image processing and crack measurement and classification. This paper summarizes the commercially available systems and technologies for automated pavement distress evaluation. A comprehensive automated pavement distress survey involves collection, interpretation, and processing of the surface images to identify the type, quantity and severity of the surface distresses. The outputs can be used to quantitatively calculate the crack density. The systems for automated distress survey using digital images reviewed in this paper can assist the airport industry in the development of a pavement evaluation protocol based on crack density. Analysis of automated distress survey data can lead to a crack density index. This index can be used as a means of assessing pavement condition and to predict pavement performance. This can be used by airport owners to determine the type of pavement maintenance and rehabilitation in a more consistent way.Keywords: airport pavement management, crack density, pavement evaluation, pavement management
Procedia PDF Downloads 18729334 Modeling of Wind Loads on Heliostats Installed in South Algeria of Various Pylon Height
Authors: Hakim Merarda, Mounir Aksas, Toufik Arrif, Abd Elfateh Belaid, Amor Gama, Reski Khelifi
Abstract:
Knowledge of wind loads is important to develop a heliostat with good performance. These loads can be calculated by mathematical equations based on several parameters: the density, wind velocity, the aspect ratio of the mirror (height/width) and the coefficient of the height of the tower. Measurement data of the wind velocity and the density of the air are used in a numerical simulation of wind profile that was performed on heliostats with different pylon heights, with 1m^2 mirror areas and with aspect ratio of mirror equal to 1. These measurement data are taken from the meteorological station installed in Ghardaia, Algeria. The main aim of this work is to find a mathematical correlation between the wind loads and the height of the tower.Keywords: heliostat, solar tower power, wind loads simulation, South Algeria
Procedia PDF Downloads 56229333 Optimization of Heat Insulation Structure and Heat Flux Calculation Method of Slug Calorimeter
Authors: Zhu Xinxin, Wang Hui, Yang Kai
Abstract:
Heat flux is one of the most important test parameters in the ground thermal protection test. Slug calorimeter is selected as the main sensor measuring heat flux in arc wind tunnel test due to the convenience and low cost. However, because of excessive lateral heat transfer and the disadvantage of the calculation method, the heat flux measurement error of the slug calorimeter is large. In order to enhance measurement accuracy, the heat insulation structure and heat flux calculation method of slug calorimeter were improved. The heat transfer model of the slug calorimeter was built according to the energy conservation principle. Based on the heat transfer model, the insulating sleeve of the hollow structure was designed, which helped to greatly decrease lateral heat transfer. And the slug with insulating sleeve of hollow structure was encapsulated using a package shell. The improved insulation structure reduced heat loss and ensured that the heat transfer characteristics were almost the same when calibrated and tested. The heat flux calibration test was carried out in arc lamp system for heat flux sensor calibration, and the results show that test accuracy and precision of slug calorimeter are improved greatly. In the meantime, the simulation model of the slug calorimeter was built. The heat flux values in different temperature rise time periods were calculated by the simulation model. The results show that extracting the data of the temperature rise rate as soon as possible can result in a smaller heat flux calculation error. Then the different thermal contact resistance affecting calculation error was analyzed by the simulation model. The contact resistance between the slug and the insulating sleeve was identified as the main influencing factor. The direct comparison calibration correction method was proposed based on only heat flux calibration. The numerical calculation correction method was proposed based on the heat flux calibration and simulation model of slug calorimeter after the simulation model was solved by solving the contact resistance between the slug and the insulating sleeve. The simulation and test results show that two methods can greatly reduce the heat flux measurement error. Finally, the improved slug calorimeter was tested in the arc wind tunnel. And test results show that the repeatability accuracy of improved slug calorimeter is less than 3%. The deviation of measurement value from different slug calorimeters is less than 3% in the same fluid field. The deviation of measurement value between slug calorimeter and Gordon Gage is less than 4% in the same fluid field.Keywords: correction method, heat flux calculation, heat insulation structure, heat transfer model, slug calorimeter
Procedia PDF Downloads 12429332 Abilitest Battery: Presentation of Tests and Psychometric Properties
Authors: Sylwia Sumińska, Łukasz Kapica, Grzegorz Szczepański
Abstract:
Introduction: Cognitive skills are a crucial part of everyday functioning. Cognitive skills include perception, attention, language, memory, executive functions, and higher cognitive skills. With the aging of societies, there is an increasing percentage of people whose cognitive skills decline. Cognitive skills affect work performance. The appropriate diagnosis of a worker’s cognitive skills reduces the risk of errors and accidents at work which is also important for senior workers. The study aimed to prepare new cognitive tests for adults aged 20-60 and assess the psychometric properties of the tests. The project responds to the need for reliable and accurate methods of assessing cognitive performance. Computer tests were developed to assess psychomotor performance, attention, and working memory. Method: Two hundred eighty people aged 20-60 will participate in the study in 4 age groups. Inclusion criteria for the study were: no subjective cognitive impairment, no history of severe head injuries, chronic diseases, psychiatric and neurological diseases. The research will be conducted from February - to June 2022. Cognitive tests: 1) Measurement of psychomotor performance: Reaction time, Reaction time with selective attention component; 2) Measurement of sustained attention: Visual search (dots), Visual search (numbers); 3) Measurement of working memory: Remembering words, Remembering letters. To assess the validity and the reliability subjects will perform the Vienna Test System, i.e., “Reaction Test” (reaction time), “Signal Detection” (sustained attention), “Corsi Block-Tapping Test” (working memory), and Perception and Attention Test (TUS), Colour Trails Test (CTT), Digit Span – subtest from The Wechsler Adult Intelligence Scale. Eighty people will be invited to a session after three months aimed to assess the consistency over time. Results: Due to ongoing research, the detailed results from 280 people will be shown at the conference separately in each age group. The results of correlation analysis with the Vienna Test System will be demonstrated as well.Keywords: aging, attention, cognitive skills, cognitive tests, psychomotor performance, working memory
Procedia PDF Downloads 10829331 Efficiency Measurement of Indian Sugar Manufacturing Firms - a DEA Approach
Authors: Amit Kumar Dwivedi, Priyanko Ghosh
Abstract:
Data Envelopment analysis (DEA) has been used to calculate the technical and scale efficiency measures of the public and private sugar manufacturing firms of the Indian Sugar Industry (2006 to 2010). Within DEA framework, the input & Output oriented Variable Returns to Scale (VRS) & Constant Return to Scale (CRS) model is employed for the study of Decision making units (DMUs). A representative sample of 43 firms which account for major portion of the total market share is studied. The selection criterion for the inclusion of a firm in the analysis was the total sales of INR 5,000 million or more in the year 2010. After reviewing the literature it is found that no study has been conducted in the context of Indian sugar manufacturing firms in the Post-liberalization era which motivates us to initiate the study.Keywords: technical efficiency, Indian sugar manufacturing units, DEA, input output oriented
Procedia PDF Downloads 54629330 Evaluation of Intervention Effectiveness from the Client Perspective: Dimensions and Measurement of Wellbeing
Authors: Neşe Alkan
Abstract:
Purpose: The point that applied/clinical psychology, which is the practice and research discipline of the mental health field, has reached today can be summarized as the necessity of handling the psychological well-being of people from multiple perspectives and the goal of moving it to a higher level. Clients' subjective assessment of their own condition and wellbeing is an integral part of evidence-based interventions. There is a need for tools through which clients can evaluate the effectiveness of the psychotherapy/intervention performed with them and their contribution to the wellbeing and wellbeing of this process in a valid and reliable manner. The aim of this research is to meet this need, to test the reliability and validity of the index in Turkish, and explore its usability in the practices of both researchers and psychotherapists. Method: A total of 213 adults aged between 18-54, 69.5% working and 29.5% university students, were included in the study. Along with their demographic information, the participants were administered a set of scales: wellbeing, life satisfaction, spiritual satisfaction, shopping addiction, and loneliness, namely via an online platform. The construct validity of the wellbeing scale was tested with exploratory and confirmatory factor analyses, convergent and discriminant validity were tested with two-way full and partial correlation analyses and, measurement invariance was tested with one-way analysis of variance. Results: Factor analyzes showed that the scale consisted of six dimensions as it is in its original structure. The internal consistency of the scale was found to be Cronbach α = .82. Two-way correlation analyzes revealed that the wellbeing scale total score was positively correlated with general life satisfaction (r = .62) and spiritual satisfaction (r = .29), as expected. It was negatively correlated with loneliness (r = -.51) and shopping addiction (r = -.15). While the scale score did not vary by gender, previous illness, or nicotine addiction, it was found that the total wellbeing scale scores of the participants who had used antidepressant medication during the past year were lower than those who did not use antidepressant medication (F(1,204) = 7.713, p = .005). Conclusion: It has been concluded that the 12-item wellbeing scale consisting of six dimensions can be used in research and health sciences practices as a valid and reliable measurement tool. Further research which examines the reliability and validity of the scale in different widely used languages such as Spanish and Chinese is recommended.Keywords: wellbeing, intervention effectiveness, reliability and validity, effectiveness
Procedia PDF Downloads 18229329 Highly Linear and Low Noise AMR Sensor Using Closed Loop and Signal-Chopped Architecture
Authors: N. Hadjigeorgiou, A. C. Tsalikidou, E. Hristoforou, P. P. Sotiriadis
Abstract:
During the last few decades, the continuously increasing demand for accurate and reliable magnetic measurements has paved the way for the development of different types of magnetic sensing systems as well as different measurement techniques. Sensor sensitivity and linearity, signal-to-noise ratio, measurement range, cross-talk between sensors in multi-sensor applications are only some of the aspects that have been examined in the past. In this paper, a fully analog closed loop system in order to optimize the performance of AMR sensors has been developed. The operation of the proposed system has been tested using a Helmholtz coil calibration setup in order to control both the amplitude and direction of magnetic field in the vicinity of the AMR sensor. Experimental testing indicated that improved linearity of sensor response, as well as low noise levels can be achieved, when the system is employed.Keywords: AMR sensor, closed loop, memory effects, chopper, linearity improvement, sensitivity improvement, magnetic noise, electronic noise
Procedia PDF Downloads 36529328 Effectiveness of Earthing System in Vertical Configurations
Authors: S. Yunus, A. Suratman, N. Mohamad Nor, M. Othman
Abstract:
This paper presents the measurement and simulation results by Finite Element Method (FEM) for earth resistance (RDC) for interconnected vertical ground rod configurations. The soil resistivity was measured using the Wenner four-pin Method, and RDC was measured using the Fall of Potential (FOP) method, as outlined in the standard. Genetic Algorithm (GA) is employed to interpret the soil resistivity to that of a 2-layer soil model. The same soil resistivity data that were obtained by Wenner four-pin method were used in FEM for simulation. This paper compares the results of RDC obtained by FEM simulation with the real measurement at field site. A good agreement was seen for RDC obtained by measurements and FEM. This shows that FEM is a reliable software to be used for design of earthing systems. It is also found that the parallel rod system has a better performance compared to a similar setup using a grid layout.Keywords: earthing system, earth electrodes, finite element method, genetic algorithm, earth resistances
Procedia PDF Downloads 11229327 Evaluating and Prioritizing the Effective Management Factors of Human Resources Empowerment and Efficiency in Manufacturing Companies: A Case Study on Fars’ Livestock and Poultry Manufacturing Companies
Authors: Mohsen Yaghmor, Sima Radmanesh
Abstract:
Rapid environmental changes have been threatening the life of many organizations. Enabling and productivity of human resource should be considered as the most important issue in order to increase performance and ensure survival of the organizations. In this research, the effectiveness of management factory in productivity and inability of human resource have been identified and reviewed at glance. Afterwards, answers were sought to questions "What are the factors effecting productivity and enabling of human resource?" and "What are the priority order based on effective management of human resource in Fars Poultry Complex?". A specified questionnaire has been designed regarding the priorities and effectiveness of the identified factors. Six factors were specified consisting of: individual characteristics, teaching, motivation, partnership management, authority or power submission and job development that have most effect on organization. Then a questionnaire was specified for priority and effect measurement of specified factors that were reached after collecting information and using statistical tests of Keronchbakh alpha coefficient r = 0.792, so that we can say the questionnaire has sufficient reliability. After information analysis of specified six factors by Friedman test their effects were categorized. Measurement on organization respectively consists of individual characteristics, job development or enrichment, authority submission, partnership management, teaching and motivation. Lastly, approaches has been introduced to increase productivity of manpower.Keywords: productivity, empowerment, enrichment, authority submission, partnership management, teaching, motivation
Procedia PDF Downloads 26729326 An Absolute Femtosecond Rangefinder for Metrological Support in Coordinate Measurements
Authors: Denis A. Sokolov, Andrey V. Mazurkevich
Abstract:
In the modern world, there is an increasing demand for highly precise measurements in various fields, such as aircraft, shipbuilding, and rocket engineering. This has resulted in the development of appropriate measuring instruments that are capable of measuring the coordinates of objects within a range of up to 100 meters, with an accuracy of up to one micron. The calibration process for such optoelectronic measuring devices (trackers and total stations) involves comparing the measurement results from these devices to a reference measurement based on a linear or spatial basis. The reference used in such measurements could be a reference base or a reference range finder with the capability to measure angle increments (EDM). The base would serve as a set of reference points for this purpose. The concept of the EDM for replicating the unit of measurement has been implemented on a mobile platform, which allows for angular changes in the direction of laser radiation in two planes. To determine the distance to an object, a high-precision interferometer with its own design is employed. The laser radiation travels to the corner reflectors, which form a spatial reference with precisely known positions. When the femtosecond pulses from the reference arm and the measuring arm coincide, an interference signal is created, repeating at the frequency of the laser pulses. The distance between reference points determined by interference signals is calculated in accordance with recommendations from the International Bureau of Weights and Measures for the indirect measurement of time of light passage according to the definition of a meter. This distance is D/2 = c/2nF, approximately 2.5 meters, where c is the speed of light in a vacuum, n is the refractive index of a medium, and F is the frequency of femtosecond pulse repetition. The achieved uncertainty of type A measurement of the distance to reflectors 64 m (N•D/2, where N is an integer) away and spaced apart relative to each other at a distance of 1 m does not exceed 5 microns. The angular uncertainty is calculated theoretically since standard high-precision ring encoders will be used and are not a focus of research in this study. The Type B uncertainty components are not taken into account either, as the components that contribute most do not depend on the selected coordinate measuring method. This technology is being explored in the context of laboratory applications under controlled environmental conditions, where it is possible to achieve an advantage in terms of accuracy. In general, the EDM tests showed high accuracy, and theoretical calculations and experimental studies on an EDM prototype have shown that the uncertainty type A of distance measurements to reflectors can be less than 1 micrometer. The results of this research will be utilized to develop a highly accurate mobile absolute range finder designed for the calibration of high-precision laser trackers and laser rangefinders, as well as other equipment, using a 64 meter laboratory comparator as a reference.Keywords: femtosecond laser, pulse correlation, interferometer, laser absolute range finder, coordinate measurement
Procedia PDF Downloads 6429325 Effects of Tomato-Crispy Salad Intercropping on Diameter of Tomato Fruits under Greenhouse Conditions
Authors: Halil Demir, Ersin Polat
Abstract:
This study, in which crispy salad plants was cultivated between the two rows of tomato, was conducted in Spring 2007 in a research glasshouse at Akdeniz University. Crispy salad (Lactuca sativa var. crispa cv. Bohemia) plants were intercropped with tomato (Solanum lycopersicon cv. Selin F1) plants as the main crop. Tomato seedlings were planted according to double line plantation system with 100 cm large spacing, 50 cm narrow spacing and 50 cm within row plant spacing. In both control and intercropping applications, each plot was 9.75 m2 according to plantation distances and there were 26 plants per each plot for tomato. Crispy salad seedlings were planted with 30 cm spacing as one row in the middle of tomato plants and with 30x30 spacing as two rows between plants rows. Moreover, salad seedlings were transplanted between tomato plants above the tomato rows that were planted in two rows with intervals of 50 cm and also with 25x25 cm spacing as the third row in the middle of tomato rows. While tomato plants were growing during the research, fruit width and height were measured periodically with 15 days in the tomato fruits of the third cluster from the formation of fruit to fruit ripening. According to results, while there were no differences between cropping systems in terms of fruit width, the highest fruit height was found in Control trial in the first measurement. In the second measurement while the highest fruit width was determined with 64.39 mm in Control, there were no differences between cropping systems. In the third measurement, the highest fruit width and height were obtained from Control with 68.47 mm and 55.52 mm, respectively. As a conclusion the trial, which crispy salad seedlings were planted with 30x30 cm spacing as two rows between tomato plants rows, was determined as a best intercropping application.Keywords: crispy salad, glasshouse, intercropping, tomato
Procedia PDF Downloads 32429324 Guided Energy Theory of a Particle: Answered Questions Arise from Quantum Foundation
Authors: Desmond Agbolade Ademola
Abstract:
This work aimed to introduce a theory, called Guided Energy Theory of a particle that answered questions that arise from quantum foundation, quantum mechanics theory, and interpretation such as: what is nature of wavefunction? Is mathematical formalism of wavefunction correct? Does wavefunction collapse during measurement? Do quantum physical entanglement and many world interpretations really exist? In addition, is there uncertainty in the physical reality of our nature as being concluded in the Quantum theory? We have been able to show by the fundamental analysis presented in this work that the way quantum mechanics theory, and interpretation describes nature is not correlated with physical reality. Because, we discovered amongst others that, (1) Guided energy theory of a particle fundamentally provides complete physical observable series of quantized measurement of a particle momentum, force, energy e.t.c. in a given distance and time.In contrast, quantum mechanics wavefunction describes that nature has inherited probabilistic and indeterministic physical quantities, resulting in unobservable physical quantities that lead to many worldinterpretation.(2) Guided energy theory of a particle fundamentally predicts that it is mathematically possible to determine precise quantized measurementof position and momentum of a particle simultaneously. Because, there is no uncertainty in nature; nature however naturally guides itself against uncertainty. Contrary to the conclusion in quantum mechanics theory that, it is mathematically impossible to determine the position and the momentum of a particle simultaneously. Furthermore, we have been able to show by this theory that, it is mathematically possible to determine quantized measurement of force acting on a particle simultaneously, which is not possible on the premise of quantum mechanics theory. (3) It is evidently shown by our theory that, guided energy does not collapse, only describes the lopsided nature of a particle behavior in motion. This pretty offers us insight on gradual process of engagement - convergence and disengagement – divergence of guided energy holders which further highlight the picture how wave – like behavior return to particle-like behavior and how particle – like behavior return to wave – like behavior respectively. This further proves that the particles’ behavior in motion is oscillatory in nature. The mathematical formalism of Guided energy theory shows that nature is certainty whereas the mathematical formalism of Quantum mechanics theory shows that nature is absolutely probabilistics. In addition, the nature of wavefunction is the guided energy of the wave. In conclusion, the fundamental mathematical formalism of Quantum mechanics theory is wrong.Keywords: momentum, physical entanglement, wavefunction, uncertainty
Procedia PDF Downloads 30129323 Change of Internal Friction on Magnesium Alloy with 5.48% Al Dependence on the Temperature
Authors: Milan Uhríčik, Andrea Soviarová, Zuzana Dresslerová, Peter Palček, Alan Vaško
Abstract:
The article is focused on the analysis changes dependence on the temperature on the magnesium alloy with 5,48% Al, 0,813% Zn and 0,398% Mn by internal friction. Internal friction is a property of the material is measured on the ultrasonic resonant aparature at a frequency about f = 20470 Hz. The measured temperature range was from 30 °C up to 420 °C. Precisely measurement of the internal friction can be monitored ongoing structural changes and various mechanisms that prevent these changes.Keywords: internal friction, magnesium alloy, temperature, resonant frequency
Procedia PDF Downloads 70529322 The Early Stages of the Standardisation of Finnish Building Sector
Authors: Anu Soikkeli
Abstract:
Early 20th century functionalism aimed at generalising living and rationalising construction, thus laying the foundation for the standardisation of construction components and products. From the 1930s onwards, all measurement and quality instructions for building products, different types of building components, descriptions of working methods complying with advisable building practises, planning, measurement and calculation guidelines, terminology, etc. were called standards. Standardisation was regarded as a necessary prerequisite for the mass production of housing. This article examines the early stages of standardisation in Finland in the 1940s and 1950s, as reflected on the working history of an individual architect, Erkki Koiso-Kanttila (1914-2006). In 1950 Koiso-Kanttila was appointed the Head of Design of the Finnish Association of Architects’ Building Standards Committee, a position which he held until 1958. His main responsibilities were the development of the RT Building Information File and compiling of the files.Keywords: architecture, post WWII period, reconstruction, standardisation
Procedia PDF Downloads 42129321 Electrical Equivalent Analysis of Micro Cantilever Beams for Sensing Applications
Authors: B. G. Sheeparamatti, J. S. Kadadevarmath
Abstract:
Microcantilevers are the basic MEMS devices, which can be used as sensors, actuators, and electronics can be easily built into them. The detection principle of microcantilever sensors is based on the measurement of change in cantilever deflection or change in its resonance frequency. The objective of this work is to explore the analogies between the mechanical and electrical equivalent of microcantilever beams. Normally scientists and engineers working in MEMS use expensive software like CoventorWare, IntelliSuite, ANSYS/Multiphysics, etc. This paper indicates the need of developing the electrical equivalent of the MEMS structure and with that, one can have a better insight on important parameters, and their interrelation of the MEMS structure. In this work, considering the mechanical model of the microcantilever, the equivalent electrical circuit is drawn and using a force-voltage analogy, it is analyzed with circuit simulation software. By doing so, one can gain access to a powerful set of intellectual tools that have been developed for understanding electrical circuits. Later the analysis is performed using ANSYS/Multiphysics - software based on finite element method (FEM). It is observed that both mechanical and electrical domain results for a rectangular microcantilevers are in agreement with each other.Keywords: electrical equivalent circuit analogy, FEM analysis, micro cantilevers, micro sensors
Procedia PDF Downloads 40429320 Finite Element Analysis of Human Tarsals, Meta Tarsals and Phalanges for Predicting probable location of Fractures
Authors: Irfan Anjum Manarvi, Fawzi Aljassir
Abstract:
Human bones have been a keen area of research over a long time in the field of biomechanical engineering. Medical professionals, as well as engineering academics and researchers, have investigated various bones by using medical, mechanical, and materials approaches to discover the available body of knowledge. Their major focus has been to establish properties of these and ultimately develop processes and tools either to prevent fracture or recover its damage. Literature shows that mechanical professionals conducted a variety of tests for hardness, deformation, and strain field measurement to arrive at their findings. However, they considered these results accuracy to be insufficient due to various limitations of tools, test equipment, difficulties in the availability of human bones. They proposed the need for further studies to first overcome inaccuracies in measurement methods, testing machines, and experimental errors and then carry out experimental or theoretical studies. Finite Element analysis is a technique which was developed for the aerospace industry due to the complexity of design and materials. But over a period of time, it has found its applications in many other industries due to accuracy and flexibility in selection of materials and types of loading that could be theoretically applied to an object under study. In the past few decades, the field of biomechanical engineering has also started to see its applicability. However, the work done in the area of Tarsals, metatarsals and phalanges using this technique is very limited. Therefore, present research has been focused on using this technique for analysis of these critical bones of the human body. This technique requires a 3-dimensional geometric computer model of the object to be analyzed. In the present research, a 3d laser scanner was used for accurate geometric scans of individual tarsals, metatarsals, and phalanges from a typical human foot to make these computer geometric models. These were then imported into a Finite Element Analysis software and a length refining process was carried out prior to analysis to ensure the computer models were true representatives of actual bone. This was followed by analysis of each bone individually. A number of constraints and load conditions were applied to observe the stress and strain distributions in these bones under the conditions of compression and tensile loads or their combination. Results were collected for deformations in various axis, and stress and strain distributions were observed to identify critical locations where fracture could occur. A comparative analysis of failure properties of all the three types of bones was carried out to establish which of these could fail earlier which is presented in this research. Results of this investigation could be used for further experimental studies by the academics and researchers, as well as industrial engineers, for development of various foot protection devices or tools for surgical operations and recovery treatment of these bones. Researchers could build up on these models to carryout analysis of a complete human foot through Finite Element analysis under various loading conditions such as walking, marching, running, and landing after a jump etc.Keywords: tarsals, metatarsals, phalanges, 3D scanning, finite element analysis
Procedia PDF Downloads 33529319 Established Novel Approach for Chemical Oxygen Demand Concentrations Measurement Based Mach-Zehner Interferometer Sensor
Authors: Su Sin Chong, Abdul Aziz Abdul Raman, Sulaiman Wadi Harun, Hamzah Arof
Abstract:
Chemical Oxygen Demand (COD) plays a vital role determination of an appropriate strategy for wastewater treatment including the control of the quality of an effluent. In this study, a new sensing method was introduced for the first time and developed to investigate chemical oxygen demand (COD) using a Mach-Zehner Interferometer (MZI)-based dye sensor. The sensor is constructed by bridging two single mode fibres (SMF1 and SMF2) with a short section (~20 mm) of multimode fibre (MMF) and was formed by tapering the MMF to generate evanescent field which is sensitive to perturbation of sensing medium. When the COD concentration increase takes effect will induce changes in output intensity and effective refractive index between the microfiber and the sensing medium. The adequacy of decisions based on COD values relies on the quality of the measurements. Therefore, the dual output response can be applied to the analytical procedure enhance measurement quality. This work presents a detailed assessment of the determination of COD values in synthetic wastewaters. Detailed models of the measurement performance, including sensitivity, reversibility, stability, and uncertainty were successfully validated by proficiency tests where supported on sound and objective criteria. Comparison of the standard method with the new proposed method was also conducted. This proposed sensor is compact, reliable and feasible to investigate the COD value.Keywords: chemical oxygen demand, environmental sensing, Mach-Zehnder interferometer sensor, online monitoring
Procedia PDF Downloads 49729318 Long-Term Sitting Posture Identifier Connected with Cloud Service
Authors: Manikandan S. P., Sharmila N.
Abstract:
Pain in the neck, intermediate and anterior, and even low back may occur in one or more locations. Numerous factors can lead to back discomfort, which can manifest into sensations in the other parts of your body. Up to 80% of people will have low back problems at a certain stage of their lives, making spine-related pain a highly prevalent ailment. Roughly twice as commonly as neck pain, low back discomfort also happens about as often as knee pain. According to current studies, using digital devices for extended periods of time and poor sitting posture are the main causes of neck and low back pain. There are numerous monitoring techniques provided to enhance the sitting posture for the aforementioned problems. A sophisticated technique to monitor the extended sitting position is suggested in this research based on this problem. The system is made up of an inertial measurement unit, a T-shirt, an Arduino board, a buzzer, and a mobile app with cloud services. Based on the anatomical position of the spinal cord, the inertial measurement unit was positioned on the inner back side of the T-shirt. The IMU (inertial measurement unit) sensor will evaluate the hip position, imbalanced shoulder, and bending angle. Based on the output provided by the IMU, the data will be analyzed by Arduino, supplied through the cloud, and shared with a mobile app for continuous monitoring. The buzzer will sound if the measured data is mismatched with the human body's natural position. The implementation and data prediction with design to identify balanced and unbalanced posture using a posture monitoring t-shirt will be further discussed in this research article.Keywords: IMU, posture, IOT, textile
Procedia PDF Downloads 9129317 Smart Irrigation System
Authors: Levent Seyfi, Ertan Akman, Tuğrul C. Topak
Abstract:
In this study, irrigation automation with electronic sensors and its control with smartphones were aimed. In this context, temperature and soil humidity measurements of the area irrigated were obtained by temperature and humidity sensors. A micro controller (Arduino) was utilized for accessing values of these parameters and controlling the proposed irrigation system. The irrigation system could automatically be worked according to obtained measurement values. Besides, a GSM module used together with Arduino provided that the irrigation system was in connection to smartphones. Thus, the irrigation system can be remotely controlled. Not only can we observe whether the irrigation system is working or not via developed special android application but also we can see temperature and humidity measurement values. In addition to this, if desired, the irrigation system can be remotely and manually started or stopped regardless of measured sensor vales thanks to the developed android application. In addition to smartphones, the irrigation system can be alternatively controlled via the designed website (www.sulamadenetim.com).Keywords: smartphone, Android Operating System, sensors, irrigation System, arduino
Procedia PDF Downloads 61829316 A Predictive MOC Solver for Water Hammer Waves Distribution in Network
Authors: A. Bayle, F. Plouraboué
Abstract:
Water Distribution Network (WDN) still suffers from a lack of knowledge about fast pressure transient events prediction, although the latter may considerably impact their durability. Accidental or planned operating activities indeed give rise to complex pressure interactions and may drastically modified the local pressure value generating leaks and, in rare cases, pipe’s break. In this context, a numerical predictive analysis is conducted to prevent such event and optimize network management. A couple of Python/FORTRAN 90, home-made software, has been developed using Method Of Characteristic (MOC) solving for water-hammer equations. The solver is validated by direct comparison with theoretical and experimental measurement in simple configurations whilst afterward extended to network analysis. The algorithm's most costly steps are designed for parallel computation. A various set of boundary conditions and energetic losses models are considered for the network simulations. The results are analyzed in both real and frequencies domain and provide crucial information on the pressure distribution behavior within the network.Keywords: energetic losses models, method of characteristic, numerical predictive analysis, water distribution network, water hammer
Procedia PDF Downloads 241