Search results for: payment industry
1466 Temperature Susceptibility of Multigrade Bitumen Asphalt and an Approach to Account for Temperature Variation through Deep Pavements
Authors: Brody R. Clark, Chaminda Gallage, John Yeaman
Abstract:
Multigrade bitumen asphalt is a quality asphalt product that is not utilised in many places globally. Multigrade bitumen is believed to be less sensitive to temperature, which gives it an advantage over conventional binders. Previous testing has shown that asphalt temperature changes greatly with depth, but currently the industry standard is to nominate a single temperature for design. For detailed design of asphalt roads, perhaps asphalt layers should be divided into nominal layer depths and different modulus and fatigue equations/values should be used to reflect the temperatures of each respective layer. A collaboration of previous laboratory testing conducted on multigrade bitumen asphalt beams under a range of temperatures and loading conditions was analysed. The samples tested included 0% or 15% recycled asphalt pavement (RAP) to determine what impact the recycled material has on the fatigue life and stiffness of the pavement. This paper investigated the temperature susceptibility of multigrade bitumen asphalt pavements compared to conventional binders by combining previous testing that included conducting a sweep of fatigue tests, developing complex modulus master curves for each mix and a study on how pavement temperature changes through pavement depth. This investigation found that the final design of the pavement is greatly affected by the nominated pavement temperature and respective material properties. This paper has outlined a potential revision to the current design approach for asphalt pavements and proposes that further investigation is needed into pavement temperature and its incorporation into design.Keywords: asphalt, complex modulus, fatigue life, flexural stiffness, four point bending, multigrade bitumen, recycled asphalt pavement
Procedia PDF Downloads 3741465 Assessing the Impact of Autonomous Vehicles on Supply Chain Performance – A Case Study of Agri-Food Supply Chain
Authors: Nitish Suvarna, Anjali Awasthi
Abstract:
In an era marked by rapid technological advancements, the integration of Autonomous Vehicles into supply chain networks represents a transformative shift, promising to redefine the paradigms of logistics and transportation. This thesis delves into a comprehensive assessment of the impact of autonomous vehicles on supply chain performance, with a particular focus on network design, operational efficiency, and environmental sustainability. Employing the advanced simulation capabilities of anyLogistix (ALX), the study constructs a digital twin of a conventional supply chain network, encompassing suppliers, production facilities, distribution centers, and customer endpoints. The research methodically integrates Autonomous Vehicles into this intricate network, aiming to unravel the multifaceted effects on transportation logistics including transit times, cost-efficiency, and sustainability. Through simulations and scenarios analysis, the study scrutinizes the operational resilience and adaptability of supply chains in the face of dynamic market conditions and disruptive technologies like Autonomous Vehicles. Furthermore, the thesis undertakes carbon footprint analysis, quantifying the environmental benefits and challenges associated with the adoption of Autonomous Vehicles in supply chain operations. The insights from this research are anticipated to offer a strategic framework for industry stakeholders, guiding the adoption of Autonomous Vehicles to foster a more efficient, responsive, and sustainable supply chain ecosystem. The findings aim to serve as a cornerstone for future research and practical implementations in the realm of intelligent transportation and supply chain management.Keywords: autonomous vehicle, agri-food supply chain, ALX simulation, anyLogistix
Procedia PDF Downloads 741464 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks
Authors: Emad A. Mohammed
Abstract:
The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.Keywords: permeability, hydraulic flow units, artificial intelligence, correlation
Procedia PDF Downloads 1351463 Real-Time Inventory Management and Operational Efficiency in Manufacturing
Authors: Tom Wanyama
Abstract:
We have developed a weight-based parts inventory monitoring system utilizing the Industrial Internet of Things (IIoT) to enhance operational efficiencies in manufacturing. The system addresses various challenges, including eliminating downtimes caused by stock-outs, preventing human errors in parts delivery and product assembly, and minimizing motion waste by reducing unnecessary worker movements. The system incorporates custom QR codes for simplified inventory tracking and retrieval processes. The generated data serves a dual purpose by enabling real-time optimization of parts flow within manufacturing facilities and facilitating retroactive optimization of stock levels for informed decision-making in inventory management. The pilot implementation at SEPT Learning Factory successfully eradicated data entry errors, optimized parts delivery, and minimized workstation downtimes, resulting in a remarkable increase of over 10% in overall equipment efficiency across all workstations. Leveraging the IIoT features, the system seamlessly integrates information into the process control system, contributing to the enhancement of product quality. This approach underscores the importance of effective tracking of parts inventory in manufacturing to achieve transparency, improved inventory control, and overall profitability. In the broader context, our inventory monitoring system aligns with the evolving focus on optimizing supply chains and maintaining well-managed warehouses to ensure maximum efficiency in the manufacturing industry.Keywords: industrial Internet of things, industrial systems integration, inventory monitoring, inventory control in manufacturing
Procedia PDF Downloads 321462 Atom Probe Study of Early Stage of Precipitation on Binary Al-Li, Al-Cu Alloys and Ternary Al-Li-Cu Alloys
Authors: Muna Khushaim
Abstract:
Aluminum-based alloys play a key role in modern engineering, especially in the aerospace industry. Introduction of solute atoms such as Li and Cu is the main approach to improve the strength in age-hardenable Al alloys via the precipitation hardening phenomenon. Knowledge of the decomposition process of the microstructure during the precipitation reaction is particularly important for future technical developments. The objective of this study is to investigate the nano-scale chemical composition in the Al-Cu, Al-Li and Al-Li-Cu during the early stage of the precipitation sequence and to describe whether this compositional difference correlates with variations in the observed precipitation kinetics. Comparing the random binomial frequency distribution and the experimental frequency distribution of concentrations in atom probe tomography data was used to investigate the early stage of decomposition in the different binary and ternary alloys which were experienced different heat treatments. The results show that an Al-1.7 at.% Cu alloy requires a long ageing time of approximately 8 h at 160 °C to allow the diffusion of Cu atoms into Al matrix. For the Al-8.2 at.% Li alloy, a combination of both the natural ageing condition (48 h at room temperature) and a short artificial ageing condition (5 min at 160 °C) induces increasing on the number density of the Li clusters and hence increase number of precipitated δ' particles. Applying this combination of natural ageing and short artificial ageing conditions onto the ternary Al-4 at.% Li-1.7 at.% Cu alloy induces the formation of a Cu-rich phase. Increasing the Li content in the ternary alloy up to 8 at.% and increasing the ageing time to 30 min resulted in the precipitation processes ending with δ' particles. Thus, the results contribute to the understanding of Al-alloy design.Keywords: aluminum alloy, atom probe tomography, early stage, decomposition
Procedia PDF Downloads 3411461 Process Development of pVAX1/lacZ Plasmid DNA Purification Using Design of Experiment
Authors: Asavasereerat K., Teacharsripaitoon T., Tungyingyong P., Charupongrat S., Noppiboon S. Hochareon L., Kitsuban P.
Abstract:
Third generation of vaccines is based on gene therapy where DNA is introduced into patients. The antigenic or therapeutic proteins encoded from transgenes DNA triggers an immune-response to counteract various diseases. Moreover, DNA vaccine offers the customization of its ability on protection and treatment with high stability. The production of DNA vaccines become of interest. According to USFDA guidance for industry, the recommended limits for impurities from host cell are lower than 1%, and the active conformation homogeneity supercoiled DNA, is more than 80%. Thus, the purification strategy using two-steps chromatography has been established and verified for its robustness. Herein, pVax1/lacZ, a pre-approved USFDA DNA vaccine backbone, was used and transformed into E. coli strain DH5α. Three purification process parameters including sample-loading flow rate, the salt concentration in washing and eluting buffer, were studied and the experiment was designed using response surface method with central composite face-centered (CCF) as a model. The designed range of selected parameters was 10% variation from the optimized set point as a safety factor. The purity in the percentage of supercoiled conformation obtained from each chromatography step, AIEX and HIC, were analyzed by HPLC. The response data were used to establish regression model and statistically analyzed followed by Monte Carlo simulation using SAS JMP. The results on the purity of the product obtained from AIEX and HIC are between 89.4 to 92.5% and 88.3 to 100.0%, respectively. Monte Carlo simulation showed that the pVAX1/lacZ purification process is robust with confidence intervals of 0.90 in range of 90.18-91.00% and 95.88-100.00%, for AIEX and HIC respectively.Keywords: AIEX, DNA vaccine, HIC, puification, response surface method, robustness
Procedia PDF Downloads 2051460 Development of a Geomechanical Risk Assessment Model for Underground Openings
Authors: Ali Mortazavi
Abstract:
The main objective of this research project is to delve into a multitude of geomechanical risks associated with various mining methods employed within the underground mining industry. Controlling geotechnical design parameters and operational factors affecting the selection of suitable mining techniques for a given underground mining condition will be considered from a risk assessment point of view. Important geomechanical challenges will be investigated as appropriate and relevant to the commonly used underground mining methods. Given the complicated nature of rock mass in-situ and complicated boundary conditions and operational complexities associated with various underground mining methods, the selection of a safe and economic mining operation is of paramount significance. Rock failure at varying scales within the underground mining openings is always a threat to mining operations and causes human and capital losses worldwide. Geotechnical design is a major design component of all underground mines and basically dominates the safety of an underground mine. With regard to uncertainties that exist in rock characterization prior to mine development, there are always risks associated with inappropriate design as a function of mining conditions and the selected mining method. Uncertainty often results from the inherent variability of rock masse, which in turn is a function of both geological materials and rock mass in-situ conditions. The focus of this research is on developing a methodology which enables a geomechanical risk assessment of given underground mining conditions. The outcome of this research is a geotechnical risk analysis algorithm, which can be used as an aid in selecting the appropriate mining method as a function of mine design parameters (e.g., rock in-situ properties, design method, governing boundary conditions such as in-situ stress and groundwater, etc.).Keywords: geomechanical risk assessment, rock mechanics, underground mining, rock engineering
Procedia PDF Downloads 1431459 Mutual Fund Anchoring Bias with its Parent Firm Performance: Evidence from Mutual Fund Industry of Pakistan
Authors: Muhammad Tahir
Abstract:
Purpose The purpose of the study is to find anchoring bias behavior in mutual fund return with its parent firm performance in Pakistan. Research Methodology The paper used monthly returns of equity funds whose parent firm exist from 2011 to 2021, along with parent firm return. Proximity to 52-week highest return calculated by dividing fund return by parent firm 52-week highest return. Control variables are also taken and used pannel regression model to estimate our results. For robust results, we also used feasible generalize least square (FGLS) model. Findings The results showed that there exist anchoring biased in mutual fund return with its parent firm performance. The FGLS results reaffirms the same results as obtained from panner regression results. Proximity to 52-week highest Xc is significant in both models. Research Implication Since most of mutual funds has a parent firm, anchoring behavior biased found in mutual fund with its parent firm performance. Practical Implication Mutual fund investors in Pakistan invest in equity funds in which behavioral bias exist, although there might be better opportunity in market. Originality/Value Addition Our research is a pioneer study to investigate anchoring bias in mutual fund return with its parent firm performance. Research limitations Our sample is limited to only 23 equity funds, which has a parent firm and data was available from 2011 to 2021.Keywords: mutual fund, anchoring bias, 52-week high return, proximity to 52-week high, parent firm performance, pannel regression, FGLS
Procedia PDF Downloads 1161458 Carboxymethyl Cellulose Coating onto Polypropylene Film Using Cold Atmospheric Plasma Treatment as Food Packaging
Authors: Z. Honarvar, M. Farhoodi, M. R. Khani, S. Shojaee-Aliabadi
Abstract:
Recently, edible films and coating have attracted much attention in food industry due to their environmentally friendly nature and safety in direct contact with food. However edible films have relatively weak mechanical properties and high water vapor permeability. Therefore, the aim of the study was to develop bilayer carboxymethyl cellulose (CMC) coated polypropylene (PP) films to increase mechanical properties and water vapor resistance of each pure CMC or PP films. To modify the surface properties of PE for better attachment of CMC coating layer to PP the atmospheric cold plasma treatment was used. Then the PP surface changes were evaluated by contact angle, AFM, and ATR-FTIR. Furthermore, the physical, mechanical, optical and microstructure characteristics of plasma-treated and untreated films were analyzed. ATR-FTIR results showed that plasma treatment created oxygen-containing groups on PP surface leading to an increase in hydrophilic properties of PP surface. Moreover, a decrease in water contact angle (from 88.92° to 52.15°) and an increase of roughness were observed on PP film surface indicating good adhesion between hydrophilic CMC and hydrophobic PP. Furthermore, plasma pre-treatment improved the tensile strength of CMC coated-PP films from 58.19 to 61.82. Water vapor permeability of plasma treated bilayer film was lower in comparison with untreated film. Therefore, cold plasma treatment has potential to improve attachment of CMC coating to PP layer, leading to enhanced water barrier and mechanical properties of CMC coated polypropylene as food packaging in which also CMC is in contact with food.Keywords: carboxymethyl cellulose film, cold plasma, Polypropylene, surface properties
Procedia PDF Downloads 2811457 Strategic Management Education: A Driver of Architectural Career Development in a Changing Environment
Authors: Rigved Chandrashekhar Nimkhedkar, Rajat Agrawal, Vinay Sharma
Abstract:
Architects need help with a demand for an expanded skill set to effectively navigate a landscape of evolving opportunities and challenges in the dynamic realm of the architectural profession. This literature and survey-based study investigates the reasons behind architects’ choices of careers, as well as the effects of the evolving architectural scenario. The traditional role of architects in construction projects evolves as they explore diverse career motivations, face financial constraints due to an oversupply of professionals, and experience specialisation and upskilling trends. Architects inherently derive numerous value chains as more and more disciplines have been introduced into the design-construction-operation supply chain. This insight emphasizes the importance of integrating management and entrepreneurial education into architectural education rather than keeping them separate entities. The study reveals the complex nature of the entrepreneurially challenging architectural profession, including cash flow management, market competition, environmental sustainability, and innovation opportunities. Loyal to their professional identity, architects express dissatisfaction while envisioning a future in which they play a more significant role in shaping reputable brands and contributing to education. The study emphasizes the importance of dovetailing management and entrepreneurial education in architecture education in preparing graduates for the industry’s changing nature, emphasising the need for real-world skills. This research contributes insights into the architectural profession’s transformative trajectory, emphasising adaptability, upskilling, and educational enhancements as critical success factors.Keywords: architects, career path, education, management, specialisation
Procedia PDF Downloads 651456 Livability and Growth Performance of Noiler Chickens Fed with Different Biotic Additives
Authors: Idowu Kemi Ruth, Adeyemo Adedayo Akinade, Iyanda Adegboyega Ibukun, Idowu Olubukola Precious Akinade
Abstract:
Liveability and mortality rate is a germane aspect of product performance that cannot be overlooked in poultry production, while the disease is a major threat in the poultry industry which can cause a major loss for the farmer and a reduction in the total income generated from the stock. Therefore, efforts must be made to enhance the health status of chickens to reduce mortality. The study was conducted to investigate the effect of different biotic additives (prebiotic, probiotic and synbiotic ) on the performance of Noiler females at the growing phase (forty-nine days) till the point of the first egg across the biotic additive. A total of one hundred and twenty-eight female Noiler were used for the experiment. Experimental treatment consisted of prebiotic, probiotic, synbiotic and control at the inclusion rate of a gram into a kilogram of feed. Parameters measured are Feed intake, feed conversion ratio, the weight of the first egg, age of the first egg and livability. Data collected were subjected to a one-way analysis of variance. The result obtained revealed a better growth performance across the treatments than the control group with the least final weight at nineteen weeks of point of lay. Prebiotic treatment had the best age at first lay on day one hundred and thirty seven followed by other treatments on day one hundred and fifty four. However, the size of the eggs was not significantly influenced by the biotic additive. Hence, the experiment can be concluded that the inclusion of different biotic additives influenced the growth performance; likewise, the Prebiotic had a significant effect on the age of first laying in Noiler chicken, and livability was a hundred percent throughout the duration of the experiment.Keywords: prebiotic, probiotic, synbiotic, noiler
Procedia PDF Downloads 921455 Facing Global Competition through Participation in Global Innovation Networks: The Case of Mechatronics District in the Veneto Region
Authors: Monica Plechero
Abstract:
Many firms belonging to Italian industrial districts faced a crisis starting from 2000 and upsurging during 2008-2014. To remain competitive in the global market, these firms and their local systems need to renovate their traditional competitive advantages, strengthen their link with global flows of knowledge. This may be particularly relevant in sectors such as the mechatronics, that combine traditional knowledge domain with new knowledge domains (e.g. mechanics, electronics, and informatics). This sector is nowadays one of the key sectors within the so-called ‘smart specialization strategy’ that can lead part of the Italian traditional industry towards new economic developmental opportunities. This paper, by investigating the mechatronics district of the Veneto region, wants to shed new light on how firms of a local system can gain from the globalization of innovation and innovation networks. Methodologically, the paper relies on primary data collected through a survey targeting firms of the local system, as well as on a number of qualitative case studies. The relevant role of medium size companies in the district emerges as evident, as they have wider opportunities to be involved in different processes of globalization of innovation. Indeed, with respect to small companies, the size of medium firms allows them to exploit strategically international markets and globally distributed knowledge. Supporting medium firms’ global innovation strategies, and incentivizing their role as district gatekeepers, may strengthen the competitive capability of the local system and provide new opportunities to positively face global competition.Keywords: global innovation network, industrial district, internationalization, innovation, mechatronics, Veneto region
Procedia PDF Downloads 2301454 Pretreatment of Aquatic Weed Typha latifolia with Sodium Bisulphate for Enhanced Acid and Enzyme Hydrolysis for Production of Xylitol and Bioethanol
Authors: Jyosthna Khanna Goli, Shaik Naseeruddin, Hameeda Bee
Abstract:
Employing lignocellulosic biomass in fermentative production of xylitol and bioethanol is gaining interest as it is renewable, cheap, and abundantly available. Xylitol is a polyol, gaining its importance in the food and pharmacological industry due to its low calorific value and anti-cariogenic nature. Bioethanol from lignocellulosic biomass is widely accepted as an alternative fuel for transportation with reduced CO₂ emissions, thus reducing the greenhouse effect. Typha latifolia, an aquatic weed, was found to be promising lignocellulosic substrate as it posses a high amount of sugars and does not compete with arable lands and interfere with food and feed competition. In the present study, xylose from hemicellulosic fraction of typha is converted to xylitol by isolate Jfh5 (Candida. tropicalis) and cellulose part to ethanol using Saccharomyces cerevisiaeVS3. Initially, alkali pretreatment of typha using sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, sodium bisulphate and sodium dithionate for overnight (18h) at room temperature (28 ± 2°C), resulted in maximum delignification of 75% with 2% (v/v) sodium bisulphate. Later, pretreated biomass was subjected to acid hydrolysis with 1%, 1.5%, 2%, and 3% H₂SO₄ at 110 °C and 121°C for 30 and 60 min, respectively. 2% H₂SO₄ at 121°C for 60 min was found to release 13.5 g /l sugars, which on detoxification and fermentation produced 8.1g/l xylitol with yield and productivity of 0.65g/g and 0.112g/l/h respectively. Further enzymatic hydrolysis of the residual substrate obtained after acid hydrolysis released 11g/l sugar, which on fermentation with VS3 produced 4.9g/l ethanol with yield and productivity of 0.22g/g and 0.136g/l/h respectively.Keywords: delignification, xylitol, bioethanol, acid hydrolysis, enzyme hydrolysis
Procedia PDF Downloads 1481453 Assessing Storage of Stability and Mercury Reduction of Freeze-Dried Pseudomonas putida within Different Types of Lyoprotectant
Authors: A. A. M. Azoddein, Y. Nuratri, A. B. Bustary, F. A. M. Azli, S. C. Sayuti
Abstract:
Pseudomonas putida is a potential strain in biological treatment to remove mercury contained in the effluent of petrochemical industry due to its mercury reductase enzyme that able to reduce ionic mercury to elementary mercury. Freeze-dried P. putida allows easy, inexpensive shipping, handling and high stability of the product. This study was aimed to freeze dry P. putida cells with addition of lyoprotectant. Lyoprotectant was added into the cells suspension prior to freezing. Dried P. putida obtained was then mixed with synthetic mercury. Viability of recovery P. putida after freeze dry was significantly influenced by the type of lyoprotectant. Among the lyoprotectants, tween 80/ sucrose was found to be the best lyoprotectant. Sucrose able to recover more than 78% (6.2E+09 CFU/ml) of the original cells (7.90E+09CFU/ml) after freeze dry and able to retain 5.40E+05 viable cells after 4 weeks storage in 4oC without vacuum. Polyethylene glycol (PEG) pre-treated freeze dry cells and broth pre-treated freeze dry cells after freeze-dry recovered more than 64% (5.0 E+09CFU/ml) and >0.1% (5.60E+07CFU/ml). Freeze-dried P. putida cells in PEG and broth cannot survive after 4 weeks storage. Freeze dry also does not really change the pattern of growth P. putida but extension of lag time was found 1 hour after 3 weeks of storage. Additional time was required for freeze-dried P. putida cells to recover before introduce freeze-dried cells to more complicated condition such as mercury solution. The maximum mercury reduction of PEG pre-treated freeze-dried cells after freeze dry and after storage 3 weeks was 56.78% and 17.91%. The maximum of mercury reduction of tween 80/sucrose pre-treated freeze-dried cells after freeze dry and after storage 3 weeks were 26.35% and 25.03%. Freeze dried P. putida was found to have lower mercury reduction compare to the fresh P. putida that has been growth in agar. Result from this study may be beneficial and useful as initial reference before commercialize freeze-dried P. putida.Keywords: Pseudomonas putida, freeze-dry, PEG, tween80/Sucrose, mercury, cell viability
Procedia PDF Downloads 3531452 Implementation of Social Network Analysis to Analyze the Dependency between Construction Bid Packages
Authors: Kawalpreet Kaur, Panagiotis Mitropoulos
Abstract:
The division of the project scope into work packages is the most important step in the preconstruction phase of construction projects. The work division determines the scope and complexity of each bid package, resulting in dependencies between project participants performing these work packages. The coordination between project participants is necessary because of these dependencies. Excessive dependencies between the bid packages create coordination difficulties, leading to delays, added costs, and contractual friction among project participants. However, the literature on construction provides limited knowledge regarding work structuring approaches, issues, and challenges. Manufacturing industry literature provides a systematic approach to defining the project scope into work packages, and the implementation of social network analysis (SNA) in manufacturing is an effective approach to defining and analyzing the divided scope of work at the dependencies level. This paper presents a case study of implementing a similar approach using SNA in construction bid packages. The study uses SNA to analyze the scope of bid packages and determine the dependency between scope elements. The method successfully identifies the bid package with the maximum interaction with other trade contractors and the scope elements that are crucial for project performance. The analysis provided graphical and quantitative information on bid package dependencies. The study can be helpful in performing an analysis to determine the dependencies between bid packages and their scope elements and how these scope elements are critical for project performance. The study illustrates the potential use of SNA as a systematic approach to analyzing bid package dependencies in construction projects, which can guide the division of crucial scope elements to minimize negative impacts on project performance.Keywords: work structuring, bid packages, work breakdown, project participants
Procedia PDF Downloads 761451 Spatiotemporal Variation Characteristics of Soil pH around the Balikesir City, Turkey
Authors: Çağan Alevkayali, Şermin Tağil
Abstract:
Determination of soil pH surface distribution in urban areas is substantial for sustainable development. Changes on soil properties occur due to functions on performed in agriculture, industry and other urban functions. Soil pH is important to effect on soil productivity which based on sensitive and complex relation between plant and soil. Furthermore, the spatial variability of soil reaction is necessary to measure the effects of urbanization. The objective of this study was to explore the spatial variation of soil pH quality and the influence factors of human land use on soil Ph around Balikesir City using data for 2015 and Geographic Information Systems (GIS). For this, soil samples were taken from 40 different locations, and collected with the method of "Systematic Random" from the pits at 0-20 cm depths, because anthropologic sourced pollutants accumulate on upper layers of soil. The study area was divided into a grid system with 750 x 750 m. GPS was used to determine sampling locations, and Inverse Distance Weighting (IDW) interpolation technique was used to analyze the spatial distribution of pH in the study area and to predict the variable values of un-exampled places with the help from the values of exampled places. Natural soil acidity and alkalinity depend on interaction between climate, vegetation, and soil geological properties. However, analyzing soil pH is important to indirectly evaluate soil pollution caused by urbanization and industrialization. The result of this study showed that soil pH around the Balikesir City was neutral, in generally, with values were between 6.5 and 7.0. On the other hand, some slight changes were demonstrated around open dump areas and the small industrial sites. The results obtained from this study can be indicator of important soil problems and this data can be used by ecologists, planners and managers to protect soil supplies around the Balikesir City.Keywords: Balikesir, IDW, GIS, spatial variability, soil pH, urbanization
Procedia PDF Downloads 3211450 Study of Some Biometric Parameters of the Incubated Eggs and Unhatched Eggs Depending on the Age of Breeding in Domestic Japanese Quail Coturnix japonica (Aves, Phasianidae)
Authors: Amina Smaï, Habiba Idouhar-Saadi, Safia Zenia, Fairouz Haddadj, Salaheddine Doumandji
Abstract:
The poultry industry (chicken and egg consumption) has become important in Algeria, but that does not prevent other farms from beginning to position themselves on the ground like the turkey, guinea fowl, partridge and quail Japanese. The breeding importance of this last, reside, also in game meat, egg quality and their therapeutic role without forgetting its growth performance. To the same effect, a study was held at the center of Zeralda hunting on various parameters such as the weight and number of eggs laid and this in order to know better the potential of production and reproduction of domestic quail. Egg laying has started from the 8th week of reproductive age, their harvest and their counts are performed daily up to 32 weeks of age and more. We have given the biometrics of incubated eggs and unhatched eggs. The parameters studied were the weight, large and small diameter, density, volume, shell index and the shape index. The work revealed that the maximum weight in males is reached in the 11th week, against the female, he reached the 13th week of age. Indeed, there is a good correlation (R = 0.79) between the weight of females and egg production. The rate of unhatched eggs varies between 11 and 43%, these values are recorded respectively in breeding under the age of 25 and 43 weeks. Furthermore, the biometric parameters of hatched and unhatched eggs have differences that are marked, especially during the beginning and end of lay. Further results will be subsequently exploited. Indeed, rearing Japanese quail is easy in technical terms and does not require big investment but its practical application vigilance and daily presence of the breeder within the farm who oversees the hygiene and well-being of its poultry.Keywords: Japanese quail, biometrics, eggs, unhatching eggs, reproduction
Procedia PDF Downloads 1931449 Geophysical Approach in the Geological Characterization of a Dam Site: Case of the Chebabta-Dam, Meskiana, Oum El-Bouaghi
Authors: Benhammadi Hocine, Djamel Boubaya, Chaffai Hicham
Abstract:
Meskiana Area is characterized by a semi-arid climate where the water supply for irrigation and industry is not sufficient as the priority goes for domestic use. To meet the increasing population growth and development, the authorities have considered building a new water retaining structure on some major temporary water streams. For this purpose Chebabta site on Oued Meskiana was chosen as the future dam site. It is large enough to store the desired volume of water. This study comes to investigate the conditions of the site and the adequacy of the ground as a foundation for the projected dam. The conditions of the site include the geological structure and mainly the presence of discontinuities in the formation on which the dam will be built, the nature of the lithologies under the foundation and the future lake, and the presence of any hazard. This site characterization is usually carried out using different methods in order to highlight any underground buried problematic structure. In this context, the different geophysical technics remain the most used ones. Three geophysical methods were used in the case of the Chebabta dam site, namely, electric survey, seismic refraction, and tomography. The choice of the technics and the location of the scan line was made on the basis of the available geological data. In this sense, profiles have been established on both banks of Oued Meskiana. The obtained results have allowed a better characterization of the geological structure, defining the limit between the surface cover and the bedrock, which is, in other words, the limit between the weathered zone and the bedrock. Their respective thicknesses were also determined by seismic refraction and electrical resistivity sounding. However, the tomography imaging technic has succeeded in positioning a fault structure passing through the right bank of the wadi.Keywords: dam site, fault, geophysic, investigation, Meskiana
Procedia PDF Downloads 861448 Comparing the Embodied Carbon Impacts of a Passive House with the BC Energy Step Code Using Life Cycle Assessment
Authors: Lorena Polovina, Maddy Kennedy-Parrott, Mohammad Fakoor
Abstract:
The construction industry accounts for approximately 40% of total GHG emissions worldwide. In order to limit global warming to 1.5 degrees Celsius, ambitious reductions in the carbon intensity of our buildings are crucial. Passive House presents an opportunity to reduce operational carbon by as much as 90% compared to a traditional building through improving thermal insulation, limiting thermal bridging, increasing airtightness and heat recovery. Up until recently, Passive House design was mainly concerned with meeting the energy demands without considering embodied carbon. As buildings become more energy-efficient, embodied carbon becomes more significant. The main objective of this research is to calculate the embodied carbon impact of a Passive House and compare it with the BC Energy Step Code (ESC). British Columbia is committed to increasing the energy efficiency of buildings through the ESC, which is targeting net-zero energy-ready buildings by 2032. However, there is a knowledge gap in the embodied carbon impacts of more energy-efficient buildings, in particular Part 3 construction. In this case study, life cycle assessments (LCA) are performed on Part 3, a multi-unit residential building in Victoria, BC. The actual building is not constructed to the Passive House standard; however, the building envelope and mechanical systems are designed to comply with the Passive house criteria, as well as Steps 1 and 4 of the BC Energy Step Code (ESC) for comparison. OneClick LCA is used to perform the LCA of the case studies. Several strategies are also proposed to minimize the total carbon emissions of the building. The assumption is that there will not be significant differences in embodied carbon between a Passive House and a Step 4 building due to the building envelope.Keywords: embodied carbon, energy modeling, energy step code, life cycle assessment
Procedia PDF Downloads 1471447 Assessment of Functional Properties and Antioxidant Capacity Murta (Ugni molinae T.) Berry Subjected to Different Drying Methods
Authors: Liliana Zura-Brravo, Antonio Vega-Galvez, Roberto Lemus-Mondaca, Jessica Lopez
Abstract:
Murta (Ugni molinae T.) is an endemic fruit of Southern Chile, possesses qualities exceptional as its high antioxidants content, that make it increasingly more appreciated for marketing. Dehydration has the potential providing safe food products through the decreased activity water while maintaining their functional properties. The objective of this study was to evaluate the effect of different drying methods on the antioxidant capacity (AC), total flavonoid content (TFC), rehydration indexes and texture the dried murta berry. Five drying technologies were used: convective drying, vacuum drying, sun-air drying, infrared drying and freezing-drying. The antioxidant capacity was measured by the ORAC method, CFT was determined by spectrophotometry, rehydration capacity (CR) and water retention (WHC) by gravimetry, texture profile (TPA) by a texture analyzer TA-XT2 and microstructure by SEM. The results showed that the lyophilized murta had smaller losses AC and TFC with values of 2886.27 routine mg rutin/ 100 g dm and 23359.99 μmol ET/100 g dm, respectively. According to the rehydration indexes, these were affected by the drying methods, where the maximum value of WHC was 92.60 g retained water/100 g sample for the vacuum drying, and the lowest value of CR was 1.43 g water absorbed/g dm for the sun-air drying. Furthermore, the microstructure and TPA showed that lyophilized samples had characteristics similar to the fresh sample. Therefore, it is possible to mention that lyophilization achieved greater extent preserving the characteristics of the murta samples, showing that this method can be used in the food industry and encourage the consumption of dried fruit and thus give it greater added value.Keywords: antioxidant, drying method, flavonoid, murta berry, texture
Procedia PDF Downloads 3001446 Application of Electro-Optical Hybrid Cables in Horizontal Well Production Logging
Authors: Daofan Guo, Dong Yang
Abstract:
For decades, well logging with coiled tubing has relied solely on surface data such as pump pressure, wellhead pressure, depth counter, and weight indicator readings. While this data serves the oil industry well, modern smart logging utilizes real-time downhole information, which automatically increases operational efficiency and optimizes intervention qualities. For example, downhole pressure, temperature, and depth measurement data can be transmitted through the electro-optical hybrid cable in the coiled tubing to surface operators on a real-time base. This paper mainly introduces the unique structural features and various applications of the electro-optical hybrid cables which were deployed into downhole with the help of coiled tubing technology. Fiber optic elements in the cable enable optical communications and distributed measurements, such as distributed temperature and acoustic sensing. The electrical elements provide continuous surface power for downhole tools, eliminating the limitations of traditional batteries, such as temperature, operating time, and safety concerns. The electrical elements also enable cable telemetry operation of cable tools. Both power supply and signal transmission were integrated into an electro-optical hybrid cable, and the downhole information can be captured by downhole electrical sensors and distributed optical sensing technologies, then travels up through an optical fiber to the surface, which greatly improves the accuracy of measurement data transmission.Keywords: electro-optical hybrid cable, underground photoelectric composite cable, seismic cable, coiled tubing, real-time monitoring
Procedia PDF Downloads 1411445 Extreme Value Theory Applied in Reliability Analysis: Case Study of Diesel Generator Fans
Authors: Jelena Vucicevic
Abstract:
Reliability analysis represents a very important task in different areas of work. In any industry, this is crucial for maintenance, efficiency, safety and monetary costs. There are ways to calculate reliability, unreliability, failure density and failure rate. In this paper, the results for the reliability of diesel generator fans were calculated through Extreme Value Theory. The Extreme Value Theory is not widely used in the engineering field. Its usage is well known in other areas such as hydrology, meteorology, finance. The significance of this theory is in the fact that unlike the other statistical methods it is focused on rare and extreme values, and not on average. It should be noted that this theory is not designed exclusively for extreme events, but for extreme values in any event. Therefore, this is a great opportunity to apply the theory and test if it could be applied in this situation. The significance of the work is the calculation of time to failure or reliability in a new way, using statistic. Another advantage of this calculation is that there is no need for technical details and it can be implemented in any part for which we need to know the time to fail in order to have appropriate maintenance, but also to maximize usage and minimize costs. In this case, calculations have been made on diesel generator fans but the same principle can be applied to any other part. The data for this paper came from a field engineering study of the time to failure of diesel generator fans. The ultimate goal was to decide whether or not to replace the working fans with a higher quality fan to prevent future failures. The results achieved in this method will show the approximation of time for which the fans will work as they should, and the percentage of probability of fans working more than certain estimated time. Extreme Value Theory can be applied not only for rare and extreme events, but for any event that has values which we can consider as extreme.Keywords: extreme value theory, lifetime, reliability analysis, statistic, time to failure
Procedia PDF Downloads 3261444 Chemical Study of Volatile Organic Compounds (VOCS) from Xylopia aromatica (LAM.) Mart (Annonaceae)
Authors: Vanessa G. P. Severino, JOÃO Gabriel M. Junqueira, Michelle N. G. do Nascimento, Francisco W. B. Aquino, João B. Fernandes, Ana P. Terezan
Abstract:
The scientific interest in analyzing VOCs represents a significant modern research field as a result of importance in most branches of the present life and industry. Therefore it is extremely important to investigate, identify and isolate volatile substances, since they can be used in different areas, such as food, medicine, cosmetics, perfumery, aromatherapy, pesticides, repellents and other household products through methods for extracting volatile constituents, such as solid phase microextraction (SPME), hydrodistillation (HD), solvent extraction (SE), Soxhlet extraction, supercritical fluid extraction (SFE), stream distillation (SD) and vacuum distillation (VD). The Chemometrics is an area of chemistry that uses statistical and mathematical tools for the planning and optimization of the experimental conditions, and to extract relevant chemical information multivariate chemical data. In this context, the focus of this work was the study of the chemical VOCs by SPME of the specie X. aromatica, in search of constituents that can be used in the industrial sector as well as in food, cosmetics and perfumery, since these areas industrial has a considerable role. In addition, by chemometric analysis, we sought to maximize the answers of this research, in order to search for the largest number of compounds. The investigation of flowers from X. aromatica in vitro and in alive mode proved consistent, but certain factors supposed influence the composition of metabolites, and the chemometric analysis strengthened the analysis. Thus, the study of the chemical composition of X. aromatica contributed to the VOCs knowledge of the species and a possible application.Keywords: chemometrics, flowers, HS-SPME, Xylopia aromatica
Procedia PDF Downloads 3601443 The Effect of Hydroxyl Ethyl Cellulose (HEC) and Hydrophobically-Modified Alkali Soluble Emulsions (HASE) on the Properties and Quality of Water Based Paints
Authors: Haleden Chiririwa, Sandile S. Gwebu
Abstract:
The coatings industry is a million dollar business, and it is easy and inexpensive to set-up but it is growing very slowly in developing countries, and this study developed a paint formulation which gives better quality and good application properties. The effect of rheology modifiers, i.e. non-ionic polymers hydrophobically-modified ethoxylated urethanes (HEUR), anionic polymers hydrophobically-modified alkali soluble emulsions (HASE) and hydroxyl ethyl cellulose (HEC) on the quality and properties of water-based paints have been investigated. HEC provides the in-can viscosity and increases open working time while HASE improves application properties like spatter resistance and brush loading and HEUR provides excellent scrub resistance. Four paint recipes were prepared using four different thickeners HEC, HASE (carbopol) and Cellulose nitrate. The fourth formulation was thickened with a combination of HASE and HEC, this aimed at improving quality and at the same time reducing cost. The four samples were tested for quality tests such viscosity, sag resistance, volatile matter, tinter effect, drying times, hiding power, scrub resistance and stability on storage. Environmental factors were incorporated in the attempt to formulate an economic and green product. Hydroxyl ethyl cellulose and cellulose nitrate gave high quality and good properties of the paint. HEC and Cellulose nitrate showed stability on storage whereas carbopol thickener was very unstable.Keywords: properties, thickeners, rheology modifiers, water based paints
Procedia PDF Downloads 2671442 A Study of Preliminary Findings of Behavioral Patterns under Captive Conditions in Chinkara (Gazella bennettii) with Prospects for Future Conservation
Authors: Muhammad Idnan, Arshad Javid, Muhammad Nadeem
Abstract:
The present study was conducted from April 2013 to March 2014 to observe the behavioral parameters of Chinkara (Gazella bennettii) under captive conditions by comparing the captive-born and wild-caught animals for conservation strategies. Understanding the behavioral conformations plays a significant role in captive management. Due to human population explosion and mechanized hunting, the captive breeding seems to be the best way for sports hunting, bush meat, for leather industry and horns for traditional medicinal usage. Primarily, captive management has been used on trial and error basis due to deficiency of ethology of this least concerned species. Behavior of [(20 wild-caught (WC) and 10 captive-bred (CB)] adult Chinkara was observed at captive breeding facilities for ungulates at Ravi Campus, University of Veterinary and Animal Sciences at Kasur district which is situated on southeast side of Lahore. The average annual rainfall is about 650 mm, with frequent raining during monsoon. A focal sample was used to observe the various behavioral patterns for CB and WC chinkara. A similarity was observed in behavioral parameters in WC and CB animals, however, when the differences were considered, WC male deer showed a significantly higher degree of agonistic interaction as compared to the CB male chinkara. These findings suggest that there is no immediate impact of captivity on behavior of chinkara nevertheless 10 generations of captivity. It is suggested that the Chinkara is not suitable for domestication and for successful deer farming, a further study is recommended for ethology of chinkara.Keywords: Chinkara (Gazella bennettii), domestication, deer farming, ex-situ conservation
Procedia PDF Downloads 1621441 Design and Integration of a Renewable Energy Based Polygeneration System with Desalination for an Industrial Plant
Authors: Lucero Luciano, Cesar Celis, Jose Ramos
Abstract:
Polygeneration improves energy efficiency and reduce both energy consumption and pollutant emissions compared to conventional generation technologies. A polygeneration system is a variation of a cogeneration one, in which more than two outputs, i.e., heat, power, cooling, water, energy or fuels, are accounted for. In particular, polygeneration systems integrating solar energy and water desalination represent promising technologies for energy production and water supply. They are therefore interesting options for coastal regions with a high solar potential, such as those located in southern Peru and northern Chile. Notice that most of the Peruvian and Chilean mining industry operations intensive in electricity and water consumption are located in these particular regions. Accordingly, this work focus on the design and integration of a polygeneration system producing industrial heating, cooling, electrical power and water for an industrial plant. The design procedure followed in this work involves integer linear programming modeling (MILP), operational planning and dynamic operating conditions. The technical and economic feasibility of integrating renewable energy technologies (photovoltaic and solar thermal, PV+CPS), thermal energy store, power and thermal exchange, absorption chillers, cogeneration heat engines and desalination technologies is particularly assessed. The polygeneration system integration carried out seek to minimize the system total annual cost subject to CO2 emissions restrictions. Particular economic aspects accounted for include investment, maintenance and operating costs.Keywords: desalination, design and integration, polygeneration systems, renewable energy
Procedia PDF Downloads 1231440 Investigation into the Effectiveness of Bacillus Mucilaginosus in Liberation of Platinum Group Metals Locked in Silicates
Authors: Nokubonga G. Zulu, Bongephiwe M. Thethwayo, Mapilane S. Madiba, Peter A. Olubambi
Abstract:
In South Africa, PGMs’ metallurgy industry is now leaned on the Upper Group 2 (UG2) reef for the beneficiation of 4PGEs (Platinum, Palladium, Rhodium, and Ruthenium). The current effective beneficiation method is direct froth flotation which uses the hydrophobicity of liberated valuables minerals to carefully float them while hydrophilic gangue minerals report to the residue. PGMs are known to be associated with base metal sulphides which are hydrophobic; however, approximately 25% of PGMs from UG2 are associated with hydrophilic silicates, which results in high PGMs grade in the flotation residue. Further, the smallest size in which UG2 PGMs occur is approximately 9 microns which demands high grinding for liberation, imposing energy and cost implications. The use of Bacillus mucilaginosus to liberate PGMs using Bio-leaching of PGMs bearing Silicates is a promising cost-effective, energy-saving, and green solution to liberate PGMs locked in silicates. This is due to the ability of Bacillus mucilaginosus to generate extracellular polysaccharides (EPS) that are responsible for the leaching of silicate minerals. The bioleaching is done at a laboratory beaker using a cultivated Bacillus mucilaginosus as a lixiviant. The bioleaching residue is expected to have a reduced particle size due to silicate consumption, which reduces the need and cost associated with a secondary milling circuit. Moreover, the grade of the bioleaching product is increased since the silicates (gangue minerals) are consumed by Bacillus mucilaginosus; this serves as a pre-concentration step. This paper discusses an alternative liberation and pre-concentrating technique of PGMs that are associated with silicates using Bacillus mucilaginosus leaching to dissolve silicates.Keywords: Bacillus mucilaginosus, bio-leaching of PGMs bearing silicates, liberation of PGMs, pre-concentration of PGMs
Procedia PDF Downloads 1311439 Efficiency of PCR-RFLP for the Identification of Adulteries in Meat Formulation
Authors: Hela Gargouri, Nizar Moalla, Hassen Hadj Kacem
Abstract:
Meat adulteration affecting the safety and quality of food is becoming one of the main concerns of public interest across the world. The drastic consequences on the meat industry highlighted the urgent necessity to control the products' quality and to point out the complexity of both supply and processing circuits. Due to the expansion of this problem, the authentic testing of foods, particularly meat and its products, is deemed crucial to avoid unfair market competition and to protect consumers from fraudulent practices of meat adulteration. The adoption of authentication methods by the food quality-control laboratories is becoming a priority issue. However, in some developing countries, the number of food tests is still insignificant, although a variety of processed and traditional meat products are widely consumed. Little attention has been paid to provide an easy, fast, reproducible, and low-cost molecular test, which could be conducted in a basic laboratory. In the current study, the 359 bp fragment of the cytochrome-b gene was mapped by PCR-RFLP using firstly fresh biological supports (DNA and meat) and then turkey salami as an example of commercial processed meat. This technique has been established through several optimizations, namely: the selection of restriction enzymes. The digestion with BsmAI, SspI, and TaaI succeed to identify the seven included animal species when meat is formed by individual species and when the meat is a mixture of different origin. In this study, the PCR-RFLP technique using universal primer succeed to meet our needs by providing an indirect sequencing method identifying by restriction enzymes the specificities characterizing different species on the same amplicon reducing the number of potential tests.Keywords: adulteration, animal species, authentication, meat, mtDNA, PCR-RFLP
Procedia PDF Downloads 1111438 Immune Response and Histological Alteration in the Crab Carcinus aestuarii, Due to Silver Nanoparticles
Authors: Ines Kovacic, Dijana Pavicic-Hamer, Petra Buric, Maja Levak Zorinc, Daniel M. Lyons
Abstract:
Silver nanoparticles (AgNPs), owing to their unique physical and chemical properties, have become one of the most widely used nanoparticles in consumer products. Despite the increased use of AgNPs in science and industry over the past twenty years, only relatively recently has concern been raised over their entering brackish and marine environments. However, data on their potential impact on marine organisms, especially invertebrates are very limited. This study aimed to examine the effects of 60 nm AgNPs (10, 100, 500 and 1000 µg/l) and silver ions (100, 1000 µg/l) on the Mediterranean green crab Carcinus aestuarii Nardo, 1847. The crab mortality was assessed during seven days of exposure. After the exposure, total haemocytes (THC) and differential haemocytes number (DHC) were counted (immune response), in addition to histological examination of gills stained with haematoxylin and eosin. The effect of AgNPs and silver ions resulted in a dose dependent mortality and destruction of gills epithelium with haemocytes infiltration in the gills lacuna. Total haemocyte count was greater with increasing concentration of AgNPs, at concentrations from 10 to 500 µg/l. Hyalinocytes were the most common immunological cells noted in the crab hemolymph, while granulocytes and semigranulocytes were suppressed with increasing concentration of AgNPs (500 and 1000 µg/l). Thus, as crabs are filter feeders, they are susceptible to uptake of AgNPs by direct accumulation in gills mucus or indirectly via circulation of haemocytes in their open vascular system. Results of this study on crabs add to knowledge of the effects of AgNPs in the marine environment.Keywords: crab, immune response, histological alteration, silver nanoparticles
Procedia PDF Downloads 1531437 Implementation of an Image Processing System Using Artificial Intelligence for the Diagnosis of Malaria Disease
Authors: Mohammed Bnebaghdad, Feriel Betouche, Malika Semmani
Abstract:
Image processing become more sophisticated over time due to technological advances, especially artificial intelligence (AI) technology. Currently, AI image processing is used in many areas, including surveillance, industry, science, and medicine. AI in medical image processing can help doctors diagnose diseases faster, with minimal mistakes, and with less effort. Among these diseases is malaria, which remains a major public health challenge in many parts of the world. It affects millions of people every year, particularly in tropical and subtropical regions. Early detection of malaria is essential to prevent serious complications and reduce the burden of the disease. In this paper, we propose and implement a scheme based on AI image processing to enhance malaria disease diagnosis through automated analysis of blood smear images. The scheme is based on the convolutional neural network (CNN) method. So, we have developed a model that classifies infected and uninfected single red cells using images available on Kaggle, as well as real blood smear images obtained from the Central Laboratory of Medical Biology EHS Laadi Flici (formerly El Kettar) in Algeria. The real images were segmented into individual cells using the watershed algorithm in order to match the images from the Kaagle dataset. The model was trained and tested, achieving an accuracy of 99% and 97% accuracy for new real images. This validates that the model performs well with new real images, although with slightly lower accuracy. Additionally, the model has been embedded in a Raspberry Pi4, and a graphical user interface (GUI) was developed to visualize the malaria diagnostic results and facilitate user interaction.Keywords: medical image processing, malaria parasite, classification, CNN, artificial intelligence
Procedia PDF Downloads 18