Search results for: decision tree model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20236

Search results for: decision tree model

16126 Determinants of Self-Reported Hunger: An Ordered Probit Model with Sample Selection Approach

Authors: Brian W. Mandikiana

Abstract:

Homestead food production has the potential to alleviate hunger, improve health and nutrition for children and adults. This article examines the relationship between self-reported hunger and homestead food production using the ordered probit model. A sample of households participating in homestead food production was drawn from the first wave of the South African National Income Dynamics Survey, a nationally representative cross-section. The sample selection problem was corrected using an ordered probit model with sample selection approach. The findings show that homestead food production exerts a positive and significant impact on children and adults’ ability to cope with hunger and malnutrition. Yet, on the contrary, potential gains of homestead food production are threatened by shocks such as crop failure.

Keywords: agriculture, hunger, nutrition, sample selection

Procedia PDF Downloads 336
16125 Objective-Based System Dynamics Modeling to Forecast the Number of Health Professionals in Pudong New Area of Shanghai

Authors: Jie Ji, Jing Xu, Yuehong Zhuang, Xiangqing Kang, Ying Qian, Ping Zhou, Di Xue

Abstract:

Background: In 2014, there were 28,341 health professionals in Pudong new area of Shanghai and the number per 1000 population was 5.199, 55.55% higher than that in 2006. But it was always less than the average number of health professionals per 1000 population in Shanghai from 2006 to 2014. Therefore, allocation planning for the health professionals in Pudong new area has become a high priority task in order to meet the future demands of health care. In this study, we constructed an objective-based system dynamics model to forecast the number of health professionals in Pudong new area of Shanghai in 2020. Methods: We collected the data from health statistics reports and previous survey of human resources in Pudong new area of Shanghai. Nine experts, who were from health administrative departments, public hospitals and community health service centers, were consulted to estimate the current and future status of nine variables used in the system dynamics model. Based on the objective of the number of health professionals per 1000 population (8.0) in Shanghai for 2020, the system dynamics model for health professionals in Pudong new area of Shanghai was constructed to forecast the number of health professionals needed in Pudong new area in 2020. Results: The system dynamics model for health professionals in Pudong new area of Shanghai was constructed. The model forecasted that there will be 37,330 health professionals (6.433 per 1000 population) in 2020. If the success rate of health professional recruitment changed from 20% to 70%, the number of health professionals per 1000 population would be changed from 5.269 to 6.919. If this rate changed from 20% to 70% and the success rate of building new beds changed from 5% to 30% at the same time, the number of health professionals per 1000 population would be changed from 5.269 to 6.923. Conclusions: The system dynamics model could be used to simulate and forecast the health professionals. But, if there were no significant changes in health policies and management system, the number of health professionals per 1000 population would not reach the objectives in Pudong new area in 2020.

Keywords: allocation planning, forecast, health professional, system dynamics

Procedia PDF Downloads 388
16124 A Model of Teacher Leadership in History Instruction

Authors: Poramatdha Chutimant

Abstract:

The objective of the research was to propose a model of teacher leadership in history instruction for utilization. Everett M. Rogers’ Diffusion of Innovations Theory is applied as theoretical framework. Qualitative method is to be used in the study, and the interview protocol used as an instrument to collect primary data from best practices who awarded by Office of National Education Commission (ONEC). Open-end questions will be used in interview protocol in order to gather the various data. Then, information according to international context of history instruction is the secondary data used to support in the summarizing process (Content Analysis). Dendrogram is a key to interpret and synthesize the primary data. Thus, secondary data comes as the supportive issue in explanation and elaboration. In-depth interview is to be used to collected information from seven experts in educational field. The focal point is to validate a draft model in term of future utilization finally.

Keywords: history study, nationalism, patriotism, responsible citizenship, teacher leadership

Procedia PDF Downloads 282
16123 Experimental Modeling of Spray and Water Sheet Formation Due to Wave Interactions with Vertical and Slant Bow-Shaped Model

Authors: Armin Bodaghkhani, Bruce Colbourne, Yuri S. Muzychka

Abstract:

The process of spray-cloud formation and flow kinematics produced from breaking wave impact on vertical and slant lab-scale bow-shaped models were experimentally investigated. Bubble Image Velocimetry (BIV) and Image Processing (IP) techniques were applied to study the various types of wave-model impacts. Different wave characteristics were generated in a tow tank to investigate the effects of wave characteristics, such as wave phase velocity, wave steepness on droplet velocities, and behavior of the process of spray cloud formation. The phase ensemble-averaged vertical velocity and turbulent intensity were computed. A high-speed camera and diffused LED backlights were utilized to capture images for further post processing. Various pressure sensors and capacitive wave probes were used to measure the wave impact pressure and the free surface profile at different locations of the model and wave-tank, respectively. Droplet sizes and velocities were measured using BIV and IP techniques to trace bubbles and droplets in order to measure their velocities and sizes by correlating the texture in these images. The impact pressure and droplet size distributions were compared to several previously experimental models, and satisfactory agreements were achieved. The distribution of droplets in front of both models are demonstrated. Due to the highly transient process of spray formation, the drag coefficient for several stages of this transient displacement for various droplet size ranges and different Reynolds number were calculated based on the ensemble average method. From the experimental results, the slant model produces less spray in comparison with the vertical model, and the droplet velocities generated from the wave impact with the slant model have a lower velocity as compared with the vertical model.

Keywords: spray charachteristics, droplet size and velocity, wave-body interactions, bubble image velocimetry, image processing

Procedia PDF Downloads 302
16122 Estimation and Forecasting with a Quantile AR Model for Financial Returns

Authors: Yuzhi Cai

Abstract:

This talk presents a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. We establish that the joint posterior distribution of the model parameters and future values is well defined. The associated MCMC algorithm for parameter estimation and forecasting converges to the posterior distribution quickly. We also present a combining forecasts technique to produce more accurate out-of-sample forecasts by using a weighted sequence of fitted QAR models. A moving window method to check the quality of the estimated conditional quantiles is developed. We verify our methodology using simulation studies and then apply it to currency exchange rate data. An application of the method to the USD to GBP daily currency exchange rates will also be discussed. The results obtained show that an unequally weighted combining method performs better than other forecasting methodology.

Keywords: combining forecasts, MCMC, quantile modelling, quantile forecasting, predictive density functions

Procedia PDF Downloads 348
16121 Identifying a Drug Addict Person Using Artificial Neural Networks

Authors: Mustafa Al Sukar, Azzam Sleit, Abdullatif Abu-Dalhoum, Bassam Al-Kasasbeh

Abstract:

Use and abuse of drugs by teens is very common and can have dangerous consequences. The drugs contribute to physical and sexual aggression such as assault or rape. Some teenagers regularly use drugs to compensate for depression, anxiety or a lack of positive social skills. Teen resort to smoking should not be minimized because it can be "gateway drugs" for other drugs (marijuana, cocaine, hallucinogens, inhalants, and heroin). The combination of teenagers' curiosity, risk taking behavior, and social pressure make it very difficult to say no. This leads most teenagers to the questions: "Will it hurt to try once?" Nowadays, technological advances are changing our lives very rapidly and adding a lot of technologies that help us to track the risk of drug abuse such as smart phones, Wireless Sensor Networks (WSNs), Internet of Things (IoT), etc. This technique may help us to early discovery of drug abuse in order to prevent an aggravation of the influence of drugs on the abuser. In this paper, we have developed a Decision Support System (DSS) for detecting the drug abuse using Artificial Neural Network (ANN); we used a Multilayer Perceptron (MLP) feed-forward neural network in developing the system. The input layer includes 50 variables while the output layer contains one neuron which indicates whether the person is a drug addict. An iterative process is used to determine the number of hidden layers and the number of neurons in each one. We used multiple experiment models that have been completed with Log-Sigmoid transfer function. Particularly, 10-fold cross validation schemes are used to access the generalization of the proposed system. The experiment results have obtained 98.42% classification accuracy for correct diagnosis in our system. The data had been taken from 184 cases in Jordan according to a set of questions compiled from Specialists, and data have been obtained through the families of drug abusers.

Keywords: drug addiction, artificial neural networks, multilayer perceptron (MLP), decision support system

Procedia PDF Downloads 301
16120 Compartmental Model Approach for Dosimetric Calculations of ¹⁷⁷Lu-DOTATOC in Adenocarcinoma Breast Cancer Based on Animal Data

Authors: M. S. Mousavi-Daramoroudi, H. Yousefnia, S. Zolghadri, F. Abbasi-Davani

Abstract:

Dosimetry is an indispensable and precious factor in patient treatment planning; to minimize the absorbed dose in vital tissues. In this study, In accordance with the proper characteristics of DOTATOC and ¹⁷⁷Lu, after preparing ¹⁷⁷Lu-DOTATOC at the optimal conditions for the first time in Iran, radionuclidic and radiochemical purity of the solution was investigated using an HPGe spectrometer and ITLC method, respectively. The biodistribution of the compound was assayed for treatment of adenocarcinoma breast cancer in bearing BALB/c mice. The results have demonstrated that ¹⁷⁷Lu-DOTATOC is a profitable selection for therapy of the tumors. Because of the vital role of internal dosimetry before and during therapy, the effort to improve the accuracy and rapidity of dosimetric calculations is necessary. For this reason, a new method was accomplished to calculate the absorbed dose through mixing between compartmental model, animal dosimetry and extrapolated data from animal to human and using MIRD method. Despite utilization of compartmental model based on the experimental data, it seems this approach may increase the accuracy of dosimetric data, confidently.

Keywords: ¹⁷⁷Lu-DOTATOC, biodistribution modeling, compartmental model, internal dosimetry

Procedia PDF Downloads 221
16119 A Prediction Model Using the Price Cyclicality Function Optimized for Algorithmic Trading in Financial Market

Authors: Cristian Păuna

Abstract:

After the widespread release of electronic trading, automated trading systems have become a significant part of the business intelligence system of any modern financial investment company. An important part of the trades is made completely automatically today by computers using mathematical algorithms. The trading decisions are taken almost instantly by logical models and the orders are sent by low-latency automatic systems. This paper will present a real-time price prediction methodology designed especially for algorithmic trading. Based on the price cyclicality function, the methodology revealed will generate price cyclicality bands to predict the optimal levels for the entries and exits. In order to automate the trading decisions, the cyclicality bands will generate automated trading signals. We have found that the model can be used with good results to predict the changes in market behavior. Using these predictions, the model can automatically adapt the trading signals in real-time to maximize the trading results. The paper will reveal the methodology to optimize and implement this model in automated trading systems. After tests, it is proved that this methodology can be applied with good efficiency in different timeframes. Real trading results will be also displayed and analyzed in order to qualify the methodology and to compare it with other models. As a conclusion, it was found that the price prediction model using the price cyclicality function is a reliable trading methodology for algorithmic trading in the financial market.

Keywords: algorithmic trading, automated trading systems, financial markets, high-frequency trading, price prediction

Procedia PDF Downloads 187
16118 International Financial Reporting Standards and the Quality of Banks Financial Statement Information: Evidence from an Emerging Market-Nigeria

Authors: Ugbede Onalo, Mohd Lizam, Ahmad Kaseri, Otache Innocent

Abstract:

Giving the paucity of studies on IFRS adoption and quality of banks accounting quality, particularly in emerging economies, this study is motivated to investigate whether the Nigeria decision to adopt IFRS beginning from 1 January 2012 is associated with high quality accounting measures. Consistent with prior literatures, this study measure quality of financial statement information using earnings measurement, timeliness of loss recognition and value relevance. A total of twenty Nigeria banks covering a period of six years (2008-2013) divided equally into three years each (2008, 2009, 2010) pre adoption period and (2011, 2012, 2013) post adoption period were investigated. Following prior studies eight models were in all employed to investigate earnings management, timeliness of loss recognition and value relevance of Nigeria bank accounting quality for the different reporting regimes. Results suggest that IFRS adoption is associated with minimal earnings management, timely recognition of losses and high value relevance of accounting information. Summarily, IFRS adoption engenders higher quality of banks financial statement information compared to local GAAP. Hence, this study recommends the global adoption of IFRS and that Nigeria banks should embrace good corporate governance practices.

Keywords: IFRS, SAS, quality of accounting information, earnings measurement, discretionary accruals, non-discretionary accruals, total accruals, Jones model, timeliness of loss recognition, value relevance

Procedia PDF Downloads 467
16117 Stochastic Model Predictive Control for Linear Discrete-Time Systems with Random Dither Quantization

Authors: Tomoaki Hashimoto

Abstract:

Recently, feedback control systems using random dither quantizers have been proposed for linear discrete-time systems. However, the constraints imposed on state and control variables have not yet been taken into account for the design of feedback control systems with random dither quantization. Model predictive control is a kind of optimal feedback control in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. An important advantage of model predictive control is its ability to handle constraints imposed on state and control variables. Based on the model predictive control approach, the objective of this paper is to present a control method that satisfies probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization. In other words, this paper provides a method for solving the optimal control problems subject to probabilistic state constraints for linear discrete-time feedback control systems with random dither quantization.

Keywords: optimal control, stochastic systems, random dither, quantization

Procedia PDF Downloads 447
16116 The Extension of the Kano Model by the Concept of Over-Service

Authors: Lou-Hon Sun, Yu-Ming Chiu, Chen-Wei Tao, Chia-Yun Tsai

Abstract:

It is common practice for many companies to ask employees to provide heart-touching service for customers and to emphasize the attitude of 'customer first'. However, services may not necessarily gain praise, and may actually be considered excessive, if customers do not appreciate such behaviors. In reality, many restaurant businesses try to provide as much service as possible without taking into account whether over-provision may lead to negative customer reception. A survey of 894 people in Britain revealed that 49 percent of respondents consider over-attentive waiters the most annoying aspect of dining out. It can be seen that merely aiming to exceed customers’ expectations without actually addressing their needs, only further distances and dissociates the standard of services from the goals of customer satisfaction itself. Over-service is defined, as 'service provided that exceeds customer expectations, or simply that customers deemed redundant, resulting in negative perception'. It was found that customers’ reactions and complaints concerning over-service are not as intense as those against service failures caused by the inability to meet expectations; consequently, it is more difficult for managers to become aware of the existence of over-service. Thus the ability to manage over-service behaviors is a significant topic for consideration. The Kano model classifies customer preferences into five categories: attractive quality attribute, one-dimensional quality attribute, must-be quality attribute, indifferent quality attribute and reverse quality attributes. The model is still very popular for researchers to explore the quality aspects and customer satisfaction. Nevertheless, several studies indicated that Kano’s model could not fully capture the nature of service quality. The concept of over-service can be used to restructure the model and provide a better understanding of the service quality construct. In this research, the structure of Kano's two-dimensional questionnaire will be used to classify the factors into different dimensions. The same questions will be used in the second questionnaire for identifying the over-service experienced of the respondents. The finding of these two questionnaires will be used to analyze the relevance between service quality classification and over-service behaviors. The subjects of this research are customers of fine dining chain restaurants. Three hundred questionnaires will be issued based on the stratified random sampling method. Items for measurement will be derived from DINESERV scale. The tangible dimension of the questionnaire will be eliminated due to this research is focused on the employee behaviors. Quality attributes of the Kano model are often regarded as an instrument for improving customer satisfaction. The concept of over-service can be used to restructure the model and provide a better understanding of service quality construct. The extension of the Kano model will not only develop a better understanding of customer needs and expectations but also enhance the management of service quality.

Keywords: consumer satisfaction, DINESERV, kano model, over-service

Procedia PDF Downloads 165
16115 Enhancing Precision Agriculture through Object Detection Algorithms: A Study of YOLOv5 and YOLOv8 in Detecting Armillaria spp.

Authors: Christos Chaschatzis, Chrysoula Karaiskou, Pantelis Angelidis, Sotirios K. Goudos, Igor Kotsiuba, Panagiotis Sarigiannidis

Abstract:

Over the past few decades, the rapid growth of the global population has led to the need to increase agricultural production and improve the quality of agricultural goods. There is a growing focus on environmentally eco-friendly solutions, sustainable production, and biologically minimally fertilized products in contemporary society. Precision agriculture has the potential to incorporate a wide range of innovative solutions with the development of machine learning algorithms. YOLOv5 and YOLOv8 are two of the most advanced object detection algorithms capable of accurately recognizing objects in real time. Detecting tree diseases is crucial for improving the food production rate and ensuring sustainability. This research aims to evaluate the efficacy of YOLOv5 and YOLOv8 in detecting the symptoms of Armillaria spp. in sweet cherry trees and determining their health status, with the goal of enhancing the robustness of precision agriculture. Additionally, this study will explore Computer Vision (CV) techniques with machine learning algorithms to improve the detection process’s efficiency.

Keywords: Armillaria spp., machine learning, precision agriculture, smart farming, sweet cherries trees, YOLOv5, YOLOv8

Procedia PDF Downloads 117
16114 Role of Desire in Risk-Perception: A Case Study of Syrian Refugees’ Migration towards Europe

Authors: Lejla Sunagic

Abstract:

The aim of the manuscript is to further the understanding of risky decision-making in the context of forced and irregular migration. The empirical evidence is collected through interviews with Syrian refugees who arrived in Europe via irregular pathways. Analytically, it has been approached through the juxtaposition between risk perception and the notion of desire. As different frameworks have been developed to address differences in risk perception, the common thread was the understanding that individual risk-taking has been addressed in terms of benefits outweighing risks. However, this framework cannot explain a big risk an individual takes because of an underprivileged position and due to a lack of positive alternatives, termed as risk-taking from vulnerability. The accounts of the field members of this study that crossed the sea in rubber boats to arrive in Europe make an empirical fit to such a postulate by reporting that the risk they have taken was not the choice but the only coping strategy. However, the vulnerability argument falls short of explaining why the interviewees, thinking retrospectively, find the risky journey they have taken to be worth it, while they would strongly advise others to restrain from taking such a huge risk. This inconsistency has been addressed by adding the notion of desire to migrate to the elements of risk perception. Desire, as a subjective experience, was what made the risk appear smaller in cost-benefit analysis at the time of decision-making of those who have realized migration. However, when they reflect on others in the context of potential migration via the same pathway, the interviewees addressed the others’ lack of capacity to avoid the same obstacles that they themselves were able to circumvent while omitting to reflect on others’ desire to migrate. Thus, in the risk-benefit analysis performed for others, the risk remains unblurred and tips over the benefits, given the inability to take into account the desire of others. If desire, as the transformative potential of migration, is taken out of the cost-benefit analysis of irregular migration, refugees might not have taken the risky journey. By casting the theoretical argument in the language of configuration, the study is filling in the gap of knowledge on the combination of migration drivers and the way they interact and produce migration outcomes.

Keywords: refugees, risk perception, desire, irregular migration

Procedia PDF Downloads 97
16113 Bayesian Value at Risk Forecast Using Realized Conditional Autoregressive Expectiel Mdodel with an Application of Cryptocurrency

Authors: Niya Chen, Jennifer Chan

Abstract:

In the financial market, risk management helps to minimize potential loss and maximize profit. There are two ways to assess risks; the first way is to calculate the risk directly based on the volatility. The most common risk measurements are Value at Risk (VaR), sharp ratio, and beta. Alternatively, we could look at the quantile of the return to assess the risk. Popular return models such as GARCH and stochastic volatility (SV) focus on modeling the mean of the return distribution via capturing the volatility dynamics; however, the quantile/expectile method will give us an idea of the distribution with the extreme return value. It will allow us to forecast VaR using return which is direct information. The advantage of using these non-parametric methods is that it is not bounded by the distribution assumptions from the parametric method. But the difference between them is that expectile uses a second-order loss function while quantile regression uses a first-order loss function. We consider several quantile functions, different volatility measures, and estimates from some volatility models. To estimate the expectile of the model, we use Realized Conditional Autoregressive Expectile (CARE) model with the bayesian method to achieve this. We would like to see if our proposed models outperform existing models in cryptocurrency, and we will test it by using Bitcoin mainly as well as Ethereum.

Keywords: expectile, CARE Model, CARR Model, quantile, cryptocurrency, Value at Risk

Procedia PDF Downloads 112
16112 Boundary Feedback Stabilization of an Overhead Crane Model

Authors: Abdelhadi Elharfi

Abstract:

A problem of boundary feedback (exponential) stabilization of an overhead crane model represented by a PDE is considered. For any $r>0$, the exponential stability at the desired decay rate $r$ is solved in semi group setting by a collocated-type stabiliser of a target system combined with a term involving the solution of an appropriate PDE.

Keywords: feedback stabilization, semi group and generator, overhead crane system

Procedia PDF Downloads 410
16111 In and Out-Of-Sample Performance of Non Simmetric Models in International Price Differential Forecasting in a Commodity Country Framework

Authors: Nicola Rubino

Abstract:

This paper presents an analysis of a group of commodity exporting countries' nominal exchange rate movements in relationship to the US dollar. Using a series of Unrestricted Self-exciting Threshold Autoregressive models (SETAR), we model and evaluate sixteen national CPI price differentials relative to the US dollar CPI. Out-of-sample forecast accuracy is evaluated through calculation of mean absolute error measures on the basis of two-hundred and fifty-three months rolling window forecasts and extended to three additional models, namely a logistic smooth transition regression (LSTAR), an additive non linear autoregressive model (AAR) and a simple linear Neural Network model (NNET). Our preliminary results confirm presence of some form of TAR non linearity in the majority of the countries analyzed, with a relatively higher goodness of fit, with respect to the linear AR(1) benchmark, in five countries out of sixteen considered. Although no model appears to statistically prevail over the other, our final out-of-sample forecast exercise shows that SETAR models tend to have quite poor relative forecasting performance, especially when compared to alternative non-linear specifications. Finally, by analyzing the implied half-lives of the > coefficients, our results confirms the presence, in the spirit of arbitrage band adjustment, of band convergence with an inner unit root behaviour in five of the sixteen countries analyzed.

Keywords: transition regression model, real exchange rate, nonlinearities, price differentials, PPP, commodity points

Procedia PDF Downloads 283
16110 Application of Constructivist-Based (5E’s) Instructional Approach on Pupils’ Retention: A Case Study in Primary Mathematics in Enugu State

Authors: Ezeamagu M.U, Madu B.C

Abstract:

This study was designed to investigate the efficacy of 5Es constructivist-based instructional model on students’ retention in primary Mathematics. 5Es stands for Engagement, Exploration, Explanation, Elaboration and Evaluation. The study adopted the pre test post test non-equivalent control group quasi-experimental research design. The sample size for the study was one hundred and thirty four pupils (134), seventy six male (76) and fifty eight female (58) from two primary schools in Nsukka education zone. Two intact classes in each of the sampled schools comprising all the primary four pupils were used. Each of the schools was given the opportunity of being assigned randomly to either experimental or control group. The Experimental group was taught using 5Es model while the control group was taught using the conventional method. Two research questions were formulated to guide the study and three hypotheses were tested at p ≤ 0. 05. A Fraction Achievement Test (FAT) of ten (10) questions were used to obtain data on pupils’ retention. Research questions were answered using mean and standard deviation while hypotheses were tested using analysis of covariance (ANCOVA). The result revealed that the 5Es model was more effective than the conventional method of teaching in enhancing pupils’ performance and retention in mathematics, secondly there is no significant difference in the mean retention scores of male and female students taught using 5Es instructional model. Based on the findings, it was recommended among other things, that the 5Es instructional model should be adopted in the teaching of mathematics in primary level of the educational system. Seminar, workshops and conferences should be mounted by professional bodies, federal and state ministries of education on the use of 5Es model. This will enable the mathematics educator, serving teachers, students and all to benefit from the approach.

Keywords: constructivist, education, mathematics, primary, retention

Procedia PDF Downloads 453
16109 Developing Indicators in System Mapping Process Through Science-Based Visual Tools

Authors: Cristian Matti, Valerie Fowles, Eva Enyedi, Piotr Pogorzelski

Abstract:

The system mapping process can be defined as a knowledge service where a team of facilitators, experts and practitioners facilitate a guided conversation, enable the exchange of information and support an iterative curation process. System mapping processes rely on science-based tools to introduce and simplify a variety of components and concepts of socio-technical systems through metaphors while facilitating an interactive dialogue process to enable the design of co-created maps. System maps work then as “artifacts” to provide information and focus the conversation into specific areas around the defined challenge and related decision-making process. Knowledge management facilitates the curation of that data gathered during the system mapping sessions through practices of documentation and subsequent knowledge co-production for which common practices from data science are applied to identify new patterns, hidden insights, recurrent loops and unexpected elements. This study presents empirical evidence on the application of these techniques to explore mechanisms by which visual tools provide guiding principles to portray system components, key variables and types of data through the lens of climate change. In addition, data science facilitates the structuring of elements that allow the analysis of layers of information through affinity and clustering analysis and, therefore, develop simple indicators for supporting the decision-making process. This paper addresses methodological and empirical elements on the horizontal learning process that integrate system mapping through visual tools, interpretation, cognitive transformation and analysis. The process is designed to introduce practitioners to simple iterative and inclusive processes that create actionable knowledge and enable a shared understanding of the system in which they are embedded.

Keywords: indicators, knowledge management, system mapping, visual tools

Procedia PDF Downloads 196
16108 Developing A Third Degree Of Freedom For Opinion Dynamics Models Using Scales

Authors: Dino Carpentras, Alejandro Dinkelberg, Michael Quayle

Abstract:

Opinion dynamics models use an agent-based modeling approach to model people’s opinions. Model's properties are usually explored by testing the two 'degrees of freedom': the interaction rule and the network topology. The latter defines the connection, and thus the possible interaction, among agents. The interaction rule, instead, determines how agents select each other and update their own opinion. Here we show the existence of the third degree of freedom. This can be used for turning one model into each other or to change the model’s output up to 100% of its initial value. Opinion dynamics models represent the evolution of real-world opinions parsimoniously. Thus, it is fundamental to know how real-world opinion (e.g., supporting a candidate) could be turned into a number. Specifically, we want to know if, by choosing a different opinion-to-number transformation, the model’s dynamics would be preserved. This transformation is typically not addressed in opinion dynamics literature. However, it has already been studied in psychometrics, a branch of psychology. In this field, real-world opinions are converted into numbers using abstract objects called 'scales.' These scales can be converted one into the other, in the same way as we convert meters to feet. Thus, in our work, we analyze how this scale transformation may affect opinion dynamics models. We perform our analysis both using mathematical modeling and validating it via agent-based simulations. To distinguish between scale transformation and measurement error, we first analyze the case of perfect scales (i.e., no error or noise). Here we show that a scale transformation may change the model’s dynamics up to a qualitative level. Meaning that a researcher may reach a totally different conclusion, even using the same dataset just by slightly changing the way data are pre-processed. Indeed, we quantify that this effect may alter the model’s output by 100%. By using two models from the standard literature, we show that a scale transformation can transform one model into the other. This transformation is exact, and it holds for every result. Lastly, we also test the case of using real-world data (i.e., finite precision). We perform this test using a 7-points Likert scale, showing how even a small scale change may result in different predictions or a number of opinion clusters. Because of this, we think that scale transformation should be considered as a third-degree of freedom for opinion dynamics. Indeed, its properties have a strong impact both on theoretical models and for their application to real-world data.

Keywords: degrees of freedom, empirical validation, opinion scale, opinion dynamics

Procedia PDF Downloads 158
16107 Project Time Prediction Model: A Case Study of Construction Projects in Sindh, Pakistan

Authors: Tauha Hussain Ali, Shabir Hussain Khahro, Nafees Ahmed Memon

Abstract:

Accurate prediction of project time for planning and bid preparation stage should contain realistic dates. Constructors use their experience to estimate the project duration for the new projects, which is based on intuitions. It has been a constant concern to both researchers and constructors to analyze the accurate prediction of project duration for bid preparation stage. In Pakistan, such study for time cost relationship has been lacked to predict duration performance for the construction projects. This study is an attempt to explore the time cost relationship that would conclude with a mathematical model to predict the time for the drainage rehabilitation projects in the province of Sindh, Pakistan. The data has been collected from National Engineering Services (NESPAK), Pakistan and regression analysis has been carried out for the analysis of results. Significant relationship has been found between time and cost of the construction projects in Sindh and the generated mathematical model can be used by the constructors to predict the project duration for the upcoming projects of same nature. This study also provides the professionals with a requisite knowledge to make decisions regarding project duration, which is significantly important to win the projects at the bid stage.

Keywords: BTC Model, project time, relationship of time cost, regression

Procedia PDF Downloads 384
16106 Numerical Investigation of Aerodynamic Analysis on Passenger Vehicle

Authors: Cafer Görkem Pınar, İlker Coşar, Serkan Uzun, Atahan Çelebi, Mehmet Ali Ersoy, Ali Pınarbaşı

Abstract:

In this study, it was numerically investigated that a 1:1 scale model of the Renault Clio MK4 SW brand vehicle aerodynamic analysis was performed in the commercial computational fluid dynamics (CFD) package program of ANSYS CFX 2021 R1 under steady, subsonic, and 3-D conditions. The model of vehicle used for the analysis was made independent of the number of mesh elements, and the k-epsilon turbulence model was applied during the analysis. Results were interpreted as streamlines, pressure gradient, and turbulent kinetic energy contours around the vehicle at 50 km/h and 100 km/h speeds. In addition, the validity of the analysis was decided by comparing the drag coefficient of the vehicle with the values in the literature. As a result, the pressure gradient contours of the taillight of the Renault Clio MK4 SW vehicle were examined, and the behavior of the total force at speeds of 50 km/h and 100 km/h was interpreted.

Keywords: CFD, k-epsilon, aerodynamics, drag coefficient, taillight

Procedia PDF Downloads 145
16105 Diffusion Dynamics of Leech-Heart Inter-Neuron Model

Authors: Arnab Mondal, Sanjeev Kumar Sharma, Ranjit Kumar Upadhyay

Abstract:

We study the spatiotemporal dynamics of a neuronal cable. The processes of one- dimensional (1D) and 2D diffusion are considered for a single variable, which is the membrane voltage, i.e., membrane voltage diffusively interacts for spatiotemporal pattern formalism. The recovery and other variables interact through the membrane voltage. A 3D Leech-Heart (LH) model is introduced to investigate the nonlinear responses of an excitable neuronal cable. The deterministic LH model shows different types of firing properties. We explore the parameter space of the uncoupled LH model and based on the bifurcation diagram, considering v_k2_ashift as a bifurcation parameter, we analyze the 1D diffusion dynamics in three regimes: bursting, regular spiking, and a quiescent state. Depending on parameters, it is shown that the diffusive system may generate regular and irregular bursting or spiking behavior. Further, it is explored a 2D diffusion acting on the membrane voltage, where different types of patterns can be observed. The results show that the LH neurons with different firing characteristics depending on the control parameters participate in a collective behavior of an information processing system that depends on the overall network.

Keywords: bifurcation, pattern formation, spatio-temporal dynamics, stability analysis

Procedia PDF Downloads 228
16104 Aerodynamic Coefficients Prediction from Minimum Computation Combinations Using OpenVSP Software

Authors: Marine Segui, Ruxandra Mihaela Botez

Abstract:

OpenVSP is an aerodynamic solver developed by National Aeronautics and Space Administration (NASA) that allows building a reliable model of an aircraft. This software performs an aerodynamic simulation according to the angle of attack of the aircraft makes between the incoming airstream, and its speed. A reliable aerodynamic model of the Cessna Citation X was designed but it required a lot of computation time. As a consequence, a prediction method was established that allowed predicting lift and drag coefficients for all Mach numbers and for all angles of attack, exclusively for stall conditions, from a computation of three angles of attack and only one Mach number. Aerodynamic coefficients given by the prediction method for a Cessna Citation X model were finally compared with aerodynamics coefficients obtained using a complete OpenVSP study.

Keywords: aerodynamic, coefficient, cruise, improving, longitudinal, openVSP, solver, time

Procedia PDF Downloads 237
16103 Evaluating the Feasibility of Magnetic Induction to Cross an Air-Water Boundary

Authors: Mark Watson, J.-F. Bousquet, Adam Forget

Abstract:

A magnetic induction based underwater communication link is evaluated using an analytical model and a custom Finite-Difference Time-Domain (FDTD) simulation tool. The analytical model is based on the Sommerfeld integral, and a full-wave simulation tool evaluates Maxwell’s equations using the FDTD method in cylindrical coordinates. The analytical model and FDTD simulation tool are then compared and used to predict the system performance for various transmitter depths and optimum frequencies of operation. To this end, the system bandwidth, signal to noise ratio, and the magnitude of the induced voltage are used to estimate the expected channel capacity. The models show that in seawater, a relatively low-power and small coils may be capable of obtaining a throughput of 40 to 300 kbps, for the case where a transmitter is at depths of 1 to 3 m and a receiver is at a height of 1 m.

Keywords: magnetic induction, FDTD, underwater communication, Sommerfeld

Procedia PDF Downloads 126
16102 A Multi-Objective Optimization Tool for Dual-Mode Operating Active Magnetic Regenerator Model

Authors: Anna Ouskova Leonteva, Michel Risser, Anne Jeannin-Girardon, Pierre Parrend, Pierre Collet

Abstract:

This paper proposes an efficient optimization tool for an active magnetic regenerator (AMR) model, operating in two modes: magnetic refrigeration system (MRS) and thermo-magnetic generator (TMG). The aim of this optimizer is to improve the design of the AMR by applying a multi-physics multi-scales numerical model as a core of evaluation functions to achieve industrial requirements for refrigeration and energy conservation systems. Based on the multi-objective non-dominated sorting genetic algorithm 3 (NSGA3), it maximizes four different objectives: efficiency and power density for MRS and TMG. The main contribution of this work is in the simultaneously application of a CPU-parallel NSGA3 version to the AMR model in both modes for studying impact of control and design parameters on the performance. The parametric study of the optimization results are presented. The main conclusion is that the common (for TMG and MRS modes) optimal parameters can be found by the proposed tool.

Keywords: ecological refrigeration systems, active magnetic regenerator, thermo-magnetic generator, multi-objective evolutionary optimization, industrial optimization problem, real-world application

Procedia PDF Downloads 115
16101 A Boundary-Fitted Nested Grid Model for Modeling Tsunami Propagation of 2004 Indonesian Tsunami along Southern Thailand

Authors: Fazlul Karim, Esa Al-Islam

Abstract:

Many problems in oceanography and environmental sciences require the solution of shallow water equations on physical domains having curvilinear coastlines and abrupt changes of ocean depth near the shore. Finite-difference technique for the shallow water equations representing the boundary as stair step may give inaccurate results near the coastline where results are of greatest interest for various applications. This suggests the use of methods which are capable of incorporating the irregular boundary in coastal belts. At the same time, large velocity gradient is expected near the beach and islands as water depth vary abruptly near the coast. A nested numerical scheme with fine resolution is the best resort to enhance the numerical accuracy with the least grid numbers for the region of interests where the velocity changes rapidly and which is unnecessary for the away of the region. This paper describes the development of a boundary fitted nested grid (BFNG) model to compute tsunami propagation of 2004 Indonesian tsunami in Southern Thailand coastal waters. In this paper, we develop a numerical model employing the shallow water nested model and an orthogonal boundary fitted grid to investigate the tsunami impact on the Southern Thailand due to the Indonesian tsunami of 2004. Comparisons of water surface elevation obtained from numerical simulations and field measurements are made.

Keywords: Indonesian tsunami of 2004, Boundary-fitted nested grid model, Southern Thailand, finite difference method

Procedia PDF Downloads 444
16100 The Influence of Swirl Burner Geometry on the Sugar-Cane Bagasse Injection and Burning

Authors: Juan Harold Sosa-Arnao, Daniel José de Oliveira Ferreira, Caice Guarato Santos, Justo Emílio Alvarez, Leonardo Paes Rangel, Song Won Park

Abstract:

A comprehensive CFD model is developed to represent heterogeneous combustion and two burner designs of supply sugar-cane bagasse into a furnace. The objective of this work is to compare the insertion and burning of a Brazilian south-eastern sugar-cane bagasse using a new swirl burner design against an actual geometry under operation. The new design allows control the particles penetration and scattering inside furnace by adjustment of axial/tangential contributions of air feed without change their mass flow. The model considers turbulence using RNG k-, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller-Naumann model. The obtained results are favorable to use of new design swirl burner because its axial/tangential control promotes more penetration or more scattering than actual design and allows reproduce the actual design operation without change the overall mass flow supply.

Keywords: comprehensive CFD model, sugar-cane bagasse combustion, swirl burner, contributions

Procedia PDF Downloads 441
16099 Statistical Physics Model of Seismic Activation Preceding a Major Earthquake

Authors: Daniel S. Brox

Abstract:

Starting from earthquake fault dynamic equations, a correspondence between earthquake occurrence statistics in a seismic region before a major earthquake and eigenvalue statistics of a differential operator whose bound state eigenfunctions characterize the distribution of stress in the seismic region is derived. Modeling these eigenvalue statistics with a 2D Coulomb gas statistical physics model, previously reported deviation of seismic activation earthquake occurrence statistics from Gutenberg-Richter statistics in time intervals preceding the major earthquake is derived. It also explains how statistical physics modeling predicts a finite-dimensional nonlinear dynamic system that describes real-time velocity model evolution in the region undergoing seismic activation and how this prediction can be tested experimentally.

Keywords: seismic activation, statistical physics, geodynamics, signal processing

Procedia PDF Downloads 24
16098 Flushing Model for Artificial Islands in the Persian Gulf

Authors: Sawsan Eissa, Momen Gharib, Omnia Kabbany

Abstract:

A flushing numerical study has been performed for intended artificial islands on the Persian Gulf coast in Abu Dhabi, UAE. The island masterplan was tested for flushing using the DELFT 3D hydrodynamic model, and it was found that its residence time exceeds the acceptable PIANC flushing Criteria. Therefore, a number of mitigation measures were applied and tested one by one using the flushing model. Namely, changing the location of the entrance opening, dredging, removing part of the mangrove existing in the near vicinity to create a channel, removing the mangrove altogether, using culverts of different numbers and locations, and pumping at selected points. The pumping option gave the best solution, but it was disregarded due to high capital and running costs. Therefore, it opted for a combination of other solutions, including removing mangroves, introducing culverts, and adjusting island boundaries and types of protection.

Keywords: hydrodynamics, flushing, delft 3d, Persian Gulf, artificial islands.

Procedia PDF Downloads 63
16097 Efficient Chiller Plant Control Using Modern Reinforcement Learning

Authors: Jingwei Du

Abstract:

The need of optimizing air conditioning systems for existing buildings calls for control methods designed with energy-efficiency as a primary goal. The majority of current control methods boil down to two categories: empirical and model-based. To be effective, the former heavily relies on engineering expertise and the latter requires extensive historical data. Reinforcement Learning (RL), on the other hand, is a model-free approach that explores the environment to obtain an optimal control strategy often referred to as “policy”. This research adopts Proximal Policy Optimization (PPO) to improve chiller plant control, and enable the RL agent to collaborate with experienced engineers. It exploits the fact that while the industry lacks historical data, abundant operational data is available and allows the agent to learn and evolve safely under human supervision. Thanks to the development of language models, renewed interest in RL has led to modern, online, policy-based RL algorithms such as the PPO. This research took inspiration from “alignment”, a process that utilizes human feedback to finetune the pretrained model in case of unsafe content. The methodology can be summarized into three steps. First, an initial policy model is generated based on minimal prior knowledge. Next, the prepared PPO agent is deployed so feedback from both critic model and human experts can be collected for future finetuning. Finally, the agent learns and adapts itself to the specific chiller plant, updates the policy model and is ready for the next iteration. Besides the proposed approach, this study also used traditional RL methods to optimize the same simulated chiller plants for comparison, and it turns out that the proposed method is safe and effective at the same time and needs less to no historical data to start up.

Keywords: chiller plant, control methods, energy efficiency, proximal policy optimization, reinforcement learning

Procedia PDF Downloads 33