Search results for: silver staining
376 Effects of Stiffness on Endothelial Cells Behavior
Authors: Forough Ataollahi, Sumit Pramanik, Belinda Pingguan-Murphy, Wan Abu Bakar Bin Wan Abas, Noor Azuan Bin Abu Osman
Abstract:
Endothelium proliferation is an important process in cardiovascular homeostasis and can be regulated by extracellular environment, as cells can actively sense mechanical environment. In this study, we evaluated endothelial cell proliferation on PDMS/alumina (Al2O3) composites and pure PDMS. The substrates were prepared from pure PDMS and its composites with 5% and 10% Al2O3 at curing temperature 50˚C for 4 h and then characterized by mechanical, structural and morphological analyses. Higher stiffness was found in the composites compared to the pure PDMS substrate. Cell proliferation of the cultured bovine aortic endothelial cells on substrate materials were evaluated via Resazurin assay and 1, 1’-Dioctadecyl-1, 3, 3, 3’, 3’-Tetramethylindocarbocyanine Perchlorate-Acetylated LDL (Dil-Ac-LDL) cell staining, respectively. The results revealed that stiffer substrates promote more endothelial cells proliferation to the less stiff substrates. Therefore, this study firmly hypothesizes that the stiffness elevates endothelial cells proliferation.Keywords: stiffness, proliferation, bovine aortic endothelial cells, extra cellular matrix, vascular
Procedia PDF Downloads 344375 A Flexible High Energy Density Zn-Air Battery by Screen Printing Technique
Authors: Sira Suren, Soorathep Kheawhom
Abstract:
This work investigates the development of a high energy density zinc-air battery. Printed and flexible thin film zinc-air battery with an overall thickness of about 350 μm was fabricated by an inexpensive screen-printing technique. Commercial nano-silver ink was used as both current collectors and catalyst layer. Carbon black ink was used to fabricate cathode electrode. Polypropylene membrane was used as the cathode substrate and separator. 9 M KOH was used as the electrolyte. A mixture of Zn powder, ZnO, and Bi2O3 was used to prepare the anode electrode. The suitable concentration of Bi2O3 and types of binders (styrene-butadiene and sodium silicate) were investigated. Results showed that battery using 20% Bi2O3 and sodium silicate binder provided the best performance. The open-circuit voltage and energy density observed were 1.59 V and 690 Wh/kg, respectively. When the battery was discharged at 20 mA/cm2, the potential voltage observed was 1.3 V. Furthermore, the battery was tested for its flexibility. Upon bending, no significant loss in performance was observed.Keywords: flexible, printed battery, screen printing, Zn-air
Procedia PDF Downloads 278374 Platelet-Derived Growth Factor-Β Receptor/P38 Pathway May Be the Potential Liver Damage Mechanisms Caused by Saikosaponin D
Authors: Li Chen, Feng Zhang, Shizhong Zheng
Abstract:
SaikosaponinD (SSD) is a major component of saikosaponins isolated from Bupleurumfalactum. Our current study was to examine the toxic effect of SSD on liver cells and explore the possible mechanism. The results demonstrated that SSD induced mouse liver injury and led to apoptosis in LO2 cells. HE staining and TUNEL analyses showed that SSD stimulated liver injury and hepatocyte apoptosis in vivo. Subsequent experiments showed that SSD down-regulated Bcl-2 but up-regulated Bax. In vitro, SSD-treated LO2 cells exhibited apparent down-regulated expression of p-p38. Moreover, PDGF-βR agonist PDGF-BB alone significantly upregulated p38 phosphorylation, while combined with SSD, p38 phosphorylation expression was reduced. Furthermore, shRNA-mediated PDGF-βR knockdown augmented the inactivation of p-p38 and Bcl2 but abrogated the activation of Bax, these results were more obvious when shRNA combined with SSD. These data indicated that SSD stimulated liver injury and apoptosis in hepatocytes and PDGF-βR /p38 pathway may be the potential mechanistic.Keywords: saikosaponin D, hepatotoxicity, liver injury, apoptosis, platelet-derived growth factor-β receptor, p38
Procedia PDF Downloads 400373 New Quinazoline Derivative Induce Cytotoxic Effect against Mcf-7 Human Breast Cancer Cell
Authors: Maryam Zahedi Fard, Nazia Abdul Majid, Hapipah Mohd Ali, Mahmood Ameen Abdulla
Abstract:
New quinazoline schiff base 3-(5-bromo-2-hydroxy-3-methoxybenzylideneamino)-2-(5-bromo-2-hydroxy-3-methoxyphenyl)-2,3-dihydroquinazolin-4(1H)-one was investigated for anticancer activity against MCF-7 human breast cancer cell line with involved mechanism of apoptosis. The compound demonstrated a remarkable antiproliferative effect, with an IC50 value of 3.41 ± 0.34, after 72 hours of treatment. Morphological apoptotic features in treated MCF-7 cells were observed by AO/PI staining. Furthermore, treated MCF-7 cells subjected to apoptosis death, as exhibited by perturbation of mitochondrial membrane potential and cytochrome c release as well as increase in ROS generation. We also found activation of caspases 3/7 and -9. Moreover, acute toxicity test demonstrated the nontoxic nature of the compound in mice. Our results showed the selected compound significantly induce apoptosis in MCF-7 cells via intrinsic pathway, which might be considered as a potent candidate for further in vivo and clinical breast cancer studies.Keywords: antiproliferative effect, MCF-7 human breast cancer cell line, apoptosis, caspases
Procedia PDF Downloads 532372 The Effects of Androgen Receptor Mutation on Cryptorchid Testes in 46, XY Female
Authors: Ihtisham Bukhari
Abstract:
In the current study, we enrolled a 46, XY phenotypically female patient bearing testes in her inguinal canal. DNA sequencing of the AR gene detected a missense mutation C.1715A > G (p. Y572C) in exon 2 which is already known to cause Complete androgen insensitivity syndrome (CAIS). We further studied the effects of this mutation on the testicular histopathology of the patient. No spermatocytes were seen in the surface spreading of testicular tissues while H&E staining showed that seminiferous tubules predominantly have only Sertoli cells. To confirm this meiotic failure is likely due to the current AR mutation we performed mRNA expression of genes associated with AR pathway, expression and location of the associated proteins in testicular tissues. Western blot and real-time PCR data showed that the patient had high levels of expression of AMH, SOX9, and INNB in testis. Tubules were stained with SOX9 and AMH which revealed Sertoli cell maturation arrest. Therefore, we suggest that AR mutation enhances AMH expression which ultimately leads to failure in the maturation of Sertoli cells and failure in spermatogenesis.Keywords: androgen receptor, spermatogenesis, infertility, Sertoli cell only syndrome
Procedia PDF Downloads 145371 Carbon-Foam Supported Electrocatalysts for Polymer Electrolyte Membrane Fuel Cells
Authors: Albert Mufundirwa, Satoru Yoshioka, K. Ogi, Takeharu Sugiyama, George F. Harrington, Bretislav Smid, Benjamin Cunning, Kazunari Sasaki, Akari Hayashi, Stephen M. Lyth
Abstract:
Polymer electrolyte membrane fuel cells (PEMFCs) are electrochemical energy conversion devices used for portable, residential and vehicular applications due to their low emissions, high efficiency, and quick start-up characteristics. However, PEMFCs generally use expensive, Pt-based electrocatalysts as electrode catalysts. Due to the high cost and limited availability of platinum, research and development to either drastically reduce platinum loading, or replace platinum with alternative catalysts is of paramount importance. A combination of high surface area supports and nano-structured active sites is essential for effective operation of catalysts. We synthesize carbon foam supports by thermal decomposition of sodium ethoxide, using a template-free, gram scale, cheap, and scalable pyrolysis method. This carbon foam has a high surface area, highly porous, three-dimensional framework which is ideal for electrochemical applications. These carbon foams can have surface area larger than 2500 m²/g, and electron microscopy reveals that they have micron-scale cells, separated by few-layer graphene-like carbon walls. We applied this carbon foam as a platinum catalyst support, resulting in the improved electrochemical surface area and mass activity for the oxygen reduction reaction (ORR), compared to carbon black. Similarly, silver-decorated carbon foams showed higher activity and efficiency for electrochemical carbon dioxide conversion than silver-decorated carbon black. A promising alternative to Pt-catalysts for the ORR is iron-impregnated nitrogen-doped carbon catalysts (Fe-N-C). Doping carbon with nitrogen alters the chemical structure and modulates the electronic properties, allowing a degree of control over the catalytic properties. We have adapted our synthesis method to produce nitrogen-doped carbon foams with large surface area, using triethanolamine as a nitrogen feedstock, in a novel bottom-up protocol. These foams are then infiltrated with iron acetate (FeAc) and pyrolysed to form Fe-N-C foams. The resulting Fe-N-C foam catalysts have high initial activity (half-wave potential of 0.68 VRHE), comparable to that of commercially available Pt-free catalysts (e.g., NPC-2000, Pajarito Powder) in acid solution. In alkaline solution, the Fe-N-C carbon foam catalysts have a half-wave potential of 0.89 VRHE, which is higher than that of NPC-2000 by almost 10 mVRHE, and far out-performing platinum. However, the durability is still a problem at present. The lessons learned from X-ray absorption spectroscopy (XAS), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and electrochemical measurements will be used to carefully design Fe-N-C catalysts for higher performance PEMFCs.Keywords: carbon-foam, polymer electrolyte membrane fuel cells, platinum, Pt-free, Fe-N-C, ORR
Procedia PDF Downloads 181370 Organization of the Olfactory System and the Mushroom Body of the Weaver Ant, Oecophylla smaragdina
Authors: Rajashekhar K. Patil, Martin J. Babu
Abstract:
Weaver ants-Oecophylla smaragdina live in colonies that have polymorphic castes. The females which include the queen, major and minor workers are haploid. The individuals of castes are dependent on olfactory cues for carrying out caste-specific behaviour. In an effort to understand whether organizational differences exist to support these behavioural differences, we studied the olfactory system at the level of the sensilla on the antennae, olfactory glomeruli and the Kenyon cells in the mushroom bodies (MB). The MB differ in major and minor workers in terms of their size, with the major workers having relatively larger calyces and peduncle. The morphology of different types of Kenyon cells as revealed by Golgi-rapid staining was studied and the major workers had more dendritic arbors than minor workers. This suggests a greater degree of olfactory processing in major workers. Differences in caste-specific arrangement of sensilla, olfactory glomeruli and celluar architecture of MB indicate a developmental programme that forms basis of differential behaviour.Keywords: ant, oecophylla, caste, mushroom body
Procedia PDF Downloads 471369 Histopathological Examination of Lung Surgery Camel in Iran
Authors: Ali Chitgar
Abstract:
Respiratory infections including diseases in camels are important not only because of the threat of animal health but also to reduce their production. Since that deal with respiratory problems and their treatment requires adequate knowledge of the existing respiratory problems, unfortunately, there is limited information about the species of camels. This study aimed to identify lung lesions camels slaughtered in a slaughterhouse more important was performed using histopathology. Respiratory camels (n = 477) was examined after the killing fully and tissue samples were placed in 10% formalin. The samples and histological sections using hematoxylin and eosin staining and color were evaluated. In this study 79.6 % (236 of 477 samples) of the samples was at least a lung lesion. Rate acute interstitial pneumonia, chronic interstitial pneumonia, bronchopneumonia, bronchiolitis, an inflammation of the pleura and 52.8 % respectively atelectasis (236 of 477 samples), 5.4 % (24 of 477 samples), 7.8 % (35 of 477 samples), 6.7 % (30 of 477 samples), 3.4 % (15 of 477 samples) and 15.2% (68 of 477 samples). The lung lesions, acute interstitial pneumonia and bronchopneumonia in autumn winter rather than spring and summer (p <0/05) and as a result, this study showed that high rates of lung lesions in the camel population. Waste higher results in cold seasons (fall and winter) shows.Keywords: camel, surgery, histopathology, breathing organ
Procedia PDF Downloads 203368 NS5ABP37 Inhibits Liver Cancer by Impeding Lipogenesis and Cholesterogenesis
Authors: Shenghu Feng, Jun Cheng
Abstract:
The molecular mechanism underlying nonalcoholic fatty liver disease (NAFLD) progression to hepatocellular carcinoma (HCC) remains unknown. In this study, immunohistochemistry staining result showed that NS5ABP37 protein expression decreased as with increasing degree of HCC malignancy. In agreement, NS5ABP37 protein overexpression significantly suppressed cell proliferation, caused G1/S cell cycle arrest, and induced apoptosis by increasing caspase-3/7 activity and cleaved caspase-3 levels. In addition, NS5ABP37 overexpression resulted in decreased intracellular TG and TC contents, with level reduction in SREBPs and downstream effectors. Furthermore, NS5ABP37 overexpression decreased SREBP1c and SREBP2 levels by inducing their respective promoters. Finally, ROS levels and ER-stress were both induced by NS5ABP37 overexpression. These findings together demonstrate that NS5ABP37 inhibits cancer cell proliferation and promotes apoptosis, by altering SREBP-dependent lipogenesis and cholesterogenesis in HepG2 cells and inducing oxidative stress and ER stress.Keywords: NS5ABP37, liver cancer, lipid metabolism, oxidative stress, ER stress
Procedia PDF Downloads 154367 Fully Printed Strain Gauges: A Comparison of Aerosoljet-Printing and Micropipette-Dispensing
Authors: Benjamin Panreck, Manfred Hild
Abstract:
Strain sensors based on a change in resistance are well established for the measurement of forces, stresses, or material fatigue. Within the scope of this paper, fully additive manufactured strain sensors were produced using an ink of silver nanoparticles. Their behavior was evaluated by periodic tensile tests. Printed strain sensors exhibit two advantages: Their measuring grid is adaptable to the use case and they do not need a carrier-foil, as the measuring structure can be printed directly onto a thin sprayed varnish layer on the aluminum specimen. In order to compare quality characteristics, the sensors have been manufactured using two different technologies, namely aerosoljet-printing and micropipette-dispensing. Both processes produce structures which exhibit continuous features (in contrast to what can be achieved with droplets during inkjet printing). Briefly summarized the results show that aerosoljet-printing is the preferable technology for specimen with non-planar surfaces whereas both technologies are suitable for flat specimen.Keywords: aerosoljet-printing, micropipette-dispensing, printed electronics, printed sensors, strain gauge
Procedia PDF Downloads 204366 Antimicrobial Nanocompositions Made of Amino Acid Based Biodegradable Polymers
Authors: Nino Kupatadze, Mzevinar Bedinashvili, Tamar Memanishvili, Manana Gurielidze, David Tugushi, Ramaz Katsarava
Abstract:
Bacteria easily colonize the surfaces of tissues, surgical devices (implants, orthopedics, catheters, etc.), and instruments causing surgical device related infections. Therefore, the battle against bacteria and the prevention of surgical devices from biofilm formation is one of the main challenges of biomedicine today. Our strategy to the solution of this problem consists in using antimicrobial polymeric coatings as effective “shields” to protect surfaces from bacteria’s colonization and biofilm formation. As one of the most promising approaches look be the use of antimicrobial bioerodible polymeric nanocomposites containing silver nanoparticles (AgNPs). We assume that the combination of an erodible polymer with a strong bactericide should put obstacles to bacteria to occupy the surface and to form biofilm. It has to be noted that this kind of nanocomposites are also promising as wound dressing materials to treat infected superficial wounds. Various synthetic and natural polymers were used for creating biocomposites containing AgNPs as both particles' stabilizers and matrices forming elastic films at surfaces. One of the most effective systems to fabricate AgNPs is an ethanol solution of polyvinylpyrrolidone(PVP) with dissolved AgNO3–ethanol serves as a AgNO3 reductant and PVP as AgNPs stabilizer (through the interaction of nanoparticles with nitrogen atom of the amide group). Though PVP is biocompatible and film-forming polymer, it is not a good candidate to design either "biofilm shield" or wound dressing material because of a high solubility in water – though the solubility of PVP provides the desirable release of AgNPs from the matrix, but the coating is easily washable away from the surfaces. More promising as matrices look water insoluble but bioerodible polymers that can provide the release of AgNPs and form long-lasting coatings at the surfaces. For creating bioerodible water-insoluble antimicrobial coatings containing AgNPs, we selected amino acid based biodegradable polymers(AABBPs)–poly(ester amide)s, poly(ester urea)s, their copolymers containing amide and related groups capable to stabilize AgNPs. Among a huge variety of AABBPs reported we selected the polymers soluble in ethanol. For preparing AgNPs containing nanocompositions AABBPs and AgNO3 were dissolved in ethanol and subjected to photochemical reduction using daylight-irradiation. The formation of AgNPs was observed visually by coloring the solutions in brownish-red. The obtained AgNPs were characterized by UV-spectroscopy, transmission electron microscopy(TEM), and dynamic light scattering(DLS). According to the UV and TEM data, the photochemical reduction resulted presumably in spherical AgNPs with rather high contribution of the particles below 10 nm that are known as responsible for the antimicrobial activity. DLS study showed that average size of nanoparticles formed after photo-reduction in ethanol solution ranged within 50 nm. The in vitro antimicrobial activity study of the new nanocomposite material is in progress now.Keywords: nanocomposites, silver nanoparticles, polymer, biodegradable
Procedia PDF Downloads 396365 Ag and Au Nanoparticles Fabrication in Cross-Linked Polymer Microgels for Their Comparative Catalytic Study
Authors: Luqman Ali Shah, Murtaza Sayed, Mohammad Siddiq
Abstract:
Three-dimensional cross-linked polymer microgels with temperature responsive N-isopropyl acrylamide (NIPAM) and pH-sensitive methacrylic acid (MAA) were successfully synthesized by free radical emulsion polymerization with different amount of MAA. Silver and gold nanoparticles with size of 6.5 and 3.5 nm (±0.5 nm) respectively were homogeneously reduced inside these materials by chemical reduction method at pH 2.78 and 8.36 for the preparation of hybrid materials. The samples were characterized by FTIR, DLS and TEM techniques. The catalytic activity of the hybrid materials was investigated for the reduction of 4-nitrophenol (4- NP) using NaBH4 as reducing agent by UV-visible spectroscopy. The hybrid polymer network synthesized at pH 8.36 shows enhanced catalytic efficiency compared to catalysts synthesized at pH 2.78. In this study, it has been explored that catalyst activity strongly depends on amount of MAA, synthesis pH and type of metal nanoparticles entrapped.Keywords: cross-linked polymer microgels, free radical polymerization, metal nanoparticles, catalytic activity, comparative study
Procedia PDF Downloads 324364 Substitution of Silver-Thiosulfate (STS) with Some Essential Oils on Vase-Life of Cut Carnation cv. Liberty
Authors: Mohammad Bagher Hassanpouraghdam, Mohammad Ali Aazami Mavaloo
Abstract:
Due to the huge side-effects of chemicals; essential oils have been considered as suitable alternatives for keeping the vase-life of cut flowers mainly owing to the availability and environment-friend nature of these bio-chemicals. In the present experiment, 50% substitution of STS was achieved and tested on cut carnation flowers cv. Liberty by using the essential oils from four plants; Satureja sahendica Bornm., Echinophora platyloba DC., Tanacetum balsamita L. and Cupressus arizonica Greene., as CRD with five treatments and 3 replications. Vase-life and flower diameter were affected with 50% substitution of STS by essential oils from C. arizonica and T. balsamita. Membrane stability index, Malondialdehyde (MDA) content and Hydrogen peroxide (H2O2) amounts were affected by the substitution treatments as well. The main preservative effect belonged to the substitution with C. arizonica. So that, 50% STS substitution with Cupressus oil holds the highest membrane integrity and the least data for MDA and H2O2 content.Keywords: Carnation, essential oil, Membrane stability index (MSI), vase life
Procedia PDF Downloads 496363 Evaluation of Anticancer and Antioxidant Activity of Purified Lovastatin from Aspergillus terreus (KM017963)
Authors: Bhargavi Santebennur Dwarakanath, Praveen Vadakke Kamath, Savitha Janakiraman
Abstract:
Cervical cancer is one of the leading causes of mortality in women and is the second most common malignancy worldwide. Lovastatin, a non polar, anticholesterol drug which also exerts antitumour activity in vitro. In the present study, lovastatin from Aspergillus terreus (KM017963) was purified by adsoprtion chromatography and evaluated for its anticancer and anti-oxidant properties in human cervical cancer cell lines (HeLa). The growth inhibitory and proapoptotic effects of purified lovastatin on HeLa cell lines were investigated by determining its influence on cytotoxicity, Mitochondrial Membrane Potential (MMP), DNA fragmentation and antioxidant property (Hydroxy radical scavenging effect and the levels of total reduced glutathione). Flow cytometry analysis by propidium iodide staining confirmed the induction of apoptotic cell death and revealed cell cycle arrest at G0/G1 phase. Results of the study give leads for anticancer effects of lovastatin and its potential efficacy in the chemotherapy of cervical cancer.Keywords: apoptosis, Aspergillus terreus, cervical cancer, lovastatin
Procedia PDF Downloads 307362 An Abbattoir-Based Study on Relative Prevalence of Histopathologic Patterns of Hepatic Lesions in One-Humped Camels (Camelus deromedarius), Semnan, Iran
Authors: Keivan Jamshidi, Afshin Zahedi
Abstract:
An abattoir based study was carried out during spring 2011 to investigate pathological conditions of the liver in camels (Camelus deromedarius) slaughtered in the Semnan slaughter house, Northern East of Iran. In this study, 40 carcasses out of 150 randomly selected carcasses inspected at postmortem, found with liver lesions. Proper tissue samples obtained from the livers with macroscopic lesions, fixed in 10% neutral buffer formaldehyde, processed for routine histopathological techniques, and finally embedded in paraffin blocks. Sections of 5µm thickness then cut and stained by H&E staining techniques. In histopathological examination of hepatic tissues, following changes were observed: Hydatid cysts; 65%, Cirrhosis; 10%, Hepatic lipidosis (Mild to Severe fatty changes); 12.5%, Glycogen deposition; 2.5%, Cholangitis; 2.8%, Cholangiohepatitis; 5%, Calcified hydatid cyst; 2.5%, Hepatic abscess; 2.5%, lipofuscin pigments; 17.5%. It is concluded that the highest and lowest prevalent patterns of hepatic lesions were hydatid cysts and Hepatic abscess respectively.Keywords: camel, liver, lesion, pathology, slaughterhouse
Procedia PDF Downloads 480361 Inhibitory Mechanism of Ag and Fe Colloidal Nanoparticles on P. aeruginosa and E.coli Growth
Authors: Fatemeh Moradian, Razieh Ghorbani, Poria Biparva
Abstract:
Growing resistance of microorganisms to potent antibiotics has renewed a great interest towards investigating bactericidal properties of nanoparticles and their Nano composites as an alternative. The use of metal nanoparticles to combat bacterial infections is one of the most wide spread applications of nanotechnology in the field of antibacterial. Nanomaterials have unique properties compared to their bulk counterparts. In this report, we demonstrate the antimicrobial activity of zerovalent Iron(ZVI) and Ag(silver) nanoparticles against Gram-negative bacteria E.coli(DH5α) and Pseudomonas aeruginosa. At first ZVI and Ag nanoparticles were synthesized by chemical reduction method and using scanning electron microscopy (SEM) the nanoparticle size determined. Different concentrations of Ag and ZVI nanoparticles were added to bacteria on nutrient agar medium. Minimum inhibitory concentration (MIC) of Ag and Fe nanoparticles for P. aeruginosa were 5µM and 1µg as well as for E.coli were 6µM. and 10 µg, respectively. Among the two nanoparticles, ZVI showed that the greatest antimicrobial activity against E.coli and Ag nanoparticle on P.aeruginosa. Results suggested that the bactericidal effect of metal nanoparticles has been attributed to their small size as well as high surface to volume ratio and NPs could be used as an effective antibacterial material.Keywords: bactericidal properties, MIC, nanoparticle, SEM
Procedia PDF Downloads 601360 Microstructure and Excess Conductivity of Bulk, Ag-Added FeSe Superconductors
Authors: Michael Koblischka, Yassine Slimani, Thomas Karwoth, Anjela Koblischka-Veneva, Essia Hannachi
Abstract:
On bulk FeSe superconductors containing different additions of Ag, a thorough investigation of the microstructures was performed using optical microscopy, SEM and TEM. The electrical resistivity was measured using four-point measurements in the temperature range 2 K ≤ T ≤ 150 K. The data obtained are analyzed in the framework of the excess conductivity approach using the Aslamazov-Larkin (AL) model. The investigated samples comprised of five distinct fluctuation regimes, namely short-wave (SWF), onedimensional (1D), two-dimensional (2D), three-dimensional (3D), and critical (CR) fluctuation regimes. The coherence length along the c-axis at zero-temperature (ξc(0)), the lower and upper critical magnetic fields (Bc1 and Bc2), the critical current density (Jc) and numerous other superconducting parameters were estimated with respect to the Ag content in the samples. The data reveal a reduction of the resistivity and a strong decrease of ξc(0) when doping the 11-samples with silver. The optimum content of the Ag-addition is found at 4 wt.-% Ag, yielding the highest critical current density.Keywords: iron-based superconductors, FeSe, Ag-addition, excess conductivity, microstructure
Procedia PDF Downloads 146359 Investigation of Genetic Diversity of Tilia tomentosa Moench. (Silver Lime) in Duzce-Turkey
Authors: Ibrahim Ilker Ozyigit, Ertugrul Filiz, Seda Birbilener, Semsettin Kulac, Zeki Severoglu
Abstract:
In this study, we have performed genetic diversity analysis of Tilia tomentosa genotypes by using randomly amplified polymorphic DNA (RAPD) primers. A total of 28 genotypes, including 25 members from the urban ecosystem and 3 genotypes from forest ecosystem as outgroup were used. 8 RAPD primers produced a total of 53 bands, of which 48 (90.6 %) were polymorphic. Percentage of polymorphic loci (P), observed number of alleles (Na), effective number of alleles (Ne), Nei's (1973) gene diversity (h), and Shannon's information index (I) were found as 94.29 %, 1.94, 1.60, 0.34, and 0.50, respectively. The unweighted pair-group method with arithmetic average (UPGMA) cluster analysis revealed that two major groups were observed. The genotypes of urban and forest ecosystems showed a high genetic similarity between 28% and 92% and these genotypes did not separate from each other in UPGMA tree. Also, urban and forest genotypes clustered together in principal component analysis (PCA).Keywords: Tilia tomentosa, genetic diversity, urban ecosystem, RAPD, UPGMA
Procedia PDF Downloads 512358 Determination of Mercury in Gold Ores by CVAAS Method
Authors: Ratna Siti Khodijah, Mirzam Abdurrachman
Abstract:
Gold is recovered from gold ores. Within the ores, there are not only gold but also several types of precious metals. Copper, silver, and platinum group elements (ruthenium, rhodium, palladium, rhenium, osmium, and iridium) are metals commonly found in the ores. These metals combine to form an ore because they have the same properties. It is due to their position in periodic-system-of-elements are near to gold. However, the presence of mercury in every gold ore has not been mentioned, even though it is located right next to gold in the periodic-system-of-elements and they are located in the same block, d-block. Thus, it is possible that mercury is contained in the ores. Moreover, the elements of the same group with mercury—zinc and cadmium—sometimes can be found in the ores. It is suspected that mercury can not be detected because the processing of gold ores usually using fire assay method. Before the ores melting, mercury would evaporate because it has the lowest boiling point of all precious metal in the ores. Therefore, it suggested doing research on the presence of mercury in gold ores by CVAAS method. The results of this study would obtain the amount of mercury in gold ores that should be purified. So it can be produced economically if possible.Keywords: boiling point, d-block, fire assay, precious metal
Procedia PDF Downloads 341357 Cumulus Cells of Mature Local Goat Oocytes Vitrified with Insulin Transferrin Selenium and Heat Shock Protein 70
Authors: Izzatul Ulfana, Angga Pratomo Cahyadi, Rimayanti, Widjiati
Abstract:
Freezing oocyte could cause temperature stress. Temperature stress triggers cell damage. Insulin Transferrin Selenium (ITS) and Heat Shock Protein 70 (HSP70) had been used to prevent damage to the oocyte after freezing. ITS and HSP70 could cause the difference protective effect. The aim of this research was to obtain an effective cryoprotectant for freezing local goat oocyte in cumulus cells change. The research began by collecting the ovary from a local slaughterhouse in Indonesia, aspiration follicle, in vitro maturation and the freezing had been used vitrification method. Examination of the morphology cells by native staining method. Data on the calculation morphology oocyte analyzed by Kruskall-Wallis Test. After the Kruskall-Wallis Test which indicated significance, followed by Mann-Whitney Test to compare between treatment groups. As a result, cryoprotectant ITS has the best culumus cells after warmingKeywords: Insulin Transferrin Selenium, Heat Shock Protein 70, cryoprotectant, vitrification
Procedia PDF Downloads 240356 Is Ag@TiO2 Core-Shell Nanoparticles Superior to Ag Surface Doped TiO2 Nanostructures?
Authors: Xiaohong Yang, Haitao Fu, Xizhong An, Aibing Yu
Abstract:
Silver@titanium dioxide (Ag@TiO2) core-shell nanostructures and Ag surface doped TiO2 particles (TiO2@Ag) have been designed and synthesized by sol-gel and hydrothermal methods under mild conditions. These two types of Ag/TiO2 nanocomposites were characterized in terms of their properties by various techniques such as transmission electron microscope (TEM), X-ray diffraction (XRD), Brunauer Emmett Teller (BET) and ultra violet-visible absorption spectroscopy (UV-Vis). Specifically, the photocatalystic performance and antibacterial behavior of such nanocomposites have been investigated and compared. It was found that The Ag@TiO2 core-shell nanostructures exhibit superior photocatalytic property to the Ag surface doped TiO2 particles under the reported conditions. While with UV pre-irradiation, the Ag@TiO2 core-shell composites exhibit better bactericidal performance. This is probably because the Ag cores tend to facilitate charge separation for TiO2, producing greater hydroxyl radicals on the surface of the TiO2 particles. These findings would be useful for the design and synthesis of Ag/TiO2 nanocomposites with desirable photocatalystic and antimicrobial activity for environmental applications.Keywords: Ag@TiO2 core-shell nanoparticles, Ag surface doped TiO2 nanoparticles, photocatalysis, antibacterial
Procedia PDF Downloads 485355 Histopathological Features of Infections Caused by Fusarium equiseti (Mart.) Sacc. in Onion Plants from Kebbi State, Northern Nigeria
Authors: Wadzani Dauda Palnam, Alao S. Emmanuel Laykay, Afiniki Bawa Zarafi, Olufunmilola Alabi, Dora N. Iortsuun
Abstract:
Onion production is affected by several diseases including fusariosis. Study was conducted to investigate the histopathological features of different onion tissues infected with Fusarium equiseti by inoculation with soil drench, root dip and mycelia paste methods. This was carried out by fixation, dehydration, clearing, wax embedding, sectioning, staining and mounting of leaf and root sections for microscopical examination at 400x. Once infection occurred in the roots, the pathogen moved through the vascular system to colonize the whole plant. At first, it grew in the intercellular spaces of the root cortex but soon invaded the cells, followed by colonization of the cells by its hyphae and microconidia. At later stages of infection, the cortex tissue became completely disorganized and decomposed as the pathogen advance to the shoot system via the vessel elements; this may be responsible for the early wilting symptom of infected plants arising from the severe water stress due to blockage of the xylem tissues.Keywords: onion, histopathology, infection, fusaria, inoculation
Procedia PDF Downloads 279354 Lymphatic Microvessel Density as a Prognostic Factor in Endometrial Carcinoma
Authors: Noha E. Hassan
Abstract:
Little is known regarding the influence of lymphatic microvessel density (LMVD) on prognosis in endometrial cancer. Prospective study was done in tertiary education and research hospital (Shatby Alexandria university hospital) on sixty patients presented with endometrial carcinoma underwent complete surgical staging. Our aim was to assess the intratumoral and peritumoral Lymphatic microvessel density (LMVD) of endometrial carcinomas identified by immunohistochemical staining using an antibody against podoplanin and to investigate their association with classical clinicopathological factors and prognosis. The result shows that high LMVD was associated with endometroid type of tumors, lesser myometrial, adnexal, cervical and peritoneal infiltration, lower tumor grade and stage and lesser recurrent cases. There is lower lymph node involvement among cases with high intratumoral LMVD and cases of high peritumoral LMVD; that reach statistical significance only among cases of high intratumoral LMVD. No association was seen between LMVD and lymphovascular space invasion. On the other hand, low LMVD was associated with poor outcome. Finally, we can conclude that increased LMVD is associated with favorable prognosis in endometrial cancer patients.Keywords: endometrial carcinoma, lymphatic microvessel, microvessel density, prognosis
Procedia PDF Downloads 141353 Lubricant-Impregnated Nanoporous Surfaces for Biofilm Prevention
Authors: Yuen Yee Li Sip, Lei Zhai
Abstract:
Biofilms are formed by the attachment of microorganisms onto substrates via self-synthesized extracellular polymeric substances. They have been observed in the International Space Stations (ISS), in which biofilms can jeopardize the performance of key equipment and can pose health threats to the astronauts. This project aims at building conformal nanoporous surfaces that are infused with lubricant and decorated with antimicrobial nanoparticles while simultaneously evaluating their efficacy in preventing biofilm formation. Lubricant-impregnated surfaces (LIS) are fabricated by using a layer-by-layer assembly of silica nanoparticles to generate conformal nanoporous coatings on substrates and fill the films with fluorinated fluids. LIS has demonstrated excellent repellency to a broad range of liquids, preventing microbe adhesion (anti-biofouling). Silver or copper nanoparticles were deposited on the coatings prior to lubricant infusion in order to provide antimicrobial characteristics to the coating. Surface morphology and biofilm growth were characterized to understand how the coating morphology affects the LIS stability and anti-biofouling behaviors (stationary and in a flow).Keywords: biofilm, coatings, nanoporous, antifouling
Procedia PDF Downloads 100352 Surface-Enhanced Raman Detection in Chip-Based Chromatography via a Droplet Interface
Authors: Renata Gerhardt, Detlev Belder
Abstract:
Raman spectroscopy has attracted much attention as a structurally descriptive and label-free detection method. It is particularly suited for chemical analysis given as it is non-destructive and molecules can be identified via the fingerprint region of the spectra. In this work possibilities are investigated how to integrate Raman spectroscopy as a detection method for chip-based chromatography, making use of a droplet interface. A demanding task in lab-on-a-chip applications is the specific and sensitive detection of low concentrated analytes in small volumes. Fluorescence detection is frequently utilized but restricted to fluorescent molecules. Furthermore, no structural information is provided. Another often applied technique is mass spectrometry which enables the identification of molecules based on their mass to charge ratio. Additionally, the obtained fragmentation pattern gives insight into the chemical structure. However, it is only applicable as an end-of-the-line detection because analytes are destroyed during measurements. In contrast to mass spectrometry, Raman spectroscopy can be applied on-chip and substances can be processed further downstream after detection. A major drawback of Raman spectroscopy is the inherent weakness of the Raman signal, which is due to the small cross-sections associated with the scattering process. Enhancement techniques, such as surface enhanced Raman spectroscopy (SERS), are employed to overcome the poor sensitivity even allowing detection on a single molecule level. In SERS measurements, Raman signal intensity is improved by several orders of magnitude if the analyte is in close proximity to nanostructured metal surfaces or nanoparticles. The main gain of lab-on-a-chip technology is the building block-like ability to seamlessly integrate different functionalities, such as synthesis, separation, derivatization and detection on a single device. We intend to utilize this powerful toolbox to realize Raman detection in chip-based chromatography. By interfacing on-chip separations with a droplet generator, the separated analytes are encapsulated into numerous discrete containers. These droplets can then be injected with a silver nanoparticle solution and investigated via Raman spectroscopy. Droplet microfluidics is a sub-discipline of microfluidics which instead of a continuous flow operates with the segmented flow. Segmented flow is created by merging two immiscible phases (usually an aqueous phase and oil) thus forming small discrete volumes of one phase in the carrier phase. The study surveys different chip designs to realize coupling of chip-based chromatography with droplet microfluidics. With regards to maintaining a sufficient flow rate for chromatographic separation and ensuring stable eluent flow over the column different flow rates of eluent and oil phase are tested. Furthermore, the detection of analytes in droplets with surface enhanced Raman spectroscopy is examined. The compartmentalization of separated compounds preserves the analytical resolution since the continuous phase restricts dispersion between the droplets. The droplets are ideal vessels for the insertion of silver colloids thus making use of the surface enhancement effect and improving the sensitivity of the detection. The long-term goal of this work is the first realization of coupling chip based chromatography with droplets microfluidics to employ surface enhanced Raman spectroscopy as means of detection.Keywords: chip-based separation, chip LC, droplets, Raman spectroscopy, SERS
Procedia PDF Downloads 246351 Online Escape Room for Intergenerational Play
Authors: David Kaufman
Abstract:
Despite the ‘silver Tsunami’ that is occurring worldwide, ageism is still a problem in modern society. As well, families are becoming increasingly separated geographically. This paper will discuss these issues and one potential solution - an online escape room game that is played by two players over the internet while talking to each other. The payers can be two seniors or one senior and one youth, e.g., a grandchild. Each player sees a different view of the game environment and players must collaborate in order to solve the puzzles presented and escape from the three rooms, all connected by a maze. The game was developed by Masters students at the Centre for Digital Media in Vancouver, BC in collaboration with a team of post-doctoral scholar, graduate students and faculty member, as well as 10 seniors who assisted. This paper will describe the game, development process and results of our pilot studies. The research study conducted comprises several stages: 1. several formative evaluation sessions with seniors to obtain feedback to assist further design, and 2. field testing of the game. Preliminary results have been extremely positive and results of our field tests will be presented in this paper.Keywords: digital game, online escape room, intergenerational play, seniors
Procedia PDF Downloads 368350 Production of Poly-β-Hydroxybutyrate (PHB) by a Thermophilic Strain of Bacillus and Pseudomonas Species
Authors: Patience Orobosa Olajide
Abstract:
Five hydrocarbon degrading bacterial strains isolated from contaminated environment were investigated with respect to polyhydroxybutyrate (PHB) biosynthesis. Screening for bioplastic production was done on assay mineral salts agar medium containing 0.2% poly (3-hydroxybutyrate) as the sole carbon source. Two of the test bacteria were positive for PHB biosynthesis and were identified based on gram staining, biochemical tests, 16S rRNA gene sequence analysis as Pseudomonas aeruginosa and Bacillus licheniformis which grew at 37 and up to 65 °C respectively, thus suggesting the later to be thermotolerant. In this study, the effects of different carbon and nitrogen sources on PHB production in these strains were investigated. Maximum PHB production was obtained in 48 hr for the two strains and amounted to yields of 72.86 and 62.22 percentages for Bacillus licheniformis and Pseudomonas aeruginosa respectively. In these strains, glycine was the most efficient carbon sources for the production of PHB compared with other carbon (glucose, lactose, sucrose, Arabinose) and nitrogen (L- glycine, L-cysteine, DL-Tryptophan, and Potassium Nitrate) sources. The screening of microbial strains for industrial PHB production should be based on several factors including the cell’s capability to mineralize an inexpensive substrate, rate of growth and the extent of polymer accumulation.Keywords: bacteria, poly-3-hydroxybutyrate (PHB), hydrocarbon, thermotolerant
Procedia PDF Downloads 198349 Control of Microbial Pollution Using Biodegradable Polymer
Authors: Mahmoud H. Abu Elella, Riham R. Mohamed, Magdy W. Sabaa
Abstract:
Introduction: Microbial pollution is global problem threatening the human health. It is resulted by pathogenic microorganisms such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and other pathogenic strains. They cause a dangerous effect on human health, so great efforts have been exerted to produce new and effective antimicrobial agents. Nowadays, natural polysaccharides, such as chitosan and its derivatives are used as antimicrobial agents. The aim of our work is to synthesize of a biodegradable polymer such as N-quaternized chitosan (NQC) then Characterization of NQC by using different analysis techniques such as Fourier transform infrared (FTIR) and Scanning electron microscopy (SEM) and using it as an antibacterial agent against different pathogenic bacteria. Methods: Synthesis of NQC using dimethylsulphate. Results: FTIR technique exhibited absorption peaks of NQC, SEM images illustrated that surface of NQC was smooth and antibacterial results showed that NQC had a high antibacterial effect. Discussion: NQC was prepared and it was proved by FTIR technique and SEM images antibacterial results exhibited that NQC was an antibacterial agent.Keywords: antimicrobial agent, N-quaternized chitosan chloride, silver nanocomposites, sodium polyacrylate
Procedia PDF Downloads 289348 Effectiveness of Crystallization Coating Materials on Chloride Ions Ingress in Concrete
Authors: Mona Elsalamawy, Ashraf Ragab Mohamed, Abdellatif Elsayed Abosen
Abstract:
This paper aims to evaluate the effectiveness of different crystalline coating materials concerning of chloride ions penetration. The concrete ages at the coating installation and its moisture conditions were addressed; where, these two factors may play a dominant role for the effectiveness of the used materials. Rapid chloride ions penetration test (RCPT) was conducted at different ages and moisture conditions according to the relevant standard. In addition, the contaminated area and the penetration depth of the chloride ions were investigated immediately after the RCPT test using chemical identifier, 0.1 M silver nitrate AgNO3 solution. Results have shown that, the very low chloride ions penetrability, for the studied crystallization materials, were investigated only with the old age concrete (G1). The significant reduction in chloride ions’ penetrability was illustrated after 7 days of installing the crystalline coating layers. Using imageJ is more reliable to describe the contaminated area of chloride ions, where the distribution of aggregate and heterogeneous of cement mortar was considered in the images analysis.Keywords: chloride permeability, contaminated area, crystalline waterproofing materials, RCPT, XRD
Procedia PDF Downloads 253347 Plant Regeneration via Somatic Embryogenesis and Agrobacterium-Mediated Transformation in Alfalfa (Medicago sativa L.)
Authors: Sarwan Dhir, Suma Basak, Dipika Parajulee
Abstract:
Alfalfa is renowned for its nutritional and biopharmaceutical value as a perennial forage legume. However, establishing a rapid plant regeneration protocol using somatic embryogenesis and efficient transformation frequency are the crucial prerequisites for gene editing in alfalfa. This study was undertaken to establish and improve the protocol for somatic embryogenesis and subsequent plant regeneration. The experiments were conducted in response to natural sensitivity using various antibiotics such as cefotaxime, carbenicillin, gentamycin, hygromycin, and kanamycin. Using 3-week-old leaf tissue, somatic embryogenesis was initiated on Gamborg’s B5 basal (B5H) medium supplemented with 3% maltose, 0.9µM Kinetin, and 4.5µM 2,4-D. Embryogenic callus (EC) obtained from the B5H medium exhibited a high rate of somatic embryo formation (97.9%) after 3 weeks when the cultures were placed in the dark. Different developmental stages of somatic embryos and cotyledonary stages were then transferred to Murashige and Skoog’s (MS) basal medium under light, resulting in a 94% regeneration rate of plantlets. Our results indicate that leaf segments can grow (tolerate) up to 450 mg/L of cefotaxime and 400 mg/L of carbenicillin in the culture medium. However, the survival threshold for hygromycin at 12.5 mg/L, kanamycin at 250 mg/L, gentamycin at 50 mg/L, and timentin (300 mg/L). The experiment to improve the protocol for achieving efficient transient gene expression in alfalfa through genetic transformation with the Agrobacterium tumefaciens pCAMBIA1304 vector was also conducted. The vector contains two reporter genes such as β-glucuronidase (GUS) and green fluorescent protein (GFP), along with a selectable hygromycin B phosphotransferase gene (HPT), all driven under the CaMV 35s promoter. Various transformation parameters were optimized using 3-week-old in vitro-grown plantlets. The different parameters such as types of explant, leaf ages, preculture days, segment sizes, wounding types, bacterial concentrations, infection periods, co-cultivation periods, different concentrations of acetosyringone, silver nitrate, and calcium chloride were optimized for transient gene expression. The transient gene expression was confirmed via histochemical GUS and GFP visualization under fluorescent microscopy. The data were analyzed based on the semi-quantitative observation of the percentage and number of blue GUS spots on different days of agro-infection. The highest percentage of GUS positivity (76.2%) was observed in 3-week-old leaf segments wounded using a scalpel blade of 11 size- after 3 days of post-incubation at a bacterial concentration of 0.6, with 2 days of preculture, 30 min of bacterial-leaf segment co-cultivation, with the addition of 150 µM acetosyringone, 4 mM calcium chloride, and 75 µM silver nitrate. Our results suggest that various factors influence T-DNA delivery in the Agrobacterium-mediated transformation of alfalfa. The stable gene expression in the putative transgenic tissue was confirmed using PCR amplification of both marker genes, indicating that gene expression in explants was not solely due to Agrobacterium, but also from transformed cells. The improved protocol could be used for generating transgenic alfalfa plants using genome editing techniques such as CRISPR/Cas9.Keywords: Medicago sativa l. (Alfalfa), agrobacterium tumefaciens, β-glucuronidase, green fluorescent protein, transient gene
Procedia PDF Downloads 14