Search results for: plant microbial fuel cell
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8712

Search results for: plant microbial fuel cell

4692 Utilization of Jackfruit Seed Flour (Artocarpus heterophyllus L.) as a Food Additive

Authors: C. S. D. S. Maduwage, P. W. Jeewanthi, W. A. J. P. Wijesinghe

Abstract:

This study investigated the use of Jackfruit Seed Flour (JSF) as a thickening agent in tomato sauce production. Lye peeled mature jackfruit seeds were used to obtain JSF. Flour was packed in laminated bags and stored for further studies. Three batches of tomato sauce samples were prepared according to the Sri Lankan Standards for tomato sauce by adding JSF, corn flour and without any thickening agent. Samples were stored at room temperature for 8 weeks in glass bottles. The physicochemical properties such as pH, total soluble solids, titratable acidity, and water activity were measured during the storage period. Microbial analysis and sensory evaluation were done to determine the quality of tomato sauce. JSF showed the role of a thickening agent in tomato sauce with lowest serum separation and highest viscosity during the storage period. This study concludes that JSF can be successfully used as a thickening agent in food industry.

Keywords: Jackfruit seed flour, food additive, thickening agent, tomato sauce

Procedia PDF Downloads 277
4691 Genotypic Response Differences among Faba Bean Accessions under Regular Deficit Irrigation (RDI)

Authors: M. Afzal, Salem Safer Alghamdi, Awais Ahmad

Abstract:

Limited amount of irrigation water is an alarming threat to arid and semiarid agriculture. However, genotypic response differences to water deficit conditions within species have been reported frequently. Present study was conducted in order to measure the genotypic differences among faba bean accessions under Regular Deficit Irrigation (RDI). Five seeds from each accession were sown in 135 silt filled pots (30 x 24 cm). Experiment was planned under split plot arrangement and replicated thrice. Treatments consisted of three RDI levels (100% (control), 60% and 40% of the field capacity) and fifteen faba bean accessions (two local accessions as reference while thirteen from different sources around the world). Irrigation treatment was started from the very first day of sowing. Plant height, shoot dry weight, stomatal conductance and total chlorophyll contents (SPAD reading) were measured one month after germination. Irrigation, faba bean accessions and the all possible interactions has stood significantly high for all studied parameters. Regular deficient irrigation has hampered the plant growth and associated parameters in decreasing order (100% < 60% < 40%). Accessions have responded differently under regular deficient irrigation and some of them are even better than local accession. A highly significant correlation among all parameters has also been observed. It was concluded from results that above parameters could be used as markers to identify the genotypic differences for water deficit stress response. This outcome encouraged the use of superior faba bean genotypes in breeding programs for improved varieties to enhance water use efficiency under stress conditions.

Keywords: accessions, stomatal conductance, total chlorophyll contents, RDI, regular deficient irrigation

Procedia PDF Downloads 277
4690 Leaf Image Processing: Review

Authors: T. Vijayashree, A. Gopal

Abstract:

The aim of the work is to classify and authenticate medicinal plant materials and herbs widely used for Indian herbal medicinal preparation. The quality and authenticity of these raw materials are to be ensured for the preparation of herbal medicines. These raw materials are to be carefully screened, analyzed and documented due to mistaken of look-alike materials which do not have medicinal characteristics.

Keywords: authenticity, standardization, principal component analysis, imaging processing, signal processing

Procedia PDF Downloads 229
4689 Investigation of the GFR2400 Reactivity Control System

Authors: Ján Haščík, Štefan Čerba, Jakub Lüley, Branislav Vrban

Abstract:

The presented paper is related to the design methods and neutronic characterization of the reactivity control system in the large power unit of Generation IV Gas cooled Fast Reactor – GFR2400. The reactor core is based on carbide pin fuel type with the application of refractory metallic liners used to enhance the fission product retention of the SiC cladding. The heterogeneous design optimization of control rod is presented and the results of rods worth and their interferences in a core are evaluated. In addition, the idea of reflector removal as an additive reactivity management option is investigated and briefly described.

Keywords: control rods design, GFR2400, hot spot, movable reflector, reactivity

Procedia PDF Downloads 430
4688 Characterization of Herberine Hydrochloride Nanoparticles

Authors: Bao-Fang Wen, Meng-Na Dai, Gao-Pei Zhu, Chen-Xi Zhang, Jing Sun, Xun-Bao Yin, Yu-Han Zhao, Hong-Wei Sun, Wei-Fen Zhang

Abstract:

A drug-loaded nanoparticles containing berberine hydrochloride (BH/FA-CTS-NPs) was prepared. The physicochemical characterizations of BH/FA-CTS-NPs and the inhibitory effect on the HeLa cells were investigated. Folic acid-conjugated chitosan (FA-CTS) was prepared by amino reaction of folic acid active ester and chitosan molecules; BH/FA-CTS-NPs were prepared using ionic cross-linking technique with BH as a model drug. The morphology and particle size were determined by Transmission Electron Microscope (TEM). The average diameters and polydispersity index (PDI) were evaluated by Dynamic Light Scattering (DLS). The interaction between various components and the nanocomplex were characterized by Fourier Transform Infrared Spectroscopy (FT-IR). The entrapment efficiency (EE), drug-loading (DL) and in vitro release were studied by UV spectrophotometer. The effect of cell anti-migratory and anti-invasive actions of BH/FA-CTS-NPs were investigated using MTT assays, wound healing assays, Annexin-V-FITC single staining assays, and flow cytometry, respectively. HeLa nude mice subcutaneously transplanted tumor model was established and treated with different drugs to observe the effect of BH/FA-CTS-NPs in vivo on HeLa bearing tumor. The BH/FA-CTS-NPs prepared in this experiment have a regular shape, uniform particle size, and no aggregation phenomenon. The results of DLS showed that mean particle size, PDI and Zeta potential of BH/FA-CTS NPs were (249.2 ± 3.6) nm, 0.129 ± 0.09, 33.6 ± 2.09, respectively, and the average diameter and PDI were stable in 90 days. The results of FT-IR demonstrated that the characteristic peaks of FA-CTS and BH/FA-CTS-NPs confirmed that FA-CTS cross-linked successfully and BH was encapsulated in NPs. The EE and DL amount were (79.3 ± 3.12) % and (7.24 ± 1.41) %, respectively. The results of in vitro release study indicated that the cumulative release of BH/FA-CTS NPs was (89.48±2.81) % in phosphate-buffered saline (PBS, pH 7.4) within 48h; these results by MTT assays and wund healing assays indicated that BH/FA-CTS NPs not only inhibited the proliferation of HeLa cells in a concentration and time-dependent manner but can induce apoptosis as well. The subcutaneous xenograft tumor formation rate of human cervical cancer cell line HeLa in nude mice was 98% after inoculation for 2 weeks. Compared with BH group and BH/CTS-NPs group, the xenograft tumor growth of BH/FA-CTS-NPs group was obviously slower; the result indicated that BH/FA-CTS-NPs could significantly inhibit the growth of HeLa xenograft tumor. BH/FA-CTS NPs with the sustained release effect could be prepared successfully by the ionic crosslinking method. Considering these properties, block proliferation and impairing the migration of the HeLa cell line, BH/FA-CTS NPs could be an important compound for consideration in the treatment of cervical cancer.

Keywords: folic-acid, chitosan, berberine hydrochloride, nanoparticles, cervical cancer

Procedia PDF Downloads 109
4687 Probabilistic Fracture Evaluation of Reactor Pressure Vessel Subjected to Pressurized Thermal Shock

Authors: Jianguo Chen, Fenggang Zang, Yu Yang, Liangang Zheng

Abstract:

Reactor Pressure Vessel (RPV) is an important security barrier in nuclear power plant. Crack like defects may be produced on RPV during the whole operation lifetime due to the harsh operation condition and irradiation embrittlement. During the severe loss of coolant accident, thermal shock happened as the injection of emergency cooling water into RPV, which results in re-pressurization of the vessel and very high tension stress on the vessel wall, this event called Pressurized Thermal Shock (PTS). Crack on the vessel wall may propagate even penetrate the vessel, so the safety of the RPV would undergo great challenge. Many assumptions in structure integrity evaluation make the result of deterministic fracture mechanics very conservative, which affect the operation lifetime of the plant. Actually, many parameters in the evaluation process, such as fracture toughness and nil-ductility transition temperature, have statistical distribution characteristics. So it is necessary to assess the structural integrity of RPV subjected to PTS event by means of Probabilistic Fracture Mechanics (PFM). Structure integrity evaluation methods of RPV subjected to PTS event are summarized firstly, then evaluation method based on probabilistic fracture mechanics are presented by considering the probabilistic characteristics of material and structure parameters. A comprehensive analysis example is carried out at last. The results show that the probability of crack penetrates through wall increases gradually with the growth of fast neutron irradiation flux. The results give advice for reactor life extension.

Keywords: fracture toughness, integrity evaluation, pressurized thermal shock, probabilistic fracture mechanics, reactor pressure vessel

Procedia PDF Downloads 239
4686 HLA-DPB1 Matching on the Outcome of Unrelated Donor Hematopoietic Stem Cell Transplantation

Authors: Shi-xia Xu, Zai-wen Zhang, Ru-xue Chen, Shan Zhou, Xiang-feng Tang

Abstract:

Objective: The clinical influence of HLA-DPB1 mismatches on clinical outcome of HSCT is less clear. This is the first meta-analysis to study the HLA-DPB1 matching statues on clinical outcomes after unrelated donor HSCT. Methods: We searched the CIBMTR, Cochrane Central Register of Controlled Trials (CENTRAL) and related databases (1995.01–2017.06) for all relevant articles. Comparative studies were used to investigate the HLA-DPB1 loci mismatches on clinical outcomes after unrelated donor HSCT, such as the disease-free survival (DFS), overall survival, GVHD, relapse, and transplant-related mortality (TRM). We performed meta-analysis using Review Manager 5.2 software and funnel plot to assess the bias. Results: At first, 1246 articles were retrieved, and 18 studies totaling 26368 patients analyzed. Pooled comparisons of studies found that the HLA-DPB1 mismatched group had a lower rate of DFS than the DPB1-matched group, and lower OS in non-T cell depleted transplantation. The DPB1 mismatched group has a higher incidence of aGVHD and more severe ( ≥ III degree) aGvHD, lower rate of relapse and higher TRM. Moreover, compared with 1-antigen mismatch, 2-antigen mismatched led to a higher risk of TRM and lower relapse rate. Conclusions: This meta-analysis indicated HLA-DPB1 has important influence on survival and transplant-related complications during unrelated donor HSCT and HLA-DPB1 donor selection strategies have been proposed based on a personalized algorithm.

Keywords: human leukocyte antigen, DPB1, transplant, meta-analysis, outcome

Procedia PDF Downloads 282
4685 Isolation and Identification of Low-Temperature Tolerant-Yeast Strains from Apple with Biocontrol Activity

Authors: Lachin Mikjtarnejad, Mohsen Farzaneh

Abstract:

Various microbes, such as fungi and bacteria species, are naturally found in the fruit microbiota, and some of them act as a pathogen and result in fruit rot. Among non-pathogenic microbes, yeasts (single-celled microorganisms belonging to the fungi kingdom) can colonize fruit tissues and interact with them without causing any damage to them. Although yeasts are part of the plant microbiota, there is little information about their interactions with plants in comparison with bacteria and filamentous fungi. According to several existing studies, some yeasts can colonize different plant species and have the biological control ability to suppress some of the plant pathogens. It means those specific yeast-colonized plants are more resistant to some plant pathogens. The major objective of the present investigation is to isolate yeast strains from apple fruit and screen their ability to control Penicillium expansum, the causal agent of blue mold of fruits. In the present study, psychrotrophic and epiphytic yeasts were isolated from apple fruits that were stored at low temperatures (0–1°C). Totally, 42 yeast isolates were obtained and identified by molecular analysis based on genomic sequences of the D1/D2 and ITS1/ITS4 regions of their rDNA. All isolated yeasts were primarily screened by' in vitro dual culture assay against P. expansum by measuring the fungus' relative growth inhibition after 10 days of incubation. The results showed that the mycelial growth of P. expansum was reduced between 41–53% when challenged by promising yeast strains. The isolates with the strongest antagonistic activity belonged to Metschnikowia pulcherrima A13, Rhodotorula mucilaginosa A41, Leucosporidium Scottii A26, Aureobasidium pullulans A19, Pichia guilliermondii A32, Cryptococcus flavescents A25, and Pichia kluyveri A40. The results of seven superior isolates to inhibit blue mold decay on fruit showed that isolates A. pullulans A19, L. scottii A26, and Pi. guilliermondii A32 could significantly reduce the fruit rot and decay with 26 mm, 22 mm and 20 mm zone diameter, respectively, compared to the control sample with 43 mm. Our results show Pi. guilliermondii strain A13 was the most effective yeast isolates in inhibiting P. expansum on apple fruits. In addition, various biological control mechanisms of promising biological isolates against blue mold have been evaluated to date, including competition for nutrients and space, production of volatile metabolites, reduction of spore germination, production of siderophores and production of extracellular lytic enzymes such as chitinase and β-1,3-glucanase. However, the competition for nutrients and the ability to inhibit P. expansum spore growth have been introduced as the prevailing mechanisms among them. Accordingly, in our study, isolates A13, A41, A40, A25, A32, A19 and A26 inhibited the germination of P. expansum, whereas isolates A13 and A19 were the strongest inhibitors of P. expansum mycelia growth, causing 89.13% and 81.75 % reduction in the mycelial surface, respectively. All the promising isolates produced chitinase and β-1,3-glucanase after 3, 5 and 7 days of cultivation. Finally, based on our findings, we are proposing that, Pi. guilliermondiias as an effective biocontrol agent and alternative to chemical fungicides to control the blue mold of apple fruit.

Keywords: yeast, yeast enzymes, biocontrol, post harvest diseases

Procedia PDF Downloads 110
4684 Development of Microwave-Assisted Alkalic Salt Pretreatment Regimes for Enhanced Sugar Recovery from Corn Cobs

Authors: Yeshona Sewsynker

Abstract:

This study presents three microwave-assisted alkalic salt pretreatments to enhance delignification and enzymatic saccharification of corn cobs. The effects of process parameters of salt concentration (0-15%), microwave power intensity (0-800 W) and pretreatment time (2-8 min) on reducing sugar yield from corn cobs were investigated. Pretreatment models were developed with the high coefficient of determination values (R2>0.85). Optimization gave a maximum reducing sugar yield of 0.76 g/g. Scanning electron microscopy (SEM) and Fourier Transform Infrared analysis (FTIR) showed major changes in the lignocellulosic structure after pretreatment. A 7-fold increase in the sugar yield was observed compared to previous reports on the same substrate. The developed pretreatment strategy was effective for enhancing enzymatic saccharification from lignocellulosic wastes for microbial biofuel production processes and value-added products.

Keywords: pretreatment, lignocellulosic biomass, enzymatic hydrolysis, delignification

Procedia PDF Downloads 486
4683 Treatment of Simulated Textile Wastewater Containing Reactive Azo Dyes Using Laboratory Scale Trickling Filter

Authors: Ayesha Irum, Sadia Mumtaz, Abdul Rehman, Iffat Naz, Safia Ahmed

Abstract:

The present study was conducted to evaluate the potential applicability of biological trickling filter system for the treatment of simulated textile wastewater containing reactive azo dyes with bacterial consortium under non-sterile conditions. The percentage decolorization for the treatment of wastewater containing structurally different dyes was found to be higher than 95% in all trials. The stable bacterial count of the biofilm on stone media of the trickling filter during the treatment confirmed the presence, proliferation, dominance and involvement of the added microbial consortium in the treatment of textile wastewater. Results of physicochemical parameters revealed the reduction in chemical oxygen demand (58.5-75.1%), sulphates (18.9-36.5%), and phosphates (63.6-73.0%). UV-Visible and FTIR spectroscopy confirmed decolorization of dye containing wastewater was the ultimate consequence of biodegradation. Toxicological studies revealed the nontoxic nature of degradative metabolites.

Keywords: biodegradation, textile dyes, waste water, trickling filters

Procedia PDF Downloads 420
4682 iPSC-derived MSC Mediated Immunosuppression during Mouse Airway Transplantation

Authors: Mohammad Afzal Khan, Fatimah Alanazi, Hala Abdalrahman Ahmed, Talal Shamma, Kilian Kelly, Mohammed A. Hammad, Abdullah O. Alawad, Abdullah Mohammed Assiri, Dieter Clemens Broering

Abstract:

Lung transplantation is a life-saving surgical replacement of diseased lungs in patients with end-stage respiratory malfunctions. Despite the remarkable short-term recovery, long-term lung survival continues to face several significant challenges, including chronic rejection and severe toxic side-effects due to global immunosuppression. Stem cell-based immunotherapy has been recognized as a crucial immunoregulatory regimen in various preclinical and clinical studies. Despite initial therapeutic outcomes, conventional stem cells face key limitations. The Cymerus™ manufacturing facilitates the production of a virtually limitless supply of consistent human induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells, which could play a key role in selective immunosuppression and graft repair during rejection. Here, we demonstrated the impact of iPSC-derived human MSCs on the development of immune-tolerance and long-term graft survival in mouse orthotopic airway allografts. BALB/c→C57BL/6 allografts were reconstituted with iPSC-derived MSCs (2 million/transplant/ at d0), and allografts were examined for regulatory T cells (Tregs), oxygenation, microvascular blood flow, airway epithelium and collagen deposition during rejection. We demonstrated that iPSC-derived MSC treatment leads to significant increase in tissue expression of hTSG-6 protein, followed by an upregulation of mouse Tregs and IL-5, IL-10, IL-15 cytokines, which augments graft microvascular blood flow and oxygenation, and thereby maintained a healthy airway epithelium and prevented the subepithelial deposition of collagen at d90 post-transplantation. Collectively, these data confirmed that iPSC-derived MSC-mediated immunosuppression has potential to establish immune-tolerance and rescue allograft from sustained hypoxic/ischemic phase and subsequently limits long-term airway epithelial injury and collagen progression, which therapeutically warrant a study of Cymerus iPSC-derived MSCs as a potential management option for immunosuppression in transplant recipients.

Keywords: stem cell therapy, immunotolerance, regulatory T cells, hypoxia and ischemia, microvasculature

Procedia PDF Downloads 148
4681 Sulforaphane Attenuates Muscle Inflammation in Dystrophin-Deficient Mdx Mice via Nrf2/HO-1 Signaling Pathway

Authors: Chengcao Sun, Cuili Yang, Shujun Li, Ruilin Xue, Yongyong Xi, Liang Wang, Dejia Li

Abstract:

Backgrounds: Inflammation is widely distributed in patients with Duchenne muscular dystrophy (DMD), and ultimately leads to progressive deterioration of muscle function with the co-effects of chronic muscle damage, oxidative stress, and reduced oxidative capacity. NF-E2-related factor 2 (Nrf2) plays a critical role in defending against inflammation in different tissues via activation of phase II enzymes, heme oxygenase-1 (HO-1). However, whether Nrf2/HO-1 pathway can attenuate muscle inflammation on DMD remains unknown. The purpose of this study was to determine the anti-inflammatory effects of Sulforaphane (SFN) on DMD. Methods: 4-week-old male mdx mice were treated with SFN by gavage (2 mg/kg body weight per day) for 4 weeks. Gastrocnemius, tibial anterior and triceps brachii muscles were collected for related analysis. Immune cell infiltration in skeletal muscles was analyzed by H&E staining and immuno-histochemistry. Moreover, the expressions of inflammatory cytokines,pro-inflammatory cytokines and Nrf2/HO-1 pathway were detected by western blot, qRT-PCR, immunohistochemistry and immunofluorescence assays. Results: Our results demonstrated that SFN treatment increased the expression of muscle phase II enzymes HO-1 in Nrf2 dependent manner. Inflammation in mdx skeletal muscles was reduced by SFN treatment as indicated by decreased immune cell infiltration and lower expressions of the inflammatory cytokines CD45, pro-inflammatory cytokines tumour necrosis factor-α and interleukin-6 in the skeletal muscles of mdx mice. Conclusions: Collectively, these results show that SFN can ameliorate muscle inflammation in mdx mice by Nrf2/HO-1 pathway, which indicates Nrf2/HO-1 pathway may represent a new therapeutic target for DMD.

Keywords: sulforaphane, Nrf2, HO-1, inflammation

Procedia PDF Downloads 318
4680 The Structure and Composition of Plant Communities in Ajluon Forest Reserve in Jordan

Authors: Maher J. Tadros, Yaseen Ananbeh

Abstract:

The study area is located in Ajluon Forest Reserve northern part of Jordan. It consists of Mediterranean hills dominated by open woodlands of oak and pistachio. The aims of the study were to investigate the positive and negative relationships between the locals and the protected area and how it can affect the long-term forest conservation. The main research objectives are to review the impact of establishing Ajloun Forest Reserve on nature conservation and on the livelihood level of local communities around the reserve. The Ajloun forest reserve plays a fundamental role in Ajloun area development. The existence of initiatives of nature conservation in the area supports various socio-economic activities around the reserve that contribute towards the development of local communities in Ajloun area. A part of this research was to conduct a survey to study the impact of Ajloun forest reserve on biodiversity composition. Also, studying the biodiversity content especially for vegetation to determine the economic impacts of Ajloun forest reserve on its surroundings was studied. In this study, several methods were used to fill the objectives including point-centered quarter method which involves selecting randomly 50 plots at the study site. The collected data from the field showed that the absolute density was (1031.24 plant per hectare). Density was recorded and found to be the highest for Quecus coccifera, and relative density of (73.7%), this was followed by Arbutus andrachne and relative density (7.1%), Pistacia palaestina and relative density (10.5%) and Crataegus azarulus (82.5 p/ha) and relative density (5.1%),

Keywords: composition, density, frequency, importance value, point-centered quarter, structure, tree cover

Procedia PDF Downloads 259
4679 In vitro Antioxidant Properties and Phytochemistry of Some Philippine Creeping Medicinal Plants

Authors: Richard I. Licayan, Aisle Janne B. Dagpin, Romeo M. Del Rosario, Nenita D. Palmes

Abstract:

Hiptage benghalensis, Antigonon leptopus, Macroptillium atropurpureum, and Dioscorea bulbifera L. are herbal weeds that have been used by traditional healers in rural communities in the Philippines as medicine. In this study, the basic pharmacological components of the crude secondary metabolites extracted from the four herbal weeds and their in vitro antioxidant properties was investigated to provide baseline data for the possible development of these metabolites in pharmaceutical products. Qualitative screening of the secondary metabolites showed that alkaloids, tannins, saponins, steroids, and flavonoids were present in their leaf extracts. All of the plant extracts showed varied antioxidant activity. The greatest DPPH radical scavenging activity was observed in H. begnhalensis (84.64%), followed by A. leptopus (68.21%), M. atropurpureum (26.62%), and D. bulbifera L. (19.04%). The FRAP assay revealed that H. benghalensis had the highest antioxidant activity (8.32 mg/g) while ABTS assay showed that M. atropurpureum had the strongest scavenging ability of free radicals (0.0842 mg Trolox/g). The total flavonoid content (TFC) analysis showed that D. bulbifera L. had the highest TFC (420.35 mg quercetin per gram-dried material). The total phenolic content (TPC) of the four herbal weeds showed large variations, between 26.56±0.160 and 55.91±0.087 mg GAE/g dried material. The plant leaf extracts arranged in increasing values of TPC are H. benghalensis (26.565) < A. leptopus (37.29) < D. bulbifera L. (46.81) < M. atropurpureum (55.91). The obtained results may support their use in herbal medicine and as baseline data for the development of new drugs and standardized phytomedicines.

Keywords: antioxidant properties, total flavonoids, total phenolics, creeping herbal weeds

Procedia PDF Downloads 719
4678 Heat Transfer Enhancement via Using Al2O3/Water Nanofluid in Car Radiator

Authors: S. Movafagh, Y. Bakhshan

Abstract:

In this study, effect of adding Al2O3 nanoparticle to base fluid (water) in car radiator is investigated numerically. Radiators are compact heat exchangers optimized and evaluated by considering different working conditions. The cooling system of a car plays an important role in vehicle's performance, consists of two main parts, known as radiator and fan. Improving thermal efficiency of engine leads to increase the engine's performance, decline the fuel consumption and decrease the pollution emissions. In this study, the effects of fluid inlet flow rate and nanoparticle volume fraction on heat transfer and pressure drop of acar radiator are studied.

Keywords: forced convection, nanofluid, radiator, CFD simulation

Procedia PDF Downloads 336
4677 Advancing Food System Resilience by Pseudocereals Utilization

Authors: Yevheniia Varyvoda, Douglas Taren

Abstract:

At the aggregate level, climate variability, the rising number of active violent conflicts, globalization and industrialization of agriculture, the loss in diversity of crop species, the increase in demand for agricultural production, and the adoption of healthy and sustainable dietary patterns are exacerbating factors of food system destabilization. The importance of pseudocereals to fuel and sustain resilient food systems is recognized by leading organizations working to end hunger, particularly for their critical capability to diversify livelihood portfolios and provide plant-sourced healthy nutrition in the face of systemic shocks and stresses. Amaranth, buckwheat, and quinoa are the most promising and used pseudocereals for ensuring food system resilience in the reality of climate change due to their high nutritional profile, good digestibility, palatability, medicinal value, abiotic stress tolerance, pest and disease resistance, rapid growth rate, adaptability to marginal and degraded lands, high genetic variability, low input requirements, and income generation capacity. The study provides the rationale and examples of advancing local and regional food systems' resilience by scaling up the utilization of amaranth, buckwheat, and quinoa along all components of food systems to architect indirect nutrition interventions and climate-smart approaches. Thus, this study aims to explore the drivers for ancient pseudocereal utilization, the potential resilience benefits that can be derived from using them, and the challenges and opportunities for pseudocereal utilization within the food system components. The PSALSAR framework regarding the method for conducting systematic review and meta-analysis for environmental science research was used to answer these research questions. Nevertheless, the utilization of pseudocereals has been slow for a number of reasons, namely the increased production of commercial and major staples such as maize, rice, wheat, soybean, and potato, the displacement due to pressure from imported crops, lack of knowledge about value-adding practices in food supply chain, limited technical knowledge and awareness about nutritional and health benefits, absence of marketing channels and limited access to extension services and information about resilient crops. The success of climate-resilient pathways based on pseudocereal utilization underlines the importance of co-designed activities that use modern technologies, high-value traditional knowledge of underutilized crops, and a strong acknowledgment of cultural norms to increase community-level economic and food system resilience.

Keywords: resilience, pseudocereals, food system, climate change

Procedia PDF Downloads 65
4676 Analysis of Truck Drivers’ Distraction on Crash Risk

Authors: Samuel Nderitu Muchiri, Tracy Wangechi Maina

Abstract:

Truck drivers face a myriad of challenges in their profession. Enhancements in logistics effectiveness can be pivotal in propelling economic developments. The specific objective of the study was to assess the influence of driver distraction on crash risk. The study is significant as it elucidates best practices that truck drivers can embrace in an effort to enhance road safety. These include amalgamating behaviors that enable drivers to fruitfully execute multifaceted functions such as finding and following routes, evading collisions, monitoring speed, adhering to road regulations, and evaluating vehicle systems’ conditions. The analysis involved an empirical review of ten previous studies related to the research topic. The articles revealed that driver distraction plays a substantial role in road accidents and other crucial road security incidents across the globe. Africa depends immensely on the freight transport sector to facilitate supply chain operations. Several studies indicate that drivers who operate primarily on rural roads, such as those found in Sub-Saharan Africa, have an increased propensity to engage in distracted activities such as cell phone usage while driving. The findings also identified the need for digitalization in truck driving operations, including carrier management techniques such as fatigue management, artificial intelligence, and automating functions like cell phone usage controls. The recommendations can aid policymakers and commercial truck carriers in deepening their understanding of driver distraction and enforcing mitigations to foster road safety.

Keywords: truck drivers, distraction, digitalization, crash risk, road safety

Procedia PDF Downloads 29
4675 Application of Chitosan as a Natural Antimicrobial Compound in Stirred Yoghurt

Authors: Javad Hesari, Tahereh Donyatalab, Sodeif Azadmard Damirchi, Reza Rezaii Mokaram, Abbas Rafat

Abstract:

The main objective of this research was to increase shelf life of stirred yoghurt by adding chitosan as a naturally antimicrobial compound. Chitosan were added at different concentrations (0.1, 0.3 and 0.6%) to the stirred yoghurt. Samples were stored at refrigerator and room temperature for 3 weeks and tested with respect of microbial properties (counts of starter bacteria, mold and yeast, coliforms and E. coli). Starter bacteria and yeast counts in samples containing chitosan was significantly (p<0.05) lower than those in control samples and its antibacterial and anti-yeast effects increased with increasing concentration of chitosan. The lowest counts of starter bacteria and yeast were observed at samples whit 0.6% of chitosan. The Results showed Chitosan had a positive effect on increasing shelf life and controlling of yeasts and therefore can be used as a natural preservative in stirred yogurt.

Keywords: chitosan, natural preservative, stirred yoghurt, self-life

Procedia PDF Downloads 450
4674 Deuterium Effect on the Growth of the Fungus Aspergillus Fumigatus and Candida Albicans

Authors: Farzad Doostishoar, Abdolreza Hasanzadeh, Seyed Amin Ayatolahi Mousavi

Abstract:

Introduction and Goals: Deuterium has different action from its isotopes hydrogen in chemical reactions and biochemical processes. It is not a significant difference in heavier atoms between the behavior of heavier isotope and the lighter One but for very lighter atoms it is significant . According to that most of the weight of all creatures body is water natural rate can be significant. In this article we want to study the effect of reduced deuterium on the fungus cell. If we saw the dependence of deuterium concentration of environment on the cells growth we can test this in invivo models too. Methods: First we measured deuterium concentration of the distillated water this analyze was operated by Arak’s heavy water company. Then the deuterium was diluted to ½ ¼ 1/8 1/16 by adding water free of deuterium for making media. In tree of samples the deuterium concentration was increased by adding D2O up to 10,50,100 times more concentrated. For candida albicans growth we used sabor medium and for aspergillus fomigatis growth we used sabor medium containing chloramphenicol. After culturing the funguses species we put the mediums for each species in the shaker incubator for 10 days in 25 centigrade. In different days and times the plates were studied morphologically and some microscopic characteristics were studied too. This experiments and cultures were repeated 3 times. Results: Statistical analyzes by paired-sample T test showed that aspergilus fomigatoos growth was decreased in concentration of 72 ppm( half deuterium concentration of negative control) significantly. In deuterium concentration reduction the growth reduce into the negative control significantly. The project results showed that candida albicans was sensitive to reduce and decrease of the deuterium in all concentrations.

Keywords: deuterium, cancer cell, growth, candida albicans

Procedia PDF Downloads 390
4673 Finding Optimal Operation Condition in a Biological Nutrient Removal Process with Balancing Effluent Quality, Economic Cost and GHG Emissions

Authors: Seungchul Lee, Minjeong Kim, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo

Abstract:

It is hard to maintain the effluent quality of the wastewater treatment plants (WWTPs) under with fixed types of operational control because of continuously changed influent flow rate and pollutant load. The aims of this study is development of multi-loop multi-objective control (ML-MOC) strategy in plant-wide scope targeting four objectives: 1) maximization of nutrient removal efficiency, 2) minimization of operational cost, 3) maximization of CH4 production in anaerobic digestion (AD) for CH4 reuse as a heat source and energy source, and 4) minimization of N2O gas emission to cope with global warming. First, benchmark simulation mode is modified to describe N2O dynamic in biological process, namely benchmark simulation model for greenhouse gases (BSM2G). Then, three types of single-loop proportional-integral (PI) controllers for DO controller, NO3 controller, and CH4 controller are implemented. Their optimal set-points of the controllers are found by using multi-objective genetic algorithm (MOGA). Finally, multi loop-MOC in BSM2G is implemented and evaluated in BSM2G. Compared with the reference case, the ML-MOC with the optimal set-points showed best control performances than references with improved performances of 34%, 5% and 79% of effluent quality, CH4 productivity, and N2O emission respectively, with the decrease of 65% in operational cost.

Keywords: Benchmark simulation model for greenhouse gas, multi-loop multi-objective controller, multi-objective genetic algorithm, wastewater treatment plant

Procedia PDF Downloads 488
4672 A Study of Serum Beta 2-Microglobulin (β2M) and Lipid Bound Sialic Acid (LSA) Levels in Oral Carcinoma Patients

Authors: Kapoor Anurag, Sharma Pradeep, Mittal K Kailash, Kumar Ajai, Jawad Kalbe, Amit Kumar Singh

Abstract:

Background: Oral squamous cell carcinoma (OSCC) is the most prevalent malignant tumour on a global scale. Limited research has been conducted on tumour markers in oral cancer, and additional evaluation is required for several tumour producers that show clinical promise. The present study aimed to find out the co-relation of β-2 Microglobulin and Lipid Bound Sialic Acid in oral carcinoma patients. Methodology: The present case-control study was carried out on 35 patients with histopathologically confirmed OSCC and 35 age-matched controls. Serum concentrations of 2-Microglobulin and Total Sialic Acid (TSA) in the participants were determined via ELISA and spectrophotometric technique, respectively. Results: The OSCC group consisted of 20 males and 15 females, with an average age of 58 years, while the control group comprised 18 males and 17 females, with an average age of 55 years. Elevated levels of β2-microglobulin (3.87±0.12) and LSA (73.57±2.42) were observed in OSCC patients compared to controls (2.25±0.18; 65.21±2.06, respectively). Further examination based on smoking status revealed a significant increase in both β2-microglobulin and LSA levels among smokers compared to non-smokers (p < 0.05). Conclusion: The study suggests a notable association between higher levels of β2-microglobulin and LSA in oral squamous cell carcinoma (OSCC) patients who smoke compared to non-smokers. This observation leads to a hypothesis that this disparity could potentially serve as a significant contributing factor to the advancement of oral cancer.

Keywords: biochemistry human cancer, human, oral carcinoma, marker

Procedia PDF Downloads 31
4671 CFD Modeling of Stripper Ash Cooler of Circulating Fluidized Bed

Authors: Ravi Inder Singh

Abstract:

Due to high heat transfer rate, high carbon utilizing efficiency, fuel flexibilities and other advantages numerous circulating fluidized bed boilers have grown up in India in last decade. Many companies like BHEL, ISGEC, Thermax, Cethar Limited, Enmas GB Power Systems Projects Limited are making CFBC and installing the units throughout the India. Due to complexity many problems exists in CFBC units and only few have been reported. Agglomeration i.e clinker formation in riser, loop seal leg and stripper ash coolers is one of problem industry is facing. Proper documentation is rarely found in the literature. Circulating fluidized bed (CFB) boiler bottom ash contains large amounts of physical heat. While the boiler combusts the low-calorie fuel, the ash content is normally more than 40% and the physical heat loss is approximately 3% if the bottom ash is discharged without cooling. In addition, the red-hot bottom ash is bad for mechanized handling and transportation, as the upper limit temperature of the ash handling machinery is 200 °C. Therefore, a bottom ash cooler (BAC) is often used to treat the high temperature bottom ash to reclaim heat, and to have the ash easily handled and transported. As a key auxiliary device of CFB boilers, the BAC has a direct influence on the secure and economic operation of the boiler. There are many kinds of BACs equipped for large-scale CFB boilers with the continuous development and improvement of the CFB boiler. These ash coolers are water cooled ash cooling screw, rolling-cylinder ash cooler (RAC), fluidized bed ash cooler (FBAC).In this study prototype of a novel stripper ash cooler is studied. The Circulating Fluidized bed Ash Coolers (CFBAC) combined the major technical features of spouted bed and bubbling bed, and could achieve the selective discharge on the bottom ash. The novel stripper ash cooler is bubbling bed and it is visible cold test rig. The reason for choosing cold test is that high temperature is difficult to maintain and create in laboratory level. The aim of study to know the flow pattern inside the stripper ash cooler. The cold rig prototype is similar to stripper ash cooler used industry and it was made after scaling down to some parameter. The performance of a fluidized bed ash cooler is studied using a cold experiment bench. The air flow rate, particle size of the solids and air distributor type are considered to be the key parameters of the operation of a fluidized bed ash cooler (FBAC) are studied in this.

Keywords: CFD, Eulerian-Eulerian, Eulerian-Lagraingian model, parallel simulations

Procedia PDF Downloads 501
4670 Assessing Prescribed Burn Severity in the Wetlands of the Paraná River -Argentina

Authors: Virginia Venturini, Elisabet Walker, Aylen Carrasco-Millan

Abstract:

Latin America stands at the front of climate change impacts, with forecasts projecting accelerated temperature and sea level rises compared to the global average. These changes are set to trigger a cascade of effects, including coastal retreat, intensified droughts in some nations, and heightened flood risks in others. In Argentina, wildfires historically affected forests, but since 2004, wetland fires have emerged as a pressing concern. By 2021, the wetlands of the Paraná River faced a dangerous situation. In fact, during the year 2021, a high-risk scenario was naturally formed in the wetlands of the Paraná River, in Argentina. Very low water levels in the rivers, and excessive standing dead plant material (fuel), triggered most of the fires recorded in the vast wetland region of the Paraná during 2020-2021. During 2008 fire events devastated nearly 15% of the Paraná Delta, and by late 2021 new fires burned more than 300,000 ha of these same wetlands. Therefore, the goal of this work is to explore remote sensing tools to monitor environmental conditions and the severity of prescribed burns in the Paraná River wetlands. Thus, two prescribed burning experiments were carried out in the study area (31°40’ 05’’ S, 60° 34’ 40’’ W) during September 2023. The first experiment was carried out on Sept. 13th, in a plot of 0.5 ha which dominant vegetation were Echinochloa sp., and Thalia, while the second trial was done on Sept 29th in a plot of 0.7 ha, next to the first burned parcel; here the dominant vegetation species were Echinochloa sp. and Solanum glaucophyllum. Field campaigns were conducted between September 8th and November 8th to assess the severity of the prescribed burns. Flight surveys were conducted utilizing a DJI® Inspire II drone equipped with a Sentera® NDVI camera. Then, burn severity was quantified by analyzing images captured by the Sentera camera along with data from the Sentinel 2 satellite mission. This involved subtracting the NDVI images obtained before and after the burn experiments. The results from both data sources demonstrate a highly heterogeneous impact of fire within the patch. Mean severity values obtained with drone NDVI images of the first experience were about 0.16 and 0.18 with Sentinel images. For the second experiment, mean values obtained with the drone were approximately 0.17 and 0.16 with Sentinel images. Thus, most of the pixels showed low fire severity and only a few pixels presented moderated burn severity, based on the wildfire scale. The undisturbed plots maintained consistent mean NDVI values throughout the experiments. Moreover, the severity assessment of each experiment revealed that the vegetation was not completely dry, despite experiencing extreme drought conditions.

Keywords: prescribed-burn, severity, NDVI, wetlands

Procedia PDF Downloads 45
4669 Evaluation of Antioxidant Activity and Total Phenolic Content of Lens Esculenta Moench, Seeds

Authors: Vivek Kumar Gupta, Kripi Vohra, Monika Gupta

Abstract:

Pulses have been a vital ingredient of the balanced human diet in India. Lentil (Lens culinaris Medikus or Lens esculenta Moench.) is a common legume known since biblical times. Lentil seeds, with or without hulls, are cooked as dhal and this has been the main dish for millennia in the South Asian region. Oxidative stress can damage lipids, proteins, enzymes, carbohydrates and DNA in cells and tissues, resulting in membrane damage, fragmentation or random cross linking of molecules like DNA, enzymes and structural proteins and even lead to cell death induced by DNA fragmentation and lipid peroxidation. These consequences of oxidative stress construct the molecular basis in the development of cancer, neurodegenerative disorders, cardiovascular diseases, diabetes and autoimmune. The aim of the present work is to assess the antioxidant potential of the peteroleum ether, acetone, methanol and water extract of the Lens esculenta seeds. In vitro antioxidant assessment of the extracts was carried out using 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity, hydroxyl radical scavenging activity, reducing power assay. The quantitative estimation of total phenolic content, total flavonoid content in extracts and in plant material, total saponin content, total alkaloid content, crude fibre content, total volatile content, fat content and mucilage content in drug material was also carried out. Though all the extracts exhibited dose dependent reducing power activity the acetone extract was found to possess significant hydrogen donating ability in DPPH (45.83%-93.13%) and hydroxyl radical scavenging system (28.7%-46.41%) than the peteroleum ether, methanol and water extracts. Total phenolic content in the acetone and methanol extract was found to be 608 and 188 mg gallic acid equivalent of phenol/g of sample respectively. Total flavonoid content of acetone and methanol extract was found to be 128 and 30.6 mg quercetin equivalent/g of sample respectively. It is evident that acetone extract of Lentil seeds possess high levels of polyphenolics and flavonoids that could be utilized as antioxidants and neutraceuticals.

Keywords: antioxidant, flavanoids, Lens esculenta, polyphenols

Procedia PDF Downloads 465
4668 Toxicological Interactions of Silver Nanoparticles and Non-Essential Metals in Human Hepatocarcinoma Cell Line

Authors: Renata Rank Miranda, Arandi Ginane Bezerra, Ciro Alberto Oliveira Ribeiro, Marco AntôNio Ferreira Randi, Carmen Lúcia Voigt, Lilian Skytte, Kaare Lund Rasmussen, Francisco Filipak Neto, Frank Kjeldsen

Abstract:

Synergetic and antagonistic effects of drugs are well-known concerns in pharmacological assessments of dose and toxicity. Similar approach should be used in assessing cellular uptake and cytotoxicity of nanoparticles. Since nanoparticles are released into the aquatic environment they may interact with existing xenobiotics. Here we used biochemical assays and quantitative proteomics to assess the cytotoxicity of silver nanoparticles (AgNP) when human hepatoma HepG2 cells were co-exposed to 2 nm AgNP together with either Cd2+ or Hg2+ ions. Time-course experiments (2h, 4h, and 24h) were conducted to assess the first response to the exposure studies. The general trend was that a synergetic toxicological response was observed in cells exposed to both AgNP and Cd2+ or Hg2+, with AgNP and Cd2+ being more toxic. This was observed by a significant increase in the ROS and superoxide level of >35% in the case of AgNP+Cd2+ compared to the sum of responses of AgNP and Cd2+, individually. Metabolic activity and viability also dropped more for AgNP+Cd2+ (>10%) than for AgNP and Cd2+ combined. We used inductively coupled plasma mass spectrometry to investigate if AgNP facilitates larger influx of toxic metal ions into HepG2 cells. Only Hg2+ ions was found to be more efficiently engulfed as the concentration of Hg2+ was found 2.8 times larger compared to exposure experiments with only Hg2+. This effect was not observed for Cd2+. We now continue with deep proteomics studies to obtain wider details on the mechanism of the toxicity related to AgNP, Cd2+, and AgNP+Cd2+, respectively.

Keywords: nanotoxicology, silver nanoparticles, proteomics, human cell line

Procedia PDF Downloads 336
4667 Feasibility Study and Experiment of On-Site Nuclear Material Identification in Fukushima Daiichi Fuel Debris by Compact Neutron Source

Authors: Yudhitya Kusumawati, Yuki Mitsuya, Tomooki Shiba, Mitsuru Uesaka

Abstract:

After the Fukushima Daiichi nuclear power reactor incident, there are a lot of unaccountable nuclear fuel debris in the reactor core area, which is subject to safeguard and criticality safety. Before the actual precise analysis is performed, preliminary on-site screening and mapping of nuclear debris activity need to be performed to provide a reliable data on the nuclear debris mass-extraction planning. Through a collaboration project with Japan Atomic Energy Agency, an on-site nuclear debris screening system by using dual energy X-Ray inspection and neutron energy resonance analysis has been established. By using the compact and mobile pulsed neutron source constructed from 3.95 MeV X-Band electron linac, coupled with Tungsten as electron-to-photon converter and Beryllium as a photon-to-neutron converter, short-distance neutron Time of Flight measurement can be performed. Experiment result shows this system can measure neutron energy spectrum up to 100 eV range with only 2.5 meters Time of Flightpath in regards to the X-Band accelerator’s short pulse. With this, on-site neutron Time of Flight measurement can be used to identify the nuclear debris isotope contents through Neutron Resonance Transmission Analysis (NRTA). Some preliminary NRTA experiments have been done with Tungsten sample as dummy nuclear debris material, which isotopes Tungsten-186 has close energy absorption value with Uranium-238 (15 eV). The results obtained shows that this system can detect energy absorption in the resonance neutron area within 1-100 eV. It can also detect multiple elements in a material at once with the experiment using a combined sample of Indium, Tantalum, and silver makes it feasible to identify debris containing mixed material. This compact neutron Time of Flight measurement system is a great complementary for dual energy X-Ray Computed Tomography (CT) method that can identify atomic number quantitatively but with 1-mm spatial resolution and high error bar. The combination of these two measurement methods will able to perform on-site nuclear debris screening at Fukushima Daiichi reactor core area, providing the data for nuclear debris activity mapping.

Keywords: neutron source, neutron resonance, nuclear debris, time of flight

Procedia PDF Downloads 226
4666 High-Pressure Polymorphism of 4,4-Bipyridine Hydrobromide

Authors: Michalina Aniola, Andrzej Katrusiak

Abstract:

4,4-Bipyridine is an important compound often used in chemical practice and more recently frequently applied for designing new metal organic framework (MoFs). Here we present a systematic high-pressure study of its hydrobromide salt. 4,4-Bipyridine hydrobromide monohydrate, 44biPyHBrH₂O, at ambient-pressure is orthorhombic, space group P212121 (phase a). Its hydrostatic compression shows that it is stable to 1.32 GPa at least. However, the recrystallization above 0.55 GPa reveals a new hidden b-phase (monoclinic, P21/c). Moreover, when the 44biPyHBrH2O is heated to high temperature the chemical reactions of this compound in methanol solution can be observed. High-pressure experiments were performed using a Merrill-Bassett diamond-anvil cell (DAC), modified by mounting the anvils directly on the steel supports, and X-ray diffraction measurements were carried out on a KUMA and Excalibur diffractometer equipped with an EOS CCD detector. At elevated pressure, the crystal of 44biPyHBrH₂O exhibits several striking and unexpected features. No signs of instability of phase a were detected to 1.32 GPa, while phase b becomes stable at above 0.55 GPa, as evidenced by its recrystallizations. Phases a and b of 44biPyHBrH2O are partly isostructural: their unit-cell dimensions and the arrangement of ions and water molecules are similar. In phase b the HOH-Br- chains double the frequency of their zigzag motifs, compared to phase a, and the 44biPyH+ cations change their conformation. Like in all monosalts of 44biPy determined so far, in phase a the pyridine rings are twisted by about 30 degrees about bond C4-C4 and in phase b they assume energy-unfavorable planar conformation. Another unusual feature of 44biPyHBrH2O is that all unit-cell parameters become longer on the transition from phase a to phase b. Thus the volume drop on the transition to high-pressure phase b totally depends on the shear strain of the lattice. Higher temperature triggers chemical reactions of 44biPyHBrH2O with methanol. When the saturated methanol solution compound precipitated at 0.1 GPa and temperature of 423 K was required to dissolve all the sample, the subsequent slow recrystallization at isochoric conditions resulted in disalt 4,4-bipyridinium dibromide. For the 44biPyHBrH2O sample sealed in the DAC at 0.35 GPa, then dissolved at isochoric conditions at 473 K and recrystallized by slow controlled cooling, a reaction of N,N-dimethylation took place. It is characteristic that in both high-pressure reactions of 44biPyHBrH₂O the unsolvated disalt products were formed and that free base 44biPy and H₂O remained in the solution. The observed reactions indicate that high pressure destabilized ambient-pressure salts and favors new products. Further studies on pressure-induced reactions are carried out in order to better understand the structural preferences induced by pressure.

Keywords: conformation, high-pressure, negative area compressibility, polymorphism

Procedia PDF Downloads 234
4665 Analysis of Ancient Bone DNA Samples From Excavations at St Peter’s Burial Ground, Blackburn

Authors: Shakhawan K. Mawlood, Catriona Pickard, Benjamin Pickard

Abstract:

In summer 2015 the remains of 800 children are among 1,967 bodies were exhumed by archaeologists at St Peter's Burial Ground in Blackburn, Lancashire. One hundred samples from these 19th century ancient bones were selected for DNA analysis. These comprised samples biased for those which prior osteological evidence indicated a potential for microbial infection by Mycobacterium tuberculosis (causing tuberculosis, TB) or Treponema pallidum (causing Syphilis) species, as well a random selection of other bones for which visual inspection suggested good preservation (and, therefore, likely DNA retrieval).They were subject to polymerase chain reaction (PCR) assays aimed at detecting traces of DNA from infecting mycobacteria, with the purpose both of confirming the palaeopathological diagnosis of tuberculosis and determining in individual cases whether disease and death was due to M. tuberculosis or other reasons. Our secondary goal was to determine sex determination and age prediction. The results demonstrated that extraction of vast majority ancient bones DNA samples succeeded.

Keywords: ancient bone, DNA, tuberculosis, age prediction

Procedia PDF Downloads 86
4664 Vibration Absorption Strategy for Multi-Frequency Excitation

Authors: Der Chyan Lin

Abstract:

Since the early introduction by Ormondroyd and Den Hartog, vibration absorber (VA) has become one of the most commonly used vibration mitigation strategies. The strategy is most effective for a primary plant subjected to a single frequency excitation. For continuous systems, notable advances in vibration absorption in the multi-frequency system were made. However, the efficacy of the VA strategy for systems under multi-frequency excitation is not well understood. For example, for an N degrees-of-freedom (DOF) primary-absorber system, there are N 'peak' frequencies of large amplitude vibration per every new excitation frequency. In general, the usable range for vibration absorption can be greatly reduced as a result. Frequency modulated harmonic excitation is a commonly seen multi-frequency excitation example: f(t) = cos(ϖ(t)t) where ϖ(t)=ω(1+α sin⁡(δt)). It is known that f(t) has a series expansion given by the Bessel function of the first kind, which implies an infinity of forcing frequencies in the frequency modulated harmonic excitation. For an SDOF system of natural frequency ωₙ subjected to f(t), it can be shown that amplitude peaks emerge at ω₍ₚ,ₖ₎=(ωₙ ± 2kδ)/(α ∓ 1),k∈Z; i.e., there is an infinity of resonant frequencies ω₍ₚ,ₖ₎, k∈Z, making the use of VA strategy ineffective. In this work, we propose an absorber frequency placement strategy for SDOF vibration systems subjected to frequency-modulated excitation. An SDOF linear mass-spring system coupled to lateral absorber systems is used to demonstrate the ideas. Although the mechanical components are linear, the governing equations for the coupled system are nonlinear. We show using N identical absorbers, for N ≫ 1, that (a) there is a cluster of N+1 natural frequencies around every natural absorber frequency, and (b) the absorber frequencies can be moved away from the plant's resonance frequency (ω₀) as N increases. Moreover, we also show the bandwidth of the VA performance increases with N. The derivations of the clustering and bandwidth widening effect will be given, and the superiority of the proposed strategy will be demonstrated via numerical experiments.

Keywords: Bessel function, bandwidth, frequency modulated excitation, vibration absorber

Procedia PDF Downloads 141
4663 3D Printing of Polycaprolactone Scaffold with Multiscale Porosity Via Incorporation of Sacrificial Sucrose Particles

Authors: Mikaela Kutrolli, Noah S. Pereira, Vanessa Scanlon, Mohamadmahdi Samandari, Ali Tamayol

Abstract:

Bone tissue engineering has drawn significant attention and various biomaterials have been tested. Polymers such as polycaprolactone (PCL) offer excellent biocompatibility, reasonable mechanical properties, and biodegradability. However, PCL scaffolds suffer a critical drawback: a lack of micro/mesoporosity, affecting cell attachment, tissue integration, and mineralization. It also results in a slow degradation rate. While 3D-printing has addressed the issue of macroporosity through CAD-guided fabrication, PCL scaffolds still exhibit poor smaller-scale porosity. To overcome this, we generated composites of PCL, hydroxyapatite (HA), and powdered sucrose (PS). The latter serves as a sacrificial material to generate porous particles after sucrose dissolution. Additionally, we have incorporated dexamethasone (DEX) to boost the PCL osteogenic properties. The resulting scaffolds maintain controlled macroporosity from the lattice print structure but also develop micro/mesoporosity within PCL fibers when exposed to aqueous environments. The study involved mixing PS into solvent-dissolved PCL in different weight ratios of PS to PCL (70:30, 50:50, and 30:70 wt%). The resulting composite was used for 3D printing of scaffolds at room temperature. Printability was optimized by adjusting pressure, speed, and layer height through filament collapse and fusion test. Enzymatic degradation, porogen leaching, and DEX release profiles were characterized. Physical properties were assessed using wettability, SEM, and micro-CT to quantify the porosity (percentage, pore size, and interconnectivity). Raman spectroscopy was used to verify the absence of sugar after leaching. Mechanical characteristics were evaluated via compression testing before and after porogen leaching. Bone marrow stromal cells (BMSCs) behavior in the printed scaffolds was studied by assessing viability, metabolic activity, osteo-differentiation, and mineralization. The scaffolds with a 70% sugar concentration exhibited superior printability and reached the highest porosity of 80%, but performed poorly during mechanical testing. A 50% PS concentration demonstrated a 70% porosity, with an average pore size of 25 µm, favoring cell attachment. No trace of sucrose was found in Raman after leaching the sugar for 8 hours. Water contact angle results show improved hydrophilicity as the sugar concentration increased, making the scaffolds more conductive to cell adhesion. The behavior of bone marrow stromal cells (BMSCs) showed positive viability and proliferation results with an increasing trend of mineralization and osteo-differentiation as the sucrose concentration increased. The addition of HA and DEX also promoted mineralization and osteo-differentiation in the cultures. The integration of PS as porogen at a concentration of 50%wt within PCL scaffolds presents a promising approach to address the poor cell attachment and tissue integration issues of PCL in bone tissue engineering. The method allows for the fabrication of scaffolds with tunable porosity and mechanical properties, suitable for various applications. The addition of HA and DEX further enhanced the scaffolds. Future studies will apply the scaffolds in an in-vivo model to thoroughly investigate their performance.

Keywords: bone, PCL, 3D printing, tissue engineering

Procedia PDF Downloads 38