Search results for: panel data analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 42413

Search results for: panel data analysis

38573 Assessment of the Effects of Urban Development on Urban Heat Islands and Community Perception in Semi-Arid Climates: Integrating Remote Sensing, GIS Tools, and Social Analysis - A Case Study of the Aures Region (Khanchela), Algeria

Authors: Amina Naidja, Zedira Khammar, Ines Soltani

Abstract:

This study investigates the impact of urban development on the urban heat island (UHI) effect in the semi-arid Aures region of Algeria, integrating remote sensing data with statistical analysis and community surveys to examine the interconnected environmental and social dynamics. Using Landsat 8 satellite imagery, temporal variations in the Normalized Difference Vegetation Index (NDVI), Normalized Difference Built-up Index (NDBI), and land use/land cover (LULC) changes are analyzed to understand patterns of urbanization and environmental transformation. These environmental metrics are correlated with land surface temperature (LST) data derived from remote sensing to quantify the UHI effect. To incorporate the social dimension, a structured questionnaire survey is conducted among residents in selected urban areas. The survey assesses community perceptions of urban heat, its impacts on daily life, health concerns, and coping strategies. Statistical analysis is employed to analyze survey responses, identifying correlations between demographic factors, socioeconomic status, and perceived heat stress. Preliminary findings reveal significant correlations between built-up areas (NDBI) and higher LST, indicating the contribution of urbanization to local warming. Conversely, areas with higher vegetation cover (NDVI) exhibit lower LST, highlighting the cooling effect of green spaces. Social survey results provide insights into how UHI affects different demographic groups, with vulnerable populations experiencing greater heat-related challenges. By integrating remote sensing analysis with statistical modeling and community surveys, this study offers a comprehensive understanding of the environmental and social implications of urban development in semi-arid climates. The findings contribute to evidence-based urban planning strategies that prioritize environmental sustainability and social well-being. Future research should focus on policy recommendations and community engagement initiatives to mitigate UHI impacts and promote climate-resilient urban development.

Keywords: urban heat island, remote sensing, social analysis, NDVI, NDBI, LST, community perception

Procedia PDF Downloads 41
38572 Temporal Transformation of Built-up Area and its Impact on Urban Flooding in Hyderabad, India

Authors: Subbarao Pichuka, Amar Balakrishna Tej, Vikas Vemula

Abstract:

In recent years, the frequency and intensity of urban floods have increased due to climate change all over the world provoking a significant loss in terms of human lives and property. This study investigates the effect of Land Use and Land Cover (LULC) changes and population growth on the urban environmental conditions in the Indian metropolitan city namely Hyderabad. The centennial built-up area data have been downloaded from the Global Human Settlement Layer (GHSL) web portal for various periods (1975 to 2014). The ArcGIS version 10.8 software is employed to convert the GHSL data into shape files and also to calculate the amount of built-up area in the study locations. The decadal population data are obtained from the Census from 1971 to 2011 and forecasted for the required years (1975 and 2014) utilizing the Geometric Increase Method. Next, the analysis has been carried out with respect to the increase in population and the corresponding rise in the built-up area. Further the effects of extreme rainfall events, which exacerbate urban flooding have also been reviewed. Results demonstrate that the population growth was the primary cause of the increase in impervious surfaces in the urban regions. It in turn leads to the intensification of surface runoff and thereby leads to Urban flooding. The built-up area has been doubled from 1975 to 2014 and the population growth has been observed between 109.24% to 400% for the past four decades (1971 to 2014) in the study area (Hyderabad). Overall, this study provides the hindsight on the current urban flooding scenarios, and the findings of this study can be used in the future planning of cities.

Keywords: urban LULC change, urban flooding, GHSL built-up data, climate change, ArcGIS

Procedia PDF Downloads 81
38571 Data Protection, Data Privacy, Research Ethics in Policy Process Towards Effective Urban Planning Practice for Smart Cities

Authors: Eugenio Ferrer Santiago

Abstract:

The growing complexities of the modern world on high-end gadgets, software applications, scams, identity theft, and Artificial Intelligence (AI) make the “uninformed” the weak and vulnerable to be victims of cybercrimes. Artificial Intelligence is not a new thing in our daily lives; the principles of database management, logical programming, and garbage in and garbage out are all connected to AI. The Philippines had in place legal safeguards against the abuse of cyberspace, but self-regulation of key industry players and self-protection by individuals are primordial to attain the success of these initiatives. Data protection, Data Privacy, and Research Ethics must work hand in hand during the policy process in the course of urban planning practice in different environments. This paper focuses on the interconnection of data protection, data privacy, and research ethics in coming up with clear-cut policies against perpetrators in the urban planning professional practice relevant in sustainable communities and smart cities. This paper shall use expository methodology under qualitative research using secondary data from related literature, interviews/blogs, and the World Wide Web resources. The claims and recommendations of this paper will help policymakers and implementers in the policy cycle. This paper shall contribute to the body of knowledge as a simple treatise and communication channel to the reading community and future researchers to validate the claims and start an intellectual discourse for better knowledge generation for the good of all in the near future.

Keywords: data privacy, data protection, urban planning, research ethics

Procedia PDF Downloads 59
38570 Applying a SWOT Analysis to Inform the Educational Provision of Learners with Autism Spectrum Disorders

Authors: Claire Sciberras

Abstract:

Introduction: Autism Spectrum Disorder (ASD) has become recognized as being the most common childhood neurological condition. Indeed, numerous studies demonstrate an increase in the prevalence rate of children diagnosed with ASD. Concurrent with these findings, the European Agency for Special Needs and Inclusive Education reported a similar escalating tendency in prevalence also in Malta. Such an increase within the educational context in Malta has led the European Agency to call for increased support within educational settings in Malta. However, although research has addressed the positive impact of mainstream education on learners with ASD, empirical studies vis-à-vis the internal and external strengths and weaknesses present within the support provided in mainstream settings in Malta is distinctly limited. In light of the aforementioned argument, Malta would benefit from research which focuses on analysing the strengths, weaknesses, opportunities, and threats (SWOTs) which are present within the support provision of learners with ASD in mainstream primary schools. Such SWOT analysis is crucial as lack of appropriate opportunities might jeopardize the educational and social experiences of persons with ASD throughout their schooling. Methodology: A mixed methodological approach would be well suited to examine the provision of support of learners with ASD as the combination of qualitative and quantitative approaches allows researchers to collect a comprehensive range of data and validate their results. Hence, it is intended that questionnaires will be distributed to all the stakeholders involved so as to acquire a broader perspective to be collected from a wider group who provide support to students with ASD across schools in Malta. Moreover, the use of a qualitative approach in the form of interviews with a sample group will be implemented. Such an approach will be considered as it would potentially allow the researcher to gather an in-depth perspective vis-à-vis to the nature of the services which are currently provided to learners with ASD. The intentions of the study: Through the analysis of the data collected vis-à-vis to the SWOTs within the provision of support of learners with ASD it is intended that; i) a description in regards to the educational provision for learners with ASD within mainstream primary schools in Malta in light of the experiences and perceptions of the stakeholders involved will be acquired; ii) an analysis of the SWOTs which exist within the services for learners with ASD in primary state schools in Malta is carried out and iii) based on the SWOT analysis, recommendations that can lead to improvements in practice in the field of ASD in Malta and beyond will be provided. Conclusion: Due to the heterogeneity of individuals with ASD which spans across several deficits related to the social communication and interaction domain and also across areas linked to restricted, repetitive behavioural patterns, educational settings need to alter their standards according to the needs of their students. Thus, the standards established by schools throughout prior phases do not remain applicable forever, and therefore these need to be reviewed periodically in accordance with the diversities and the necessities of their learners.

Keywords: autism spectrum disorders, mainstream educational settings, provision of support, SWOT analysis

Procedia PDF Downloads 193
38569 Eliciting and Confirming Data, Information, Knowledge and Wisdom in a Specialist Health Care Setting - The Wicked Method

Authors: Sinead Impey, Damon Berry, Selma Furtado, Miriam Galvin, Loretto Grogan, Orla Hardiman, Lucy Hederman, Mark Heverin, Vincent Wade, Linda Douris, Declan O'Sullivan, Gaye Stephens

Abstract:

Healthcare is a knowledge-rich environment. This knowledge, while valuable, is not always accessible outside the borders of individual clinics. This research aims to address part of this problem (at a study site) by constructing a maximal data set (knowledge artefact) for motor neurone disease (MND). This data set is proposed as an initial knowledge base for a concurrent project to develop an MND patient data platform. It represents the domain knowledge at the study site for the duration of the research (12 months). A knowledge elicitation method was also developed from the lessons learned during this process - the WICKED method. WICKED is an anagram of the words: eliciting and confirming data, information, knowledge, wisdom. But it is also a reference to the concept of wicked problems, which are complex and challenging, as is eliciting expert knowledge. The method was evaluated at a second site, and benefits and limitations were noted. Benefits include that the method provided a systematic way to manage data, information, knowledge and wisdom (DIKW) from various sources, including healthcare specialists and existing data sets. Limitations surrounded the time required and how the data set produced only represents DIKW known during the research period. Future work is underway to address these limitations.

Keywords: healthcare, knowledge acquisition, maximal data sets, action design science

Procedia PDF Downloads 361
38568 General Mathematical Framework for Analysis of Cattle Farm System

Authors: Krzysztof Pomorski

Abstract:

In the given work we present universal mathematical framework for modeling of cattle farm system that can set and validate various hypothesis that can be tested against experimental data. The presented work is preliminary but it is expected to be valid tool for future deeper analysis that can result in new class of prediction methods allowing early detection of cow dieseaes as well as cow performance. Therefore the presented work shall have its meaning in agriculture models and in machine learning as well. It also opens the possibilities for incorporation of certain class of biological models necessary in modeling of cow behavior and farm performance that might include the impact of environment on the farm system. Particular attention is paid to the model of coupled oscillators that it the basic building hypothesis that can construct the model showing certain periodic or quasiperiodic behavior.

Keywords: coupled ordinary differential equations, cattle farm system, numerical methods, stochastic differential equations

Procedia PDF Downloads 145
38567 Tool for Metadata Extraction and Content Packaging as Endorsed in OAIS Framework

Authors: Payal Abichandani, Rishi Prakash, Paras Nath Barwal, B. K. Murthy

Abstract:

Information generated from various computerization processes is a potential rich source of knowledge for its designated community. To pass this information from generation to generation without modifying the meaning is a challenging activity. To preserve and archive the data for future generations it’s very essential to prove the authenticity of the data. It can be achieved by extracting the metadata from the data which can prove the authenticity and create trust on the archived data. Subsequent challenge is the technology obsolescence. Metadata extraction and standardization can be effectively used to resolve and tackle this problem. Metadata can be categorized at two levels i.e. Technical and Domain level broadly. Technical metadata will provide the information that can be used to understand and interpret the data record, but only this level of metadata isn’t sufficient to create trustworthiness. We have developed a tool which will extract and standardize the technical as well as domain level metadata. This paper is about the different features of the tool and how we have developed this.

Keywords: digital preservation, metadata, OAIS, PDI, XML

Procedia PDF Downloads 393
38566 Computational Fluid Dynamics Simulations and Analysis of Air Bubble Rising in a Column of Liquid

Authors: Baha-Aldeen S. Algmati, Ahmed R. Ballil

Abstract:

Multiphase flows occur widely in many engineering and industrial processes as well as in the environment we live in. In particular, bubbly flows are considered to be crucial phenomena in fluid flow applications and can be studied and analyzed experimentally, analytically, and computationally. In the present paper, the dynamic motion of an air bubble rising within a column of liquid is numerically simulated using an open-source CFD modeling tool 'OpenFOAM'. An interface tracking numerical algorithm called MULES algorithm, which is built-in OpenFOAM, is chosen to solve an appropriate mathematical model based on the volume of fluid (VOF) numerical method. The bubbles initially have a spherical shape and starting from rest in the stagnant column of liquid. The algorithm is initially verified against numerical results and is also validated against available experimental data. The comparison revealed that this algorithm provides results that are in a very good agreement with the 2D numerical data of other CFD codes. Also, the results of the bubble shape and terminal velocity obtained from the 3D numerical simulation showed a very good qualitative and quantitative agreement with the experimental data. The simulated rising bubbles yield a very small percentage of error in the bubble terminal velocity compared with the experimental data. The obtained results prove the capability of OpenFOAM as a powerful tool to predict the behavior of rising characteristics of the spherical bubbles in the stagnant column of liquid. This will pave the way for a deeper understanding of the phenomenon of the rise of bubbles in liquids.

Keywords: CFD simulations, multiphase flows, OpenFOAM, rise of bubble, volume of fluid method, VOF

Procedia PDF Downloads 123
38565 Geographic Information System (GIS) for Structural Typology of Buildings

Authors: Néstor Iván Rojas, Wilson Medina Sierra

Abstract:

Managing spatial information is described through a Geographic Information System (GIS), for some neighborhoods in the city of Tunja, in relation to the structural typology of the buildings. The use of GIS provides tools that facilitate the capture, processing, analysis and dissemination of cartographic information, product quality evaluation of the classification of buildings. Allows the development of a method that unifies and standardizes processes information. The project aims to generate a geographic database that is useful to the entities responsible for planning and disaster prevention and care for vulnerable populations, also seeks to be a basis for seismic vulnerability studies that can contribute in a study of urban seismic microzonation. The methodology consists in capturing the plat including road naming, neighborhoods, blocks and buildings, to which were added as attributes, the product of the evaluation of each of the housing data such as the number of inhabitants and classification, year of construction, the predominant structural systems, the type of mezzanine board and state of favorability, the presence of geo-technical problems, the type of cover, the use of each building, damage to structural and non-structural elements . The above data are tabulated in a spreadsheet that includes cadastral number, through which are systematically included in the respective building that also has that attribute. Geo-referenced data base is obtained, from which graphical outputs are generated, producing thematic maps for each evaluated data, which clearly show the spatial distribution of the information obtained. Using GIS offers important advantages for spatial information management and facilitates consultation and update. Usefulness of the project is recognized as a basis for studies on issues of planning and prevention.

Keywords: microzonation, buildings, geo-processing, cadastral number

Procedia PDF Downloads 334
38564 Developing House’s Model to Assess the Translation of Key Cultural Texts

Authors: Raja Al-Ghamdi

Abstract:

This paper aims to systematically assess the translation of key cultural texts. The paper, therefore, proposes a modification of the discourse analysis model for translation quality assessment introduced by the linguist Juliane House (1977, 1997, 2015). The data for analysis has been chosen from a religious text that has never been investigated before. It is an overt translation of the biography of Prophet Mohammad. The book is written originally in Arabic and translated into English. A soft copy of the translation, entitled The Sealed Nectar, is posted on numerous websites including the Internet Archive library which offers a free access to everyone. The text abounds with linguistic and cultural phenomena relevant to Islamic and Arab lingua-cultural context which make its translation a challenge, as well as its assessment. Interesting findings show that (1) culturemes are rich points and both the translator’s subjectivity and intervention are apparent in mediating them, (2) given the nature of historical narration, the source text reflects the author’s positive shading, whereas the target text reflects the translator’s axiological orientation as neutrally shaded, and, (3) linguistic gaps, metaphorical expressions and intertextuality are major stimuli to compensation strategies.

Keywords: Arabic-English discourse analysis, key cultural texts, overt translation, quality assessment

Procedia PDF Downloads 282
38563 An Improved Parallel Algorithm of Decision Tree

Authors: Jiameng Wang, Yunfei Yin, Xiyu Deng

Abstract:

Parallel optimization is one of the important research topics of data mining at this stage. Taking Classification and Regression Tree (CART) parallelization as an example, this paper proposes a parallel data mining algorithm based on SSP-OGini-PCCP. Aiming at the problem of choosing the best CART segmentation point, this paper designs an S-SP model without data association; and in order to calculate the Gini index efficiently, a parallel OGini calculation method is designed. In addition, in order to improve the efficiency of the pruning algorithm, a synchronous PCCP pruning strategy is proposed in this paper. In this paper, the optimal segmentation calculation, Gini index calculation, and pruning algorithm are studied in depth. These are important components of parallel data mining. By constructing a distributed cluster simulation system based on SPARK, data mining methods based on SSP-OGini-PCCP are tested. Experimental results show that this method can increase the search efficiency of the best segmentation point by an average of 89%, increase the search efficiency of the Gini segmentation index by 3853%, and increase the pruning efficiency by 146% on average; and as the size of the data set increases, the performance of the algorithm remains stable, which meets the requirements of contemporary massive data processing.

Keywords: classification, Gini index, parallel data mining, pruning ahead

Procedia PDF Downloads 124
38562 A 1T1R Nonvolatile Memory with Al/TiO₂/Au and Sol-Gel Processed Barium Zirconate Nickelate Gate in Pentacene Thin Film Transistor

Authors: Ke-Jing Lee, Cheng-Jung Lee, Yu-Chi Chang, Li-Wen Wang, Yeong-Her Wang

Abstract:

To avoid the cross-talk issue of only resistive random access memory (RRAM) cell, one transistor and one resistor (1T1R) architecture with a TiO₂-based RRAM cell connected with solution barium zirconate nickelate (BZN) organic thin film transistor (OTFT) device is successfully demonstrated. The OTFT were fabricated on a glass substrate. Aluminum (Al) as the gate electrode was deposited via a radio-frequency (RF) magnetron sputtering system. The barium acetate, zirconium n-propoxide, and nickel II acetylacetone were synthesized by using the sol-gel method. After the BZN solution was completely prepared using the sol-gel process, it was spin-coated onto the Al/glass substrate as the gate dielectric. The BZN layer was baked at 100 °C for 10 minutes under ambient air conditions. The pentacene thin film was thermally evaporated on the BZN layer at a deposition rate of 0.08 to 0.15 nm/s. Finally, gold (Au) electrode was deposited using an RF magnetron sputtering system and defined through shadow masks as both the source and drain. The channel length and width of the transistors were 150 and 1500 μm, respectively. As for the manufacture of 1T1R configuration, the RRAM device was fabricated directly on drain electrodes of TFT device. A simple metal/insulator/metal structure, which consisting of Al/TiO₂/Au structures, was fabricated. First, Au was deposited to be a bottom electrode of RRAM device by RF magnetron sputtering system. Then, the TiO₂ layer was deposited on Au electrode by sputtering. Finally, Al was deposited as the top electrode. The electrical performance of the BZN OTFT was studied, showing superior transfer characteristics with the low threshold voltage of −1.1 V, good saturation mobility of 5 cm²/V s, and low subthreshold swing of 400 mV/decade. The integration of the BZN OTFT and TiO₂ RRAM devices was finally completed to form 1T1R configuration with low power consumption of 1.3 μW, the low operation current of 0.5 μA, and reliable data retention. Based on the I-V characteristics, the different polarities of bipolar switching are found to be determined by the compliance current with the different distribution of the internal oxygen vacancies used in the RRAM and 1T1R devices. Also, this phenomenon can be well explained by the proposed mechanism model. It is promising to make the 1T1R possible for practical applications of low-power active matrix flat-panel displays.

Keywords: one transistor and one resistor (1T1R), organic thin-film transistor (OTFT), resistive random access memory (RRAM), sol-gel

Procedia PDF Downloads 354
38561 Metabolic Syndrome and Its Effects on Cartilage Degeneration vs Regeneration: A Pilot Study Using Osteoarthritis Biomarkers

Authors: Neena Kanojia, R. K. Kanojia

Abstract:

Background: Osteoarthritis OA of the knee is one of the leading causes of disability characterized by degeneration of hyaline cartilage combined with reparative processes. Its strong association with metabolic syndrome is postulated to be due to both mechanical and biochemical factors. Our study aims to study differential effect of metabolic risk factors on cartilage degeneration and regeneration at biomarker level. Design: After screening 281 patients presenting with knee pain, 41 patients who met the selection criteria were included and were divided into metabolic MetS OA and non-metabolic Non-MetS OA phenotypes using National Cholesterol Education Programme-Adult Treatment Panel-III NCEP ATP III criteria for metabolic syndrome. Serum Cartilage Oligomeric Matrix Protein COMP and Procollagen type IIA N terminal Propeptide PIIANP levels were used as tools to assess cartilage degeneration and regeneration, respectively. Results: 22 among 41 patients 53.66% had metabolic syndrome. Covariates like age, gender, Kellgren Lawrence KL grades were comparable in both groups. MetS OA group showed significant increase in serum COMP levels (p 0.03 with no significant effect on serum PIIANP levels (p 0.46. Hypertriglyceridemia showed independent association with both cartilage anabolism (p 0.03 and catabolism (p 0.03. Conclusion: Metabolic syndrome, though has no effect on cartilage regeneration tends to shift cartilage homeostasis towards degeneration with hypertriglyceridemia showing significant independent effect on cartilage metabolism.

Keywords: metabolic, syndrome, cartilage, degernation

Procedia PDF Downloads 65
38560 Finite Element Analysis of Rom Silo Subjected to 5000 Tons Monotic Loads at an Anonymous Mine in Zimbabwe

Authors: T. Mushiri, K. Tengende, C. Mbohwa, T. Garikayi

Abstract:

This paper introduces finite element analysis of Run off Mine (ROM) silo subjected to dynamic loading. The proposed procedure is based on the use of theoretical equations to come up with pressure and forces exerted by Platinum Group Metals (PGMs) ore to the silo wall. Finite Element Analysis of the silo involves the use of CAD software (AutoCAD) for3D creation and CAE software (T-FLEX) for the simulation work with an optimization routine to minimize the mass and also ensure structural stiffness and stability. In this research an efficient way to design and analysis of a silo in 3D T-FLEX (CAD) program was created the silo to stay within the constrains and so as to know the points of failure due dynamic loading.

Keywords: reinforced concrete silo, finite element analysis, T-FLEX software, AutoCAD

Procedia PDF Downloads 482
38559 Bringing Together Student Collaboration and Research Opportunities to Promote Scientific Understanding and Outreach Through a Seismological Community

Authors: Michael Ray Brunt

Abstract:

China has been the site of some of the most significant earthquakes in history; however, earthquake monitoring has long been the provenance of universities and research institutions. The China Digital Seismographic Network was initiated in 1983 and improved significantly during 1992-1993. Data from the CDSN is widely used by government and research institutions, and, generally, this data is not readily accessible to middle and high school students. An educational seismic network in China is needed to provide collaboration and research opportunities for students and engaging students around the country in scientific understanding of earthquake hazards and risks while promoting community awareness. In 2022, the Tsinghua International School (THIS) Seismology Team, made up of enthusiastic students and facilitated by two experienced teachers, was established. As a group, the team’s objective is to install seismographs in schools throughout China, thus creating an educational seismic network that shares data from the THIS Educational Seismic Network (THIS-ESN) and facilitates collaboration. The THIS-ESN initiative will enhance education and outreach in China about earthquake risks and hazards, introduce seismology to a wider audience, stimulate interest in research among students, and develop students’ programming, data collection and analysis skills. It will also encourage and inspire young minds to pursue science, technology, engineering, the arts, and math (STEAM) career fields. The THIS-ESN utilizes small, low-cost RaspberryShake seismographs as a powerful tool linked into a global network, giving schools and the public access to real-time seismic data from across China, increasing earthquake monitoring capabilities in the perspective areas and adding to the available data sets regionally and worldwide helping create a denser seismic network. The RaspberryShake seismograph is compatible with free seismic data viewing platforms such as SWARM, RaspberryShake web programs and mobile apps are designed specifically towards teaching seismology and seismic data interpretation, providing opportunities to enhance understanding. The RaspberryShake is powered by an operating system embedded in the Raspberry Pi, which makes it an easy platform to teach students basic computer communication concepts by utilizing processing tools to investigate, plot, and manipulate data. THIS Seismology Team believes strongly in creating opportunities for committed students to become part of the seismological community by engaging in analysis of real-time scientific data with tangible outcomes. Students will feel proud of the important work they are doing to understand the world around them and become advocates spreading their knowledge back into their homes and communities, helping to improve overall community resilience. We trust that, in studying the results seismograph stations yield, students will not only grasp how subjects like physics and computer science apply in real life, and by spreading information, we hope students across the country can appreciate how and why earthquakes bear on their lives, develop practical skills in STEAM, and engage in the global seismic monitoring effort. By providing such an opportunity to schools across the country, we are confident that we will be an agent of change for society.

Keywords: collaboration, outreach, education, seismology, earthquakes, public awareness, research opportunities

Procedia PDF Downloads 72
38558 Simulation of Performance and Layout Optimization of Solar Collectors with AVR Microcontroller to Achieve Desired Conditions

Authors: Mohsen Azarmjoo, Navid Sharifi, Zahra Alikhani Koopaei

Abstract:

This article aims to conserve energy and optimize the performance of solar water heaters using modern modeling systems. In this study, a large-scale solar water heater is modeled using an AVR microcontroller, which is a digital processor from the AVR microcontroller family. This mechatronic system will be used to analyze the performance and design of solar collectors, with the ultimate goal of improving the efficiency of the system being used. The findings of this research provide insights into optimizing the performance of solar water heaters. By manipulating the arrangement of solar panels and controlling the water flow through them using the AVR microcontroller, researchers can identify the optimal configurations and operational protocols to achieve the desired temperature and flow conditions. These findings can contribute to the development of more efficient and sustainable heating and cooling systems. This article investigates the optimization of solar water heater performance. It examines the impact of solar panel layout on system efficiency and explores methods of controlling water flow to achieve the desired temperature and flow conditions. The results of this research contribute to the development of more sustainable heating and cooling systems that rely on renewable energy sources.

Keywords: energy conservation, solar water heaters, solar cooling, simulation, mechatronics

Procedia PDF Downloads 84
38557 A Psychosocial Approach to Community Development, Lessons from the Transition Town Movement in Italy

Authors: Anna Zoli

Abstract:

In recent years, we have been witnessing a surge of locally-sustained communities committed to promoting new ethical economies while fostering the full participation of socially excluded groups and individuals into the labor market. This article explores the practices of a particular community development model, Transition Towns, as implemented in Monteveglio, Italy. Data were gathered throughout two years long ethnography, using multiple qualitative techniques, namely participant observation, document analysis, and semi-structured interviews. Data were analyzed triangulating from multiple sources of evidence and using hybrid thematic analysis. Major findings show that Transition Town movement works on two main axes, vertical and horizontal. Vertical transition involves interactions with an overreaching political, economic, and social structure which is not transitioning, and therefore poses structural resistances to the transformative social change fostered by the TT. Conversely, horizontal transition involves intragroup dynamics within the communal relational and geographical spaces and therefore poses process resistances between 'self and others' to the interpersonal communication between TT members. The study concludes that a psychosocial approach to community development is essential in order to conflate macro-social dynamics and psychological processes that may obstacle grassroots social movements to thrive. Skills from psychosocial disciplines are a unique set that could facilitate communication and relational processes for community development, and ultimately enabling social change.

Keywords: community development, grassroots social movements, psychosocial approaches, Transition Towns

Procedia PDF Downloads 120
38556 Anemia Among Pregnant Women in Kuwait: Findings from Kuwait Birth Cohort Study

Authors: Majeda Hammoud

Abstract:

Background: Anemia during pregnancy increases the risk of delivery by cesarean section, low birth weight, preterm birth, perinatal mortality, stillbirth, and maternal mortality. In this study, we aimed to assess the prevalence of anemia in pregnant women and its associated factors in the Kuwait birth cohort study. Methods: The Kuwait birth cohort (N=1108) was a prospective cohort study in which pregnant women were recruited in the third trimester. Data were collected through personal interviews with mothers who attend antenatal care visits, including data on socio-economic status and lifestyle factors. Blood samples were taken after the recruitment to measure multiple laboratory indicators. Clinical data were extracted from the medical records by a clinician including data on comorbidities. Anemia was defined as having Hemoglobin (Hb) <110 g/L with further classification as mild (100-109 g/L), moderate (70-99 g/L), or severe (<70 g/L). Predictors of anemia were classified as underlying or direct factors, and logistic regression was used to investigate their association with anemia. Results: The mean Hb level in the study group was 115.21 g/L (95%CI: 114.56- 115.87 g/L), with significant differences between age groups (p=0.034). The prevalence of anemia was 28.16% (95%CI: 25.53-30.91%), with no significant difference by age group (p=0.164). Of all 1108 pregnant women, 8.75% had moderate anemia, and 19.40% had mild anemia, but no pregnant women had severe anemia. In multivariable analysis, getting pregnant while using contraception, adjusted odds ratio (AOR) 1.73(95%CI:1.01-2.96); p=0.046 and current use of supplements, AOR 0.50 (95%CI: 0.26-0.95); p=0.035 were significantly associated with anemia (underlying factors). From the direct factors group, only iron and ferritin levels were significantly associated with anemia (P<0.001). Conclusion: Although the severe form of anemia is low among pregnant women in Kuwait, mild and moderate anemia remains a significant health problem despite free access to antenatal care.

Keywords: anemia, pregnancy, hemoglobin, ferritin

Procedia PDF Downloads 50
38555 Using Possibility Books to Develop Creativity Mindsets - a New Pedagogy for Learning Science, Math, and Engineering

Authors: Michael R. Taber, Kristin Stanec

Abstract:

This paper presents year-two of a longitudinal study on implementing Possibility Books into undergraduate courses to develop a student's creativity mindset: tolerating ambiguity, willingness to risk failure, curiosity, and openness to embrace possibility thinking through unexpected connections. Courses involved in this research span disciplines in the natural and social sciences and the humanities. Year one of the project developed indices from which baseline data could be analyzed. The two significant indices ( > 0.7) were "creativity mindset" and "intentional interactions." Preliminary qualitative and quantitative data analysis indicated that students found the new pedagogical intervention as a safe space to learn new strategies, recognize patterns, and define structures through innovative notetaking forms. Possibility Books in Natural Science courses were designed to develop students' conceptualization of science and math. Using Possibility Books in all disciplines provided a space for students to practice divergent thinking (i.e.,Possibilities), convergent thinking (i.e., forms that express meaning), and risk-taking (i.e., the vulnerability associated with expression). Qualitative coding of open responses on a post-survey revealed two major themes: 1) Possibility Books provided a mind space for learning about self, and 2) provided a calming opportunity to connect concepts. Quantitative analysis indicated significant correlations between focused headspace and notetaking (r = 0.555, p < 0.001), focused headspace, and connecting with others (r = 0.405, p < 0.001).

Keywords: pedagogy, science education, learning methods, creativity mindsets

Procedia PDF Downloads 23
38554 Detection of Trends and Break Points in Climatic Indices: The Case of Umbria Region in Italy

Authors: A. Flammini, R. Morbidelli, C. Saltalippi

Abstract:

The increase of air surface temperature at global scale is a fact, with values around 0.85 ºC since the late nineteen century, as well as a significant change in main features of rainfall regime. Nevertheless, the detected climatic changes are not equally distributed all over the world, but exhibit specific characteristics in different regions. Therefore, studying the evolution of climatic indices in different geographical areas with a prefixed standard approach becomes very useful in order to analyze the existence of climatic trend and compare results. In this work, a methodology to investigate the climatic change and its effects on a wide set of climatic indices is proposed and applied at regional scale in the case study of a Mediterranean area, Umbria region in Italy. From data of the available temperature stations, nine temperature indices have been obtained and the existence of trends has been checked by applying the non-parametric Mann-Kendall test, while the non-parametric Pettitt test and the parametric Standard Normal Homogeneity Test (SNHT) have been applied to detect the presence of break points. In addition, aimed to characterize the rainfall regime, data from 11 rainfall stations have been used and a trend analysis has been performed on cumulative annual rainfall depth, daily rainfall, rainy days, and dry periods length. The results show a general increase in any temperature indices, even if with a trend pattern dependent of indices and stations, and a general decrease of cumulative annual rainfall and average daily rainfall, with a time rainfall distribution over the year different from the past.

Keywords: climatic change, temperature, rainfall regime, trend analysis

Procedia PDF Downloads 120
38553 Baseline Data from Specialist Obesity Clinic in a Large Tertiary Care Facility, Karachi, Pakistan

Authors: Asma Ahmed, Farah Khalid, Sahlah Sohail, Saira Banusokwalla, Sabiha Banu, Inaara Akbar, Safia Awan, Syed Iqbal Azam

Abstract:

Background and Objectives: The level of knowledge regarding obesity as a disease condition and health-seeking behavior regarding its management is grossly lacking. We present data from our multidisciplinary obesity clinic at the large tertiary care facility in Karachi, Pakistan, to provide baseline profiles and outcomes of patients attending these clinics. Methods: 260 who attended the obesity clinic between June 2018 to March 2020 were enrolled in this study. The analysis included descriptive and ROC analysis to identify the best cut-offs of theanthropometric measurements to diagnose obesity-related comorbid conditions. Results: The majority of the studied population were women (72.3%) and employed(43.7%) with a mean age of 35.5 years. Mean BMIwas 37.4, waist circumference was 112.4 cm, visceral fat was 11.7%, and HbA1C was 6.9%. The most common comorbidities were HTN & D.M (33 &31%, respectively). The prevalence of MetS was 16.3% in patients and was slightly higher in males. Visceral fat was the main factor in predicting D.M (0.750; 95% CI: 0.665, 0.836) and MetS (0.709; 95% CI: 0.590, 0.838) compared to total body fat, waist circumference, and BMI. The risk of predicting DM &MetS for the visceral fat above 9.5% in women had the highest sensitivity (80% for D.M & 79% for MetS) and an NPV (92.75% for D.M & 95% for MetS). Conclusions: This study describes and establishes characteristics of these obese individuals, which can help inform clinical practices. These practices may involve using visceral fat for earlier identification and counseling-based interventions to prevent more severe surgical interventions down the line.

Keywords: obesity, metabolic syndrome, tertiary care facility, BMI, waist circumference, visceral fat

Procedia PDF Downloads 158
38552 Monitoring Key Biomarkers Related to the Risk of Low Breastmilk Production in Women, Leading to a Positive Impact in Infant’s Health

Authors: R. Sanchez-Salcedo, N. H. Voelcker

Abstract:

Currently, low breast milk production in women is one of the leading health complications in infants. Recently, It has been demonstrated that exclusive breastfeeding, especially up to a minimum of 6 months, significantly reduces respiratory and gastrointestinal infections, which are the main causes of death in infants. However, the current data shows that a high percentage of women stop breastfeeding their children because they perceive an inadequate supply of milk, and only 45% of children are breastfeeding under 6 months. It is, therefore, clear the necessity to design and develop a biosensor that is sensitive and selective enough to identify and validate a panel of milk biomarkers that allow the early diagnosis of this condition. In this context, electrochemical biosensors could be a powerful tool for assessing all the requirements in terms of reliability, selectivity, sensitivity, cost efficiency and potential for multiplex detection. Moreover, they are suitable for the development of POC devices and wearable sensors. In this work, we report the development of two types of sensing platforms towards several biomarkers, including miRNAs and hormones present in breast milk and dysregulated in this pathological condition. The first type of sensing platform consists of an enzymatic sensor for the detection of lactose, one of the main components in milk. In this design, we used gold surface as an electrochemical transducer due to the several advantages, such as the variety of strategies available for its rapid and efficient functionalization with bioreceptors or capture molecules. For the second type of sensing platform, nanoporous silicon film (pSi) was chosen as the electrode material for the design of DNA sensors and aptasensors targeting miRNAs and hormones, respectively. pSi matrix offers a large superficial area with an abundance of active sites for the immobilization of bioreceptors and tunable characteristics, which increase the selectivity and specificity, making it an ideal alternative material. The analytical performance of the designed biosensors was not only characterized in buffer but also validated in minimally treated breastmilk samples. We have demonstrated the potential of an electrochemical transducer on pSi and gold surface for monitoring clinically relevant biomarkers associated with the heightened risk of low milk production in women. This approach, in which the nanofabrication techniques and the functionalization methods were optimized to increase the efficacy of the biosensor highly provided a foundation for further research and development of targeted diagnosis strategies.

Keywords: biosensors, electrochemistry, early diagnosis, clinical markers, miRNAs

Procedia PDF Downloads 18
38551 Addressing Supply Chain Data Risk with Data Security Assurance

Authors: Anna Fowler

Abstract:

When considering assets that may need protection, the mind begins to contemplate homes, cars, and investment funds. In most cases, the protection of those assets can be covered through security systems and insurance. Data is not the first thought that comes to mind that would need protection, even though data is at the core of most supply chain operations. It includes trade secrets, management of personal identifiable information (PII), and consumer data that can be used to enhance the overall experience. Data is considered a critical element of success for supply chains and should be one of the most critical areas to protect. In the supply chain industry, there are two major misconceptions about protecting data: (i) We do not manage or store confidential/personally identifiable information (PII). (ii) Reliance on Third-Party vendor security. These misconceptions can significantly derail organizational efforts to adequately protect data across environments. These statistics can be exciting yet overwhelming at the same time. The first misconception, “We do not manage or store confidential/personally identifiable information (PII)” is dangerous as it implies the organization does not have proper data literacy. Enterprise employees will zero in on the aspect of PII while neglecting trade secret theft and the complete breakdown of information sharing. To circumvent the first bullet point, the second bullet point forges an ideology that “Reliance on Third-Party vendor security” will absolve the company from security risk. Instead, third-party risk has grown over the last two years and is one of the major causes of data security breaches. It is important to understand that a holistic approach should be considered when protecting data which should not involve purchasing a Data Loss Prevention (DLP) tool. A tool is not a solution. To protect supply chain data, start by providing data literacy training to all employees and negotiating the security component of contracts with vendors to highlight data literacy training for individuals/teams that may access company data. It is also important to understand the origin of the data and its movement to include risk identification. Ensure processes effectively incorporate data security principles. Evaluate and select DLP solutions to address specific concerns/use cases in conjunction with data visibility. These approaches are part of a broader solutions framework called Data Security Assurance (DSA). The DSA Framework looks at all of the processes across the supply chain, including their corresponding architecture and workflows, employee data literacy, governance and controls, integration between third and fourth-party vendors, DLP as a solution concept, and policies related to data residency. Within cloud environments, this framework is crucial for the supply chain industry to avoid regulatory implications and third/fourth party risk.

Keywords: security by design, data security architecture, cybersecurity framework, data security assurance

Procedia PDF Downloads 89
38550 Estimation Atmospheric parameters for Weather Study and Forecast over Equatorial Regions Using Ground-Based Global Position System

Authors: Asmamaw Yehun, Tsegaye Kassa, Addisu Hunegnaw, Martin Vermeer

Abstract:

There are various models to estimate the neutral atmospheric parameter values, such as in-suite and reanalysis datasets from numerical models. Accurate estimated values of the atmospheric parameters are useful for weather forecasting and, climate modeling and monitoring of climate change. Recently, Global Navigation Satellite System (GNSS) measurements have been applied for atmospheric sounding due to its robust data quality and wide horizontal and vertical coverage. The Global Positioning System (GPS) solutions that includes tropospheric parameters constitute a reliable set of data to be assimilated into climate models. The objective of this paper is, to estimate the neutral atmospheric parameters such as Wet Zenith Delay (WZD), Precipitable Water Vapour (PWV) and Total Zenith Delay (TZD) using six selected GPS stations in the equatorial regions, more precisely, the Ethiopian GPS stations from 2012 to 2015 observational data. Based on historic estimated GPS-derived values of PWV, we forecasted the PWV from 2015 to 2030. During data processing and analysis, we applied GAMIT-GLOBK software packages to estimate the atmospheric parameters. In the result, we found that the annual averaged minimum values of PWV are 9.72 mm for IISC and maximum 50.37 mm for BJCO stations. The annual averaged minimum values of WZD are 6 cm for IISC and maximum 31 cm for BDMT stations. In the long series of observations (from 2012 to 2015), we also found that there is a trend and cyclic patterns of WZD, PWV and TZD for all stations.

Keywords: atmosphere, GNSS, neutral atmosphere, precipitable water vapour

Procedia PDF Downloads 61
38549 The Significance of Childhood in Shaping Family Microsystems from the Perspective of Biographical Learning: Narratives of Adults

Authors: Kornelia Kordiak

Abstract:

The research is based on a biographical approach and serves as a foundation for understanding individual human destinies through the analysis of the context of life experiences. It focuses on the significance of childhood in shaping family micro-worlds from the perspective of biographical learning. In this case, the family micro-world is interpreted as a complex of beliefs and judgments about elements of the ‘total universe’ based on the individual's experiences. The main aim of the research is to understand the importance of childhood in shaping family micro-worlds from the perspective of reflection on biographical learning. Additionally, it contributes to a deeper understanding of the familial experiences of the studied individuals who form these family micro-worlds and the course of the biographical learning process in the subjects. Biographical research aligns with an interpretative paradigm, where individuals are treated as active interpreters of the world, giving meaning to their experiences and actions based on their own values and beliefs. The research methods used in the project—narrative interview method and analysis of personal documents—enable obtaining a multidimensional perspective on the phenomenon under study. Narrative interviews serve as the main data collection method, allowing researchers to delve into various life contexts of individuals. Analysis of these narratives identifies key moments and life patterns, as well as discovers the significance of childhood in shaping family micro-worlds. Moreover, analysis of personal documents such as diaries or photographs enriches the understanding of the studied phenomena by providing additional contexts and perspectives. The research will be conducted in three phases: preparatory, main, and final. The anticipated schedule includes preparation of research tools, selection of research sample, conducting narrative interviews and analysis of personal documents, as well as analysis and interpretation of collected research material. The narrative interview method and document analysis will be utilized to capture various contexts and interpretations of childhood experiences and family relations. The research will contribute to a better understanding of family dynamics and individual developmental processes. It will allow for the identification and understanding of mechanisms of biographical learning and their significance in shaping identity and family relations. Analysis of adult narratives will enable the identification of factors determining patterns of behavior and attitudes in adult life, which may have significant implications for pedagogical practice.

Keywords: childhood, adulthood, biographical learning, narrative interview, analysis of personal documents, family micro-worlds

Procedia PDF Downloads 28
38548 Data Security: An Enhancement of E-mail Security Algorithm to Secure Data Across State Owned Agencies

Authors: Lindelwa Mngomezulu, Tonderai Muchenje

Abstract:

Over the decades, E-mails provide easy, fast and timely communication enabling businesses and state owned agencies to communicate with their stakeholders and with their own employees in real-time. Moreover, since the launch of Microsoft office 365 and many other clouds based E-mail services, many businesses have been migrating from the on premises E-mail services to the cloud and more precisely since the beginning of the Covid-19 pandemic, there has been a significant increase of E-mails utilization, which then leads to the increase of cyber-attacks. In that regard, E-mail security has become very important in the E-mail transportation to ensure that the E-mail gets to the recipient without the data integrity being compromised. The classification of the features to enhance E-mail security for further from the enhanced cyber-attacks as we are aware that since the technology is advancing so at the cyber-attacks. Therefore, in order to maximize the data integrity we need to also maximize security of the E-mails such as enhanced E-mail authentication. The successful enhancement of E-mail security in the future may lessen the frequency of information thefts via E-mails, resulting in the data of South African State-owned agencies not being compromised.

Keywords: e-mail security, cyber-attacks, data integrity, authentication

Procedia PDF Downloads 136
38547 Semi-Supervised Outlier Detection Using a Generative and Adversary Framework

Authors: Jindong Gu, Matthias Schubert, Volker Tresp

Abstract:

In many outlier detection tasks, only training data belonging to one class, i.e., the positive class, is available. The task is then to predict a new data point as belonging either to the positive class or to the negative class, in which case the data point is considered an outlier. For this task, we propose a novel corrupted Generative Adversarial Network (CorGAN). In the adversarial process of training CorGAN, the Generator generates outlier samples for the negative class, and the Discriminator is trained to distinguish the positive training data from the generated negative data. The proposed framework is evaluated using an image dataset and a real-world network intrusion dataset. Our outlier-detection method achieves state-of-the-art performance on both tasks.

Keywords: one-class classification, outlier detection, generative adversary networks, semi-supervised learning

Procedia PDF Downloads 151
38546 Analysis of Moving Loads on Bridges Using Surrogate Models

Authors: Susmita Panda, Arnab Banerjee, Ajinkya Baxy, Bappaditya Manna

Abstract:

The design of short to medium-span high-speed bridges in critical locations is an essential aspect of vehicle-bridge interaction. Due to dynamic interaction between moving load and bridge, mathematical models or finite element modeling computations become time-consuming. Thus, to reduce the computational effort, a universal approximator using an artificial neural network (ANN) has been used to evaluate the dynamic response of the bridge. The data set generation and training of surrogate models have been conducted over the results obtained from mathematical modeling. Further, the robustness of the surrogate model has been investigated, which showed an error percentage of less than 10% with conventional methods. Additionally, the dependency of the dynamic response of the bridge on various load and bridge parameters has been highlighted through a parametric study.

Keywords: artificial neural network, mode superposition method, moving load analysis, surrogate models

Procedia PDF Downloads 100
38545 The Effect of Sorafenibe on Soat1 Protein by Using Molecular Docking Method

Authors: Mahdiyeh Gholaminezhad

Abstract:

Context: The study focuses on the potential impact of Sorafenib on SOAT1 protein in liver cancer treatment, addressing the need for more effective therapeutic options. Research aim: To explore the effects of Sorafenib on the activity of SOAT1 protein in liver cancer cells. Methodology: Molecular docking was employed to analyze the interaction between Sorafenib and SOAT1 protein. Findings: The study revealed a significant effect of Sorafenib on the stability and activity of SOAT1 protein, suggesting its potential as a treatment for liver cancer. Theoretical importance: This research highlights the molecular mechanism underlying Sorafenib's anti-cancer properties, contributing to the understanding of its therapeutic effects. Data collection: Data on the molecular structure of Sorafenib and SOAT1 protein were obtained from computational simulations and databases. Analysis procedures: Molecular docking simulations were performed to predict the binding interactions between Sorafenib and SOAT1 protein. Question addressed: How does Sorafenib influence the activity of SOAT1 protein and what are the implications for liver cancer treatment? Conclusion: The study demonstrates the potential of Sorafenib as a targeted therapy for liver cancer by affecting the activity of SOAT1 protein. Reviewers' Comments: The study provides valuable insights into the molecular basis of Sorafenib's action on SOAT1 protein, suggesting its therapeutic potential. To enhance the methodology, the authors could consider validating the docking results with experimental data for further validation.

Keywords: liver cancer, sorafenib, SOAT1, molecular docking

Procedia PDF Downloads 26
38544 Floodplain Modeling of River Jhelum Using HEC-RAS: A Case Study

Authors: Kashif Hassan, M.A. Ahanger

Abstract:

Floods have become more frequent and severe due to effects of global climate change and human alterations of the natural environment. Flood prediction/ forecasting and control is one of the greatest challenges facing the world today. The forecast of floods is achieved by the use of hydraulic models such as HEC-RAS, which are designed to simulate flow processes of the surface water. Extreme flood events in river Jhelum , lasting from a day to few are a major disaster in the State of Jammu and Kashmir, India. In the present study HEC-RAS model was applied to two different reaches of river Jhelum in order to estimate the flood levels corresponding to 25, 50 and 100 year return period flood events at important locations and to deduce flood vulnerability of important areas and structures. The flow rates for the two reaches were derived from flood-frequency analysis of 50 years of historic peak flow data. Manning's roughness coefficient n was selected using detailed analysis. Rating Curves were also generated to serve as base for determining the boundary conditions. Calibration and Validation procedures were applied in order to ensure the reliability of the model. Sensitivity analysis was also performed in order to ensure the accuracy of Manning's n in generating water surface profiles.

Keywords: flood plain, HEC-RAS, Jhelum, return period

Procedia PDF Downloads 426