Search results for: drilling fluid loss
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5611

Search results for: drilling fluid loss

1741 Drivers on Climate in a Neotropical City: Urbanizations and Natural Variability

Authors: Nuria Vargas, Frances Rodriguez

Abstract:

Neotropical medium cities have opportunities to develop in a good manner. Xalapa City (Veracruz capital, Mexico) and its metropolitan region, near to the Gulf of Mexico, has already <1 million inhabitants, a medium city size, but it’s growing rapidly as several cities in Latin America. Inside a landscape where it had been a forest cloud and coffee land, emerges the city with an irregular topography. The rapid grow of the urbanization and the loss of vegetation has result in a change on the climate parameters. Frequently warms spells, floods and landslides had been impacted last 2 decades, also a higher incidence of dengue and diarrhea is mentioned in the region. Therefore, the analysis of hydrometeorological events is crucial to understand the role they play in its problem. The urbanization and others radiative forces has created a modulation that can explain the decadal climate changes on the Xalapa region. The Atlantic Multidecadal Oscillation directly influences the temperature and precipitation of the region, even more than climate change does. The total effect of these drivers can create a significant context that origin more risk. However, the most policies frequently consider only the climate change as a principal factor, but other drivers are important to consider and evaluate for the implementation of actions that improve our ambient and cities, in a context of climate change. Medium-sized cities could create better conditions for future citizens, preventing with urban planning that considers possible risks associated with weather and climate.

Keywords: natural variability, urbanization, atlantic multidecadal oscillation, land use changes

Procedia PDF Downloads 47
1740 Preparation and In vitro Characterization of Nanoparticle Hydrogel for Wound Healing

Authors: Rajni Kant Panik

Abstract:

The aim of the present study was to develop and evaluate mupirocin loaded nanoparticle incorporated into hydrogel as an infected wound healer. Incorporated Nanoparticle in hydrogel provides a barrier that effectively prevents the contamination of the wound and further progression of infection to deeper tissues. Hydrogel creates moist healing environment on wound space with good fluid absorbance. Nanoparticles were prepared by double emulsion solvent evaporation method using different ratios of PLGA polymer and the hydrogels was developed using sodium alginate and gelatin. Further prepared nanoparticles were then incorporated into the hydrogels. The formulations were characterized by FT-IR and DSC for drug and polymer compatibility and surface morphology was studied by TEM. Nanoparticle hydrogel were evaluated for their size, shape, encapsulation efficiency and for in vitro studies. The FT-IR and DSC confirmed the absence of any drug polymer interaction. The average size of Nanoparticle was found to be in range of 208.21-412.33 nm and shape was found to be spherical. The maximum encapsulation efficiency was found to be 69.03%. The in vitro release profile of Nanoparticle incorporated hydrogel formulation was found to give sustained release of drug. Antimicrobial activity testing confirmed that encapsulated drug preserve its effectiveness. The stability study confirmed that the formulation prepared were stable. Present study complements our finding that mupirocin loaded Nanoparticle incorporated into hydrogel has the potential to be an effective and safe novel addition for the release of mupirocin in sustained manner, which may be a better option for the management of wound. These finding also supports the progression of antibiotic via hydrogel delivery system is a novel topical dosage form for the management of wound.

Keywords: hydrogel, nanoparticle, PLGA, wound healing

Procedia PDF Downloads 298
1739 Anti-Fibrillation Propensity of a Flavonoid Baicalein against the Fibrils of Hen Egg White Lysozyme: Potential Therapeutics for Lysozyme Amyloidosis

Authors: Naveed Ahmad Fazili

Abstract:

More than 20 human diseases involve the fibrillation of a specific protein/peptide which forms pathological deposits at various sites. Hereditary lysozyme amyloidosis is a systemic disorder which mostly affects liver, spleen and kidney. This conformational disorder is featured by lysozyme fibril formation. In vivo lysozyme fibrillation was simulated under in vitro conditions using a strong denaturant GdHCl at 3M concentration. Sharp decline in the ANS fluorescence intensity compared to the partially unfolded states, almost 20 fold increase in ThT fluorescence intensity, increase in absorbance at 450 nm suggesting turbidity, negative ellipticity peak in the far-UVCD at 217 nm, red shift of 50 nm compared to the native state in congo red assay and appearance of a network of long rope like fibrils in TEM analysis suggested HEWL fibrillation. Anti-fibrillation potency of baicalein against the preformed fibrils of HEWL was investigated following ThT assay in which there was a dose dependent decrease in ThT fluorescence intensity compared to the fibrillar state of HEWL with the maximum effect observed at 150 μM baicalein concentration, loss of negative ellipticity peak in the far-UVCD region, dip in the Rayleigh scattering intensity and absorbance at 350 nm and 450 nm respectively together with a reduction in the density of fibrillar structure in TEM imaging. Thus, it could be suggested that baicalein could prove to be a positive therapeutics for hereditary human lysozyme amyloidosis.

Keywords: amyloid fibrils, baicalein, congo red, negative ellipticity, therapeutics

Procedia PDF Downloads 283
1738 'Systems' and Its Impact on Virtual Teams and Electronic Learning

Authors: Shavindrie Cooray

Abstract:

It is vital that students are supported in having balanced conversations about topics that might be controversial. This process is crucial to the development of critical thinking skills. This can be difficult to attain in e-learning environments, with some research finding students report a perceived loss in the quality of knowledge exchange and performance. This research investigated if Systems Theory could be applied to structure the discussion, improve information sharing, and reduce conflicts when students are working in online environments. This research involved 160 participants across four categories of student groups at a college in the Northeastern US. Each group was provided with a shared problem, and each group was expected to make a proposal for a solution. Two groups worked face-to-face; the first face to face group engaged with the problem and each other with no intervention from a facilitator; a second face to face group worked on the problem using Systems tools to facilitate problem structuring, group discussion, and decision-making. There were two types of virtual teams. The first virtual group also used Systems tools to facilitate problem structuring and group discussion. However, all interactions were conducted in a synchronous virtual environment. The second type of virtual team also met in real time but worked with no intervention. Findings from the study demonstrated that the teams (both virtual and face-to-face) using Systems tools shared more information with each other than the other teams; additionally, these teams reported an increased level of disagreement amongst their members, but also expressed more confidence and satisfaction with the experience and resulting decision compared to the other groups.

Keywords: e-learning, virtual teams, systems approach, conflicts

Procedia PDF Downloads 122
1737 Contributing Factors to Building Failures and Defects in the Nigerian Construction Industry

Authors: Ndibarafinia Tobin

Abstract:

Building defect and failure are common phenomena in the Nigerian construction industry. The activities of the inexperienced labor force in the Nigerian construction industry have tarnished the image of practicing construction professionals in recent past. Defects and collapse can cause unnecessary expenditure, delays, loss of lives, property and left many people injured. They are also generating controversies among parties involved. Also, if this situation is left unanswered and untreated, it will lead to more serious problems in the future upcoming construction projects in Nigeria. Quite a number of factors are responsible for collapse of high-rise, reinforced concrete buildings in Nigeria. Government, professional bodies and stakeholders are asking countless questions as to who should be responsible and how solutions could be proffered. Therefore this study is aimed to identify the contributing factors to high-rise buildings defects and failures in Nigeria, which frequently occur in construction project in order to minimize time and cost and also the roles of professionals and other participants play in the industry in terms of the use of building materials, placement and curing of concrete, modification in the use of a building, collapse of building induced by fire and other causes. The data is collected from questionnaire from various players in construction industry in Nigeria. This study is succeeds in identifying the causes of building failure and also suggesting possible measures to be taken by government and other regulatory bodies in the building industry to avert this and also improve the effectiveness of managing appraisal process of failures and defects in the future.

Keywords: building defects, building failures, Nigerian construction industry, professionals

Procedia PDF Downloads 280
1736 Motivation to Ride in the Hotter 'N Hell Hundred Bicycling Event

Authors: Karen J. Polvado, Betty Bowles, Jansen Lauren, Gibson Martha, Robin Lockhart

Abstract:

The purpose of this study was to identify motivation to participate in the Hotter ‘n Hell Hundred (HHH) bicycling event, and the participants’ demographics, health risk factors, and preparation to ride in the event. A convenience sample of adults pre-registered for non-competitive cycling events (N = 7,472) were requested to complete a survey. Of these, 2,645 (35%) responded. Questions identified the participants’ demographics, preparation, previous experience with HHH, and motives for riding. The HHH attracted riders of all ages (18-80), genders, ethnicities, and educational levels. The majority were males, 40-59 years old, married, college graduates, and identified themselves as non-Hispanic whites. The majority (68%) reported no existing medical conditions, and were normal weight (70%), although 52% had been overweight or obese in the past. Preparation to ride in the HHH varied from riding more than five times a week for the last year, to riding 1-2 times per week one month before the event. Most (93%) had ridden in the HHH an average of 5 times. Motivations to ride included: personal challenge (75%); to experience the HHH ride (57%); a chance to ride with family/friends/coworkers (52%); improving health (47%); fun (33%); challenge by others (15%); part of a weight loss plan (11%); training for another event (10%); and raising money for a cause (2%). The motivation to participate appeared to move from extrinsic to intrinsic motivation as age increased. Exploration of the exercise habits and motivations of older adults (70+) is suggested by this study.

Keywords: cycling, motivation, physical activity, training

Procedia PDF Downloads 282
1735 Building Cardiovascular Fitness through Plyometric Training

Authors: Theresa N. Uzor

Abstract:

The word cardiovascular fitness is a topic of much interest to people of Nigeria, especially during this time, some heart diseases run in families. Cardiovascular fitness is the ability of the heart and lungs to supply-rich blood to the working muscle tissues. This type of fitness is a health-related component of physical fitness that is brought about by sustained physical activity such as plyometric training. Plyometric is a form of advanced fitness training that uses fast muscular contractions to improve power and speed in the sports performance by coaches and athletes. Plyometric training involves a rapid stretching of muscle (eccentric phase) immediately followed by a concentric or shortening action of the same muscle and connective tissue. However, the most basic example of true plyometric training is running and can be safe for a wide variety of populations. This paper focused on building cardiovascular health through Plyometric Training. The centre focus of the article is cardiovascular fitness and plyometric training with factors of cardiovascular fitness. Plyometric training at any age provides multiple benefits even beyond weight control and weight loss, decrease the risk of cardiovascular diseases, stroke, high blood pressure, diabetes, and other diseases, among other benefits of plyometric training to cardiovascular fitness. Participation in plyometric training will increase metabolism of an individual, thereby burning more calories even when at rest and reduces weight is also among the benefits of plyometric training. Some guidelines were recommended for planning plyometric training programme to minimise the chance of injury. With plyometric training in Nigeria, fortune can change for good, especially now that there has been an increase in cardiovascular diseases within the society for great savings would be saved.

Keywords: aerobic, cardiovascular, concentric, stretch-shortening cycle, plyometric

Procedia PDF Downloads 124
1734 Solid Waste Landfilling Practices, Related Problems and Sustainable Solutions in Turkey

Authors: Nükhet Konuk, N. Gamze Turan, Yüksel Ardalı

Abstract:

Solid waste management is the most environmental problem in Turkey as a result of the rapid increase in solid waste generation caused by the rapid population growth, urbanization, rapid industrialization and economic development. The large quantity of waste generated necessitates system of collection, transportation and disposal. The landfill method for the ultimate disposal of solid waste continues to be widely accepted and used due to its economic advantages. In Turkey, most of the disposal sites open dump areas. Open dump sites may result in serious urban, sanitary and environmental problems such as an unpleasant odor and the risk of explosion as well as groundwater contamination because of leachate percolation. Unsuitable management practices also result in the loss of resources and energy, which could be recycled and produced from a large part of the solid waste. Therefore, over the past few decades, particular attention has been drawn to the sustainable solid waste management as a response to the increase in environmental problems related to the disposal of waste. The objective of this paper is to assess the situation of landfilling practices in Turkey as a developing country and to identify any gaps in the system as currently applied. The results show that approximately 25 million tons of MSW are generated annually in Turkey. The percentage of MSW disposed to sanitary landfill is only 45% whereas more than 50% of MSW is disposed without any control.

Keywords: developing countries, open dumping, solid waste management, sustainable landfilling, sustainable solid waste management

Procedia PDF Downloads 285
1733 Chemical Study of Volatile Organic Compounds (VOCS) from Xylopia aromatica (LAM.) Mart (Annonaceae)

Authors: Vanessa G. P. Severino, JOÃO Gabriel M. Junqueira, Michelle N. G. do Nascimento, Francisco W. B. Aquino, João B. Fernandes, Ana P. Terezan

Abstract:

The scientific interest in analyzing VOCs represents a significant modern research field as a result of importance in most branches of the present life and industry. Therefore it is extremely important to investigate, identify and isolate volatile substances, since they can be used in different areas, such as food, medicine, cosmetics, perfumery, aromatherapy, pesticides, repellents and other household products through methods for extracting volatile constituents, such as solid phase microextraction (SPME), hydrodistillation (HD), solvent extraction (SE), Soxhlet extraction, supercritical fluid extraction (SFE), stream distillation (SD) and vacuum distillation (VD). The Chemometrics is an area of chemistry that uses statistical and mathematical tools for the planning and optimization of the experimental conditions, and to extract relevant chemical information multivariate chemical data. In this context, the focus of this work was the study of the chemical VOCs by SPME of the specie X. aromatica, in search of constituents that can be used in the industrial sector as well as in food, cosmetics and perfumery, since these areas industrial has a considerable role. In addition, by chemometric analysis, we sought to maximize the answers of this research, in order to search for the largest number of compounds. The investigation of flowers from X. aromatica in vitro and in alive mode proved consistent, but certain factors supposed influence the composition of metabolites, and the chemometric analysis strengthened the analysis. Thus, the study of the chemical composition of X. aromatica contributed to the VOCs knowledge of the species and a possible application.

Keywords: chemometrics, flowers, HS-SPME, Xylopia aromatica

Procedia PDF Downloads 342
1732 Combustion and Emissions Performance of Syngas Fuels Derived from Palm Kernel Shell and Polyethylene (PE) Waste via Catalytic Steam Gasification

Authors: Chaouki Ghenai

Abstract:

Computational fluid dynamics analysis of the burning of syngas fuels derived from biomass and plastic solid waste mixture through gasification process is presented in this paper. The syngas fuel is burned in gas turbine can combustor. Gas turbine can combustor with swirl is designed to burn the fuel efficiently and reduce the emissions. The main objective is to test the impact of the alternative syngas fuel compositions and lower heating value on the combustion performance and emissions. The syngas fuel is produced by blending Palm Kernel Shell (PKS) with Polyethylene (PE) waste via catalytic steam gasification (fluidized bed reactor). High hydrogen content syngas fuel was obtained by mixing 30% PE waste with PKS. The syngas composition obtained through the gasification process is 76.2% H2, 8.53% CO, 4.39% CO2 and 10.90% CH4. The lower heating value of the syngas fuel is LHV = 15.98 MJ/m3. Three fuels were tested in this study natural gas (100%CH4), syngas fuel and pure hydrogen (100% H2). The power from the combustor was kept constant for all the fuels tested in this study. The effect of syngas fuel composition and lower heating value on the flame shape, gas temperature, mass of carbon dioxide (CO2) and nitrogen oxides (NOX) per unit of energy generation is presented in this paper. The results show an increase of the peak flame temperature and NO mass fractions for the syngas and hydrogen fuels compared to natural gas fuel combustion. Lower average CO2 emissions at the exit of the combustor are obtained for the syngas compared to the natural gas fuel.

Keywords: CFD, combustion, emissions, gas turbine combustor, gasification, solid waste, syngas, waste to energy

Procedia PDF Downloads 571
1731 Biophysical Features of Glioma-Derived Extracellular Vesicles as Potential Diagnostic Markers

Authors: Abhimanyu Thakur, Youngjin Lee

Abstract:

Glioma is a lethal brain cancer whose early diagnosis and prognosis are limited due to the dearth of a suitable technique for its early detection. Current approaches, including magnetic resonance imaging (MRI), computed tomography (CT), and invasive biopsy for the diagnosis of this lethal disease, hold several limitations, demanding an alternative method. Recently, extracellular vesicles (EVs) have been used in numerous biomarker studies, majorly exosomes and microvesicles (MVs), which are found in most of the cells and biofluids, including blood, cerebrospinal fluid (CSF), and urine. Remarkably, glioma cells (GMs) release a high number of EVs, which are found to cross the blood-brain-barrier (BBB) and impersonate the constituents of parent GMs including protein, and lncRNA; however, biophysical properties of EVs have not been explored yet as a biomarker for glioma. We isolated EVs from cell culture conditioned medium of GMs and regular primary culture, blood, and urine of wild-type (WT)- and glioma mouse models, and characterized by nano tracking analyzer, transmission electron microscopy, immunogold-EM, and differential light scanning. Next, we measured the biophysical parameters of GMs-EVs by using atomic force microscopy. Further, the functional constituents of EVs were examined by FTIR and Raman spectroscopy. Exosomes and MVs-derived from GMs, blood, and urine showed distinction biophysical parameters (roughness, adhesion force, and stiffness) and different from that of regular primary glial cells, WT-blood, and -urine, which can be attributed to the characteristic functional constituents. Therefore, biophysical features can be potential diagnostic biomarkers for glioma.

Keywords: glioma, extracellular vesicles, exosomes, microvesicles, biophysical properties

Procedia PDF Downloads 128
1730 Using Atomic Force Microscope to Investigate the Influence of UVA Radiation and HA on Cell Behaviour and Elasticity of Dermal Fibroblasts

Authors: Pei-Hsiu Chiang, Ling Hong Huang, Hsin-I Chang

Abstract:

In this research, we used UVA irradiation, which can penetrate into dermis and fibroblasts, the most abundant cells in dermis, to investigate the effect of UV light on dermis, such as inflammation, ECM degradation and elasticity loss. Moreover, this research is focused on the influence of hyaluronic acid (HA) on UVA treated dermal fibroblasts. We aim to establish whether HA can effectively relief ECM degradation, and restore the elasticity of UVA-damaged fibroblasts. Prolonged exposure to UVA radiation can damage fibroblasts and led variation in cell morphology and reduction in cell viability. Besides, UVA radiation can induce IL-1β expression on fibroblasts and then promote MMP-1 and MMP-3 expression, which can accelerate ECM degradation. On the other hand, prolonged exposure to UVA radiation reduced collagen and elastin synthesis on fibroblasts. Due to the acceleration of ECM degradation and the reduction of ECM synthesis, Atomic force microscope (AFM) was used to analyze the elasticity reduction on UVA-damaged fibroblasts. UVA irradiation causes photoaging on fibroblasts. UVA damaged fibroblasts with HA treatment can down-regulate the gene expression of MMP-1, MMP-3, and then slow down ECM degradation. On the other hand, HA may restore elastin and collagen synthesis in UV-damaged fibroblasts. Based on the slowdown of ECM degradation, UVA-damaged fibroblast elasticity can be effectively restored by HA treatment. In summary, HA can relief the photoaging conditions on fibroblasts, but may not be able to return fibroblasts to normal, healthy state. Although HA cannot fully recover UVA-damaged fibroblasts, HA is still potential for repairing photoaging skin.

Keywords: atomic force microscope, hyaluronic acid, UVA radiation, dermal fibroblasts

Procedia PDF Downloads 380
1729 The Assessment of Natural Ventilation Performance for Thermal Comfort in Educational Space: A Case Study of Design Studio in the Arab Academy for Science and Technology, Alexandria

Authors: Alaa Sarhan, Rania Abd El Gelil, Hana Awad

Abstract:

Through the last decades, the impact of thermal comfort on the working performance of users and occupants of an indoor space has been a concern. Research papers concluded that natural ventilation quality directly impacts the levels of thermal comfort. Natural ventilation must be put into account during the design process in order to improve the inhabitant's efficiency and productivity. One example of daily long-term occupancy spaces is educational facilities. Many individuals spend long times receiving a considerable amount of knowledge, and it takes additional time to apply this knowledge. Thus, this research is concerned with user's level of thermal comfort in design studios of educational facilities. The natural ventilation quality in spaces is affected by a number of parameters including orientation, opening design, and many other factors. This research aims to investigate the conscious manipulation of the physical parameters of the spaces and its impact on natural ventilation performance which subsequently affects thermal comfort of users. The current research uses inductive and deductive methods to define natural ventilation design considerations, which are used in a field study in a studio in the university building in Alexandria (AAST) to evaluate natural ventilation performance through analyzing and comparing the current case to the developed framework and conducting computational fluid dynamics simulation. Results have proved that natural ventilation performance is successful by only 50% of the natural ventilation design framework; these results are supported by CFD simulation.

Keywords: educational buildings, natural ventilation, , mediterranean climate, thermal comfort

Procedia PDF Downloads 200
1728 Colour Formation and Maillard Reactions in Spray-Dried Milk Powders

Authors: Zelin Zhou, Timothy Langrish

Abstract:

Spray drying is the final stage of milk powder production. Traditionally, the quality of spray-dried milk powders has mainly been assessed using their physical properties, such as their moisture contents, while chemical changes occurring during the spray drying process have often been ignored. With growing concerns about food quality, it is necessary to establish a better understanding of heat-induced degradation due to the spray-drying process of skim milk. In this study, the extent of thermal degradation for skim milk in a pilot-scale spray dryer has been investigated using different inlet gas temperatures. The extent of heat-induced damage has been measured by the formation of advanced Maillard reaction products and the loss of soluble proteins at pH 4.6 as assessed by a fluorometric method. A significant increase in the extent of thermal degradation has been found when the inlet gas temperature increased from 170°C to 190°C, suggesting protein unfolding may play an important role in the kinetics of heat-induced degradation for milk in spray dryers. Colour changes of the spray-dried skim milk powders have also been analysed using a standard lighting box. Colourimetric analysis results were expressed in CIELAB colour space with the use of the E index (E) and the Chroma (C) for measuring the difference between colours and the intensity of the colours. A strong linear correlation between the colour intensity of the spray-dried skim milk powders and the formation of advanced Maillard reaction products has been observed.

Keywords: colour formation, Maillard reactions, spray drying, skim milk powder

Procedia PDF Downloads 166
1727 Distribution of Phospholipids, Cholesterol and Carotenoids in Two-Solvent System during Egg Yolk Oil Solvent Extraction

Authors: Aleksandrs Kovalcuks, Mara Duma

Abstract:

Egg yolk oil is a concentrated source of egg bioactive compounds, such as fat-soluble vitamins, phospholipids, cholesterol, carotenoids and others. To extract lipids and other fat-soluble nutrients from liquid egg yolk, a two-step extraction process involving polar (ethanol) and non-polar (hexane) solvents were used. This extraction technique was based on egg yolk bioactive compounds polarities, where non-polar compound was extracted into non-polar hexane, but polar in to polar alcohol/water phase. But many egg yolk bioactive compounds are not strongly polar or non-polar. Egg yolk phospholipids, cholesterol and pigments are amphipatic (have both polar and non-polar regions) and their behavior in ethanol/hexane solvent system is not clear. The aim of this study was to clarify the behavior of phospholipids, cholesterol and carotenoids during extraction of egg yolk oil with ethanol and hexane and determine the loss of these compounds in egg yolk oil. Egg yolks and egg yolk oil were analyzed for phospholipids (phosphatidylcholine (PC) and phosphatidylethanolamine (PE)), cholesterol and carotenoids (lutein, zeaxanthin, canthaxanthin and β-carotene) content using GC-FID and HPLC methods. PC and PE are polar lipids and were extracted into polar ethanol phase. Concentration of PC in ethanol was 97.89% and PE 99.81% from total egg yolk phospholipids. Due to cholesterol’s partial extraction into ethanol, cholesterol content in egg yolk oil was reduced in comparison to its total content presented in egg yolk lipids. The highest amount of lutein and zeaxanthin was concentrated in ethanol extract. The opposite situation was observed with canthaxanthin and β-carotene, which became the main pigments of egg yolk oil.

Keywords: cholesterol, egg yolk oil, lutein, phospholipids, solvent extraction

Procedia PDF Downloads 489
1726 A Dual Spark Ignition Timing Influence for the High Power Aircraft Radial Engine Using a CFD Transient Modeling

Authors: Tytus Tulwin, Ksenia Siadkowska, Rafał Sochaczewski

Abstract:

A high power radial reciprocating engine is characterized by a large displacement volume of a combustion chamber. Choosing the right moment for ignition is important for a high performance or high reliability and ignition certainty. This work shows methods of simulating ignition process and its impact on engine parameters. For given conditions a flame speed is limited when a deflagration combustion takes place. Therefore, a larger length scale of the combustion chamber compared to a standard size automotive engine makes combustion take longer time to propagate. In order to speed up the mixture burn-up time the second spark is introduced. The transient Computational Fluid Dynamics model capable of simulating multicycle engine processes was developed. The CFD model consists of ECFM-3Z combustion and species transport models. A relative ignition timing difference for the both spark sources is constant. The temperature distribution on engine walls was calculated in the separate conjugate heat transfer simulation. The in-cylinder pressure validation was performed for take-off power flight conditions. The influence of ignition timing on parameters like in-cylinder temperature or rate of heat release was analyzed. The most advantageous spark timing for the highest power output was chosen. The conditions around the spark plug locations for the pre-ignition period were analyzed. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: CFD, combustion, ignition, simulation, timing

Procedia PDF Downloads 284
1725 Analysis of Cardiac Health Using Chaotic Theory

Authors: Chandra Mukherjee

Abstract:

The prevalent knowledge of the biological systems is based on the standard scientific perception of natural equilibrium, determination and predictability. Recently, a rethinking of concepts was presented and a new scientific perspective emerged that involves complexity theory with deterministic chaos theory, nonlinear dynamics and theory of fractals. The unpredictability of the chaotic processes probably would change our understanding of diseases and their management. The mathematical definition of chaos is defined by deterministic behavior with irregular patterns that obey mathematical equations which are critically dependent on initial conditions. The chaos theory is the branch of sciences with an interest in nonlinear dynamics, fractals, bifurcations, periodic oscillations and complexity. Recently, the biomedical interest for this scientific field made these mathematical concepts available to medical researchers and practitioners. Any biological network system is considered to have a nominal state, which is recognized as a homeostatic state. In reality, the different physiological systems are not under normal conditions in a stable state of homeostatic balance, but they are in a dynamically stable state with a chaotic behavior and complexity. Biological systems like heart rhythm and brain electrical activity are dynamical systems that can be classified as chaotic systems with sensitive dependence on initial conditions. In biological systems, the state of a disease is characterized by a loss of the complexity and chaotic behavior, and by the presence of pathological periodicity and regulatory behavior. The failure or the collapse of nonlinear dynamics is an indication of disease rather than a characteristic of health.

Keywords: HRV, HRVI, LF, HF, DII

Procedia PDF Downloads 406
1724 Neuroplasticity in Language Acquisition in English as Foreign Language Classrooms

Authors: Sabitha Rahim

Abstract:

In the context of teaching vocabulary of English as Foreign Language (EFL), the confluence of memory and retention is one of the most significant factors in students' language acquisition. The progress of students engaged in foreign language acquisition is often stymied by vocabulary attrition, which leads to learners' lack of confidence and motivation. However, among other factors, little research has investigated the importance of neuroplasticity in Foreign Language acquisition and how underused neural pathways lead to the loss of plasticity, thereby affecting the learners’ vocabulary retention and motivation. This research explored the effect of enhancing vocabulary acquisition of EFL students in the Foundation Year at King Abdulaziz University through various methods and neuroplasticity exercises that reinforced their attention, motivation, and engagement. It analyzed the results to determine if stimulating the brain of EFL learners by various physical and mental activities led to the improvement in short and long term memory in vocabulary retention. The main data collection methods were student surveys, assessment records of teachers, student achievement test results, and students' follow-up interviews. A key implication of this research is for the institutions to consider having multiple varieties of student activities promoting brain plasticity within the classrooms as an effective tool for foreign language acquisition. Building awareness among the faculty and adapting the curriculum to include activities that promote brain plasticity ensures an enhanced learning environment and effective language acquisition in EFL classrooms.

Keywords: language acquisition, neural paths, neuroplasticity, vocabulary attrition

Procedia PDF Downloads 155
1723 Application of Response Surface Methodology to Optimize the Factor Influencing the Wax Deposition of Malaysian Crude Oil

Authors: Basem Elarbe, Ibrahim Elganidi, Norida Ridzuan, Norhyati Abdullah

Abstract:

Wax deposition in production pipelines and transportation tubing from offshore to onshore is critical in the oil and gas industry due to low-temperature conditions. It may lead to a reduction in production, shut-in, plugging of pipelines and increased fluid viscosity. The most significant popular approach to solve this issue is by injection of a wax inhibitor into the channel. This research aims to determine the amount of wax deposition of Malaysian crude oil by estimating the effective parameters using (Design-Expert version 7.1.6) by response surface methodology (RSM) method. Important parameters affecting wax deposition such as cold finger temperature, inhibitor concentration and experimental duration were investigated. It can be concluded that SA-co-BA copolymer had a higher capability of reducing wax in different conditions where the minimum point of wax reduction was found at 300 rpm, 14℃, 1h, 1200 ppmThe amount of waxes collected for each parameter were 0.12g. RSM approach was applied using rotatable central composite design (CCD) to minimize the wax deposit amount. The regression model’s variance (ANOVA) results revealed that the R2 value of 0.9906, indicating that the model can be clarified 99.06% of the data variation, and just 0.94% of the total variation were not clarified by the model. Therefore, it indicated that the model is extremely significant, confirming a close agreement between the experimental and the predicted values. In addition, the result has shown that the amount of wax deposit decreased significantly with the increase of temperature and the concentration of poly (stearyl acrylate-co-behenyl acrylate) (SABA), which were set at 14°C and 1200 ppm, respectively. The amount of wax deposit was successfully reduced to the minimum value of 0.01 g after the optimization.

Keywords: wax deposition, SABA inhibitor, RSM, operation factors

Procedia PDF Downloads 268
1722 Unleashing Potential in Pedagogical Innovation for STEM Education: Applying Knowledge Transfer Technology to Guide a Co-Creation Learning Mechanism for the Lingering Effects Amid COVID-19

Authors: Lan Cheng, Harry Qin, Yang Wang

Abstract:

Background: COVID-19 has induced the largest digital learning experiment in history. There is also emerging research evidence that students have paid a high cost of learning loss from virtual learning. University-wide survey results demonstrate that digital learning remains difficult for students who struggle with learning challenges, isolation, or a lack of resources. Large-scale efforts are therefore increasingly utilized for digital education. To better prepare students in higher education for this grand scientific and technological transformation, STEM education has been prioritized and promoted as a strategic imperative in the ongoing curriculum reform essential for unfinished learning needs and whole-person development. Building upon five key elements identified in the STEM education literature: Problem-based Learning, Community and Belonging, Technology Skills, Personalization of Learning, Connection to the External Community, this case study explores the potential of pedagogical innovation that integrates computational and experimental methodologies to support, enrich, and navigate STEM education. Objectives: The goal of this case study is to create a high-fidelity prototype design for STEM education with knowledge transfer technology that contains a Cooperative Multi-Agent System (CMAS), which has the objectives of (1) conduct assessment to reveal a virtual learning mechanism and establish strategies to facilitate scientific learning engagement, accessibility, and connection within and beyond university setting, (2) explore and validate an interactional co-creation approach embedded in project-based learning activities under the STEM learning context, which is being transformed by both digital technology and student behavior change,(3) formulate and implement the STEM-oriented campaign to guide learning network mapping, mitigate the loss of learning, enhance the learning experience, scale-up inclusive participation. Methods: This study applied a case study strategy and a methodology informed by Social Network Analysis Theory within a cross-disciplinary communication paradigm (students, peers, educators). Knowledge transfer technology is introduced to address learning challenges and to increase the efficiency of Reinforcement Learning (RL) algorithms. A co-creation learning framework was identified and investigated in a context-specific way with a learning analytic tool designed in this study. Findings: The result shows that (1) CMAS-empowered learning support reduced students’ confusion, difficulties, and gaps during problem-solving scenarios while increasing learner capacity empowerment, (2) The co-creation learning phenomenon have examined through the lens of the campaign and reveals that an interactive virtual learning environment fosters students to navigate scientific challenge independently and collaboratively, (3) The deliverables brought from the STEM educational campaign provide a methodological framework both within the context of the curriculum design and external community engagement application. Conclusion: This study brings a holistic and coherent pedagogy to cultivates students’ interest in STEM and develop them a knowledge base to integrate and apply knowledge across different STEM disciplines. Through the co-designing and cross-disciplinary educational content and campaign promotion, findings suggest factors to empower evidence-based learning practice while also piloting and tracking the impact of the scholastic value of co-creation under the dynamic learning environment. The data nested under the knowledge transfer technology situates learners’ scientific journey and could pave the way for theoretical advancement and broader scientific enervators within larger datasets, projects, and communities.

Keywords: co-creation, cross-disciplinary, knowledge transfer, STEM education, social network analysis

Procedia PDF Downloads 100
1721 Modeling the Reliability of a Fuel Cell and the Influence of Mechanical Aspects on the Production of Electrical Energy

Authors: Raed Kouta

Abstract:

A fuel cell is a multi-physical system. Its electrical performance depends on chemical, electrochemical, fluid, and mechanical parameters. Many studies focus on physical and chemical aspects. Our study contributes to the evaluation of the influence of mechanical aspects on the performance of a fuel cell. This study is carried out as part of a reliability approach. Reliability modeling allows to consider the uncertainties of the incoming parameters and the probabilistic modeling of the outgoing parameters. The fuel cell studied is the one often used in land, sea, or air transport. This is the Low-Temperature Proton Exchange Membrane Fuel Cell (PEMFC). This battery can provide the required power level. One of the main scientific and technical challenges in mastering the design and production of a fuel cell is to know its behavior in its actual operating environment. The study proposes to highlight the influence on the production of electrical energy: Mechanical design and manufacturing parameters and their uncertainties (Young module, GDL porosity, permeability, etc.). The influence of the geometry of the bipolar plates is also considered. An experimental design is proposed with two types of materials as well as three geometric shapes for three joining pressures. Other experimental designs are also proposed for studying the influence of uncertainties of mechanical parameters on cell performance. - Mechanical (static, dynamic) and thermal (tightening - compression, vibrations (road rolling and tests on vibration-climatic bench, etc.) loads. This study is also carried out according to an experimental scheme on a fuel cell system for vibration loads recorded on a vehicle test track with three temperatures and three expected performance levels. The work will improve the coupling between mechanical, physical, and chemical phenomena.

Keywords: fuel cell, mechanic, reliability, uncertainties

Procedia PDF Downloads 173
1720 A Clear Language Is Essential: A Qualitative Exploration of Doctor-Patient Health Interaction in Jordan

Authors: Etaf Khlaed Haroun Alkhlaifat

Abstract:

When doctors and patients do not share the same first language, language barriers may exist, which may have negative effects on the quality of communication and care provided. Doctors’ use of medical jargon and patients’ inability to fully express their illness, to a potential loss of relevant information can often create misunderstanding. This study sought to examine the extent to which a lack of “common” language represents one of the linguistic obstacles that may adversely influence the quality of healthcare services in Jordan. Communication Accommodation Theory (CAT) was used to interpret the phenomena under study. Doctors (n=9) and patients (n=18) were observed and interviewed in natural Jordanian medical settings. A thematic qualitative approach was employed to analyse the data. The preliminary findings of the study revealed that most doctors appeared to have a good sense of appropriate ways to break through communication barriers by changing medical terminologies or jargons into lay terms. However, for some, there were two main challenges: 1) the use of medical jargon in explaining medication and side effects and 2) the lack of patients’ knowledge in providing a full explanation about their illnesses. The study revealed that language barriers adversely affect health outcomes for patients with limited fluency in the English language. It argues that it is doctors’ responsibility to guarantee mutual understanding, educate patients on their condition and improve their health outcomes.

Keywords: communication accommodation theory, doctor-patient interaction, language barrier, medical jargon, misunderstanding

Procedia PDF Downloads 66
1719 Breast Cancer as a Response to Distress in Women with or without a History of Precancerous Breast Disease

Authors: Viacheslav Sushko, Viktor Sushko

Abstract:

Pre-cancerous breast diseases are pathological changes that precede the appearance of adenocarcinoma. The most common benign breast disease is mastopathy. We examined the life and disease history of 114 women aged 58-69 who were diagnosed with adenocarcinoma of the breast at different stages of development. They filled out the Reeder Scale to determine the level of stress. The results of the study revealed that 62 of them had mastopathy at the age of 30-45 years old. These women refused surgical treatment for mastopathy. Five to six years before their diagnosis of adenocarcinoma of the mammary gland, 84 women had experienced severe stress (death of a beloved close relative, torture accompanied by rape, prolonged stay in extreme conditions (under bombardment and bombardment). In the assessment of data from completed Reeder scales, 114 women had a high level of mental stress, with a score from 1-1.72. The 84 women who suffered from severe stress showed overeating or a significant decrease in food intake, insomnia, apathy, increased irritability and restlessness, loss of interest in sexual relationships, forgetfulness, difficulty in performing routine work, prolonged uncontrollable headaches, unexplained fatigue, heart pain, reduced capacity for work. In conclusion, it is important to provide psychotherapy for breast cancer patients as the diagnosis, and the different stages of treatment are very stressful. It is also advisable to see a psychiatrist at an early stage and prevent distress and treat precancerous breast disease.

Keywords: breast cancer, distress, mastopathy, severe stress

Procedia PDF Downloads 117
1718 Time-dependent Association between Recreational Cannabinoid Use and Memory Performance in Healthy Adults: A Neuroimaging Study of Human Connectome Project

Authors: Kamyar Moradi

Abstract:

Background: There is mixed evidence regarding the association between recreational cannabinoid use and memory performance. One of the major reasons for the present controversy is different cannabinoid use-related covariates that influence the cognitive status of an individual. Adjustment of these confounding variables provides accurate insight into the real effects of cannabinoid use on memory status. In this study, we sought to investigate the association between recent recreational cannabinoid use and memory performance while correcting the model for other possible covariates such as demographic characteristics and duration, and amount of cannabinoid use. Methods: Cannabinoid users were assigned to two groups based on the results of THC urine drug screen test (THC+ group: n = 110, THC- group: n = 410). THC urine drug screen test has a high sensitivity and specificity in detecting cannabinoid use in the last 3-4 weeks. The memory domain of NIH Toolbox battery and brain MRI volumetric measures were compared between the groups while adjusting for confounding variables. Results: After Benjamini-Hochberg p-value correction, the performance in all of the measured memory outcomes, including vocabulary comprehension, episodic memory, executive function/cognitive flexibility, processing speed, reading skill, working memory, and fluid cognition, were significantly weaker in THC+ group (p values less than 0.05). Also, volume of gray matter, left supramarginal, right precuneus, right inferior/middle temporal, right hippocampus, left entorhinal, and right pars orbitalis regions were significantly smaller in THC+ group. Conclusions: this study provides evidence regarding the acute effect of recreational cannabis use on memory performance. Further studies are warranted to confirm the results.

Keywords: brain MRI, cannabis, memory, recreational use, THC urine test

Procedia PDF Downloads 178
1717 Application of Continuum Damage Concept to Simulation of the Interaction between Hydraulic Fractures and Natural Fractures

Authors: Anny Zambrano, German Gonzalez, Yair Quintero

Abstract:

The continuum damage concept is used to study the interaction between hydraulic fractures and natural fractures, the objective is representing the path and relation among this two fractures types and predict its complex behavior without the need to pre-define their direction as occurs in other finite element applications, providing results more consistent with the physical behavior of the phenomenon. The approach uses finite element simulations through Abaqus software to model damage fracturing, the fracturing process by damage propagation in a rock. The modeling the phenomenon develops in two dimensional (2D) so that the fracture will be represented by a line and the crack front by a point. It considers nonlinear constitutive behavior, finite strain, time-dependent deformation, complex boundary conditions, strain hardening and softening, and strain based damage evolution in compression and tension. The complete governing equations are provided and the method is described in detail to permit readers to replicate all results. The model is compared to models that are published and available. Comparisons are focused in five interactions between natural fractures (NF) and hydraulic fractures: Fractured arrested at NF, crossing NF with or without offset, branching at intersecting NFs, branching at end of NF and NF dilation due to shear slippage. The most significant new finding is, that is not necessary to use pre-defined addresses propagation and stress condition can be evaluated as a dominant factor in the process. This is important because it can model in a more real way the generated complex hydraulic fractures, and be a valuable tool to predict potential problems and different geometries of the fracture network in the process of fracturing due to fluid injection.

Keywords: continuum damage, hydraulic fractures, natural fractures, complex fracture network, stiffness

Procedia PDF Downloads 322
1716 Art, Nature, and City in the Construction of Contemporary Public Space

Authors: Rodrigo Coelho

Abstract:

We believe that in the majority of the “recent production of public space", the overvaluation of the "image", of the "ephemeral" and of the "objectual", has come to determine the configuration of banal and (more or less) arbitrary "public spaces", mostly linked to a problem of “outdoor decoration”, reflecting a clear sign of uncertainty and arbitrariness about the meaning, the role and shape of public space and public art.This "inconsistency" which is essentially linked to the loss of urban, but also social, cultural and political, vocation of the disciplines that “shape” the urban space (but is also linked to the lack of urban and technical culture of techinicians and policy makers) converted a significant set of the recently built "public space" and “urban art” into diffuse and multi-referenced pieces, which generally shares the inability of confering to the urban space, civic, aesthetic, social and symbolic meanings. In this sense we consider it is essential to undertake a theoretical reflection on the values, the meaning(s) and the shape(s) that open space, and urban art may (or must) take in the current urban and cultural context, in order to redeem for public space its status of significant physical reference, able to embody a spatial and urban identity, and simultaneously enable the collective accession and appropriation of public space. Taking as reference public space interventions built in the last decade on the European context, we will seek to explore and defend the need of considering public space as a true place of exception, an exceptional support where the emphasis is placed on the quality of the experience, especially by the relations public space/urban art can established with the city, with nature and geography in a broad sense, referring us back to a close and inseparable and timeless relationship between nature and culture.

Keywords: art, city, nature, public space

Procedia PDF Downloads 433
1715 The Sustainable Strategies Research for Renewal of “Villages in City”: A Case Study of Liuzhou in Southwestern China

Authors: Kai Zhang

Abstract:

Transformation under the reconfiguration of urban-rural relation in Liuzhou city has never been as radical and visible as it has been since the tremendous turn of the last century in China. Huanjiang village is located in Linhuashan Scenic Area in the middle east of Liuzhou city, with spectacular landscape and traditional features. Nowadays Huanjiang village has become a so-called "village in city", which is considered full of great potential for development because of the economic value of regional advantages during the urban sprawl. Communities of village found it difficult to acclimatize with the dramatic changes, which later led to numerous problems including ecological damage, unemployment of landless farmers and loss of traditional culture. Government has started up a series of renewal planings to resolve the problems, which are based on advanced technology and conform to sustainable and integrated strategies of city planning considering the original context and historical culture, superseding the traditional arrangements based on the guide of extensive economic growth. This paper aims to elaborate the context of Liuzhou city and Huanjiang village offered to both the traditional and sustainable planning approaches, in order to understand challenges and solutions of the rebuilding process. Through the analysis of the place relevant to architecture, society and culture, it will establish the corresponding systematic strategies. Considering the local features, it concludes with a comprehensive perspective on organic renewal in the case of Huanjiang village.

Keywords: China, Liuzhou, sustainable strategy, urban renewal, village in city

Procedia PDF Downloads 267
1714 Analyses for Primary Coolant Pump Coastdown Phenomena for Jordan Research and Training Reactor

Authors: Yazan M. Alatrash, Han-ok Kang, Hyun-gi Yoon, Shen Zhang, Juhyeon Yoon

Abstract:

Flow coastdown phenomena are very important to secure nuclear fuel integrity during loss of off-site power accidents. In this study, primary coolant flow coastdown phenomena are investigated for the Jordan Research and Training Reactor (JRTR) using a simulation software package, Modular Modelling System (MMS). Two MMS models are built. The first one is a simple model to investigate the characteristics of the primary coolant pump only. The second one is a model for a simulation of the Primary Coolant System (PCS) loop, in which all the detailed design data of the JRTR PCS system are modelled, including the geometrical arrangement data. The same design data for a PCS pump are used for both models. Coastdown curves obtained from the two models are compared to study the PCS loop coolant inertia effect on a flow coastdown. Results showed that the loop coolant inertia effect is found to be small in the JRTR PCS loop, i.e., about one second increases in a coastdown half time required to halve the coolant flow rate. The effects of different flywheel inertia on the flow coastdown are also investigated. It is demonstrated that the coastdown half time increases with the flywheel inertia linearly. The designed coastdown half time is proved to be well above the design requirement for the fuel integrity.

Keywords: flow coastdown, loop inertia, modelling, research reactor

Procedia PDF Downloads 480
1713 Release Response of Black Spruce and White Spruce Following Overstory Lodgepole Pine Mortality Due to Mountain Pine Beetle Attack

Authors: F. O. Oboite, P. G. Comeau

Abstract:

Advance regeneration is present in many lodgepole pine stands in Alberta. When the overstory pine canopy is killed by Mountain Pine Beetle (MPB) the growth of this advance is likely to increase. Understanding the growth response of these understory tree species is needed to improve mid-term timber supply projections and management decisions. To quantify the growth (diameter, height, height/diameter ratio) responses of black spruce and white spruce to lodgepole pine mortality, sample trees of black and white spruce advance regeneration were selected from 7 lodgepole pine dominated stands (5 attacked; 2 control) in the Foothills Region of western Alberta. Measurements were collected 7-8 years after MPB attack across a wide range of spruce height and stand densities. Analysis was done using mixed model linear regression. Result indicates that there was an increase in both diameter and height growth after MPB attack; however, this increase in growth was delayed for about four years. Both spruce species had similar height response and their height/diameter ratio decreased after release, partly as a result of increased understory light associated with loss of needles in the pine canopy. In addition, the diameter and height growth responses of both spruce species were strongly related to density, prerelease growth and initial size.

Keywords: mountain pine beetle, forest regeneration, lodgepole pine, growth response

Procedia PDF Downloads 361
1712 Determination of the Quantity of Water Absorbed by the Plant When Irrigating by Infiltration in Arid Regions (Case of Ouargla in Algeria)

Authors: Mehdi Benlarbi, Dalila Oulhaci

Abstract:

Several physical, human and economic factors come into play in the choice of an irrigation system for developing arid and semi-arid regions. Since it is impossible to define or weight quantitatively all the relevant factors in each case, the choice of the system is often based on subjective preferences rather than explicit analysis. Over the past decade, irrational irrigation in the Ouargla region has evolved to a certain extent based largely on water wastage and which may pose risks to the environment both off-site and at the site. In the whole region, the environment is damaged by excess water because the water tables that tend to be high form swamps that pollute nature on the surface. The purpose of our work is a comparison between sprinkler irrigation and drip irrigation using bottles. By irrigating with the aid of the bottle and giving a volume of 4 liters with a flow rate of one (1) liter per hour, the watering dose received varies between 6 and 7 mm without infiltration losses. And for the case of sprinkler irrigation, the dose received may not exceed 2.5mm. E in some cases, we have a quantity of water lost by infiltration. This shows that irrigation using the bottle is much more efficient than sprinkling. Because, on the one hand, a large amount of water is absorbed by the plant and on the other hand, there is no loss by infiltration. The results obtained are very significant because, on the one hand, we reuse local products, and on the other hand, as the bottles are buried, we avoid water losses by evaporation, especially in dry periods and salinization.

Keywords: resources, water, arid, evaporation, infiltration

Procedia PDF Downloads 63