Search results for: internal temperature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9044

Search results for: internal temperature

5264 Extraction, Recovery and Bioactivities of Chlorogenic Acid from Unripe Green Coffee Cherry Waste of Coffee Processing Industry

Authors: Akkasit Jongjareonrak, Supansa Namchaiya

Abstract:

Unripe green coffee cherry (UGCC) accounting about 5 % of total raw material weight receiving to the coffee bean production process and is, in general, sorting out and dump as waste. The UGCC is known to rich in phenolic compounds such as caffeoylquinic acids, feruloylquinic acids, chlorogenic acid (CGA), etc. CGA is one of the potent bioactive compounds using in the nutraceutical and functional food industry. Therefore, this study aimed at optimization the extraction condition of CGA from UGCC using Accelerated Solvent Extractor (ASE). The ethanol/water mixture at various ethanol concentrations (50, 60 and 70 % (v/v)) was used as an extraction solvent at elevated pressure (10.34 MPa) and temperatures (90, 120 and 150 °C). The recovery yield of UGCC crude extract, total phenolic content, CGA content and some bioactivities of UGCC extract were investigated. Using of ASE at lower temperature with higher ethanol concentration provided higher CGA content in the UGCC crude extract. The maximum CGA content was observed at the ethanol concentration of 70% ethanol and 90 °C. The further purification of UGCC crude extract gave a higher purity of CGA with a purified CGA yield of 4.28 % (w/w, of dried UGCC sample) containing 72.52 % CGA equivalent. The antioxidant activity and antimicrobial activity of purified CGA extract were determined. The purified CGA exhibited the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity at 0.88 mg Trolox equivalent/mg purified CGA sample. The antibacterial activity against Escherichia coli was observed with the minimum inhibitory concentration (MIC) at 3.12 mg/ml and minimum bactericidal concentration (MBC) at 12.5 mg/ml. These results suggested that using of high concentration of ethanol and low temperature under elevated pressure of ASE condition could accelerate the extraction of CGA from UGCC. The purified CGA extract could be a promising alternative source of bioactive compound using for nutraceutical and functional food industry.

Keywords: bioactive, chlorogenic acid, coffee, extraction

Procedia PDF Downloads 244
5263 Listeria and Spoilage Inhibition Using Neutralized and Sodium Free Vinegar Powder

Authors: E. Heintz, H. J. van Lent, K. Glass, J. Lim

Abstract:

The trend for sodium reduction in food products is clear. Following the World Health Organization (WHO) publication on sodium usage and intake, several countries have introduced initiatives to reduce food-related sodium intake. As salt is a common food preservative, this trend motivates the formulation of a suitable additive with comparable benefits of shelf life extension and microbial safety. Organic acid derivatives like acetates are known as generic microbial growth inhibitors and are commonly applied as additives to meet food safety demands. However, modern consumers have negative perceptions towards -synthetic-derived additives and increasingly prefer natural alternatives. Vinegar, for example, is a well-known natural fermentation product used in food preservation. However, the high acidity of vinegar often makes it impractical for direct use in meat products and a neutralized form would be desirable. This research demonstrates the efficacy of powdered vinegar (Provian DV) in inhibiting Listeria and spoilage organisms (LAB) to increase safety and shelf life of meat products. For this, the efficacy of Provian DV was compared to the efficacy of Provian K, a commonly used sodium free acetate-based preservative, which is known for its inhibition against Listeria. Materials & methods— Cured pork hams: Ingredients: Pork ham muscle, water, salt, dextrose, sodium tripolyphosphate, carrageenan, sodium nitrite, sodium erythorbate, and starch. Targets: 73-74% moisture, 1.75+0.1% salt, and pH 6.4+0.1. Treatments: Control (no antimicrobials), Provian®K 0.5% and 0.75%, Provian®DV 0.5%, 0.65%, 0.8% and 1.0%. Meat formulations in casings were cooked reaching an internal temperature of 73.9oC, cooled overnight and stored for 4 days at 4oC until inoculation. Inoculation: Sliced products were inoculated with approximately 3-log per gram of a cocktail of L. monocytogenes (including serotypes 4b, 1/2a and 1/2b) or LAB-cocktail (C. divergens and L. mesenteroides). Inoculated slices were vacuum packaged and stored at 4oC and 7°C. Samples were incubated 28 days (LAB) or 12 weeks (L. monocytogenes) Microbial analysis: Microbial populations were enumerated in rinsate obtained after adding 100ml of sterile Butterfield’s phosphate buffer to each package and massaging the contents externally by hand. L. monocytogenes populations were determined on triplicate samples by surface plating on Modified Oxford agar whereas LAB plate counts were determined on triplicate samples by surface plating on All Purpose Tween agar with 0.4% bromocresol purple. Proximate analysis: Triplicate non-inoculated ground samples were analyzed for the moisture content, pH, aw, salt, and residual nitrite. Results—The results confirmed the no growth of Listeria on cured ham with 0.5% Provian K stored at 4°C and 7°C for 12 weeks, whereas the no-antimicrobial control showed a 1-log increase within two weeks. 0.5% Provian DV demonstrated similar efficacy towards Listeria inhibition at 4°C while 0.65% Provian DV was required to match the Listeria control at 7°C. 0.75% Provian K and 1% Provian DV were needed to show inhibition of the LAB for 4 weeks at both temperatures. Conclusions—This research demonstrated that it is possible to increase safety and shelf life of cured ready-to-eat ham using preservatives that meet current food trends, like sodium reduction and natural origin.

Keywords: food safety, natural preservation, listeria control, shelf life extension

Procedia PDF Downloads 120
5262 3 Dimensions Finite Element Analysis of Tunnel-Pile Interaction Scenarios Using Abaqus Software

Authors: Haitham J. M. Odeh

Abstract:

This paper introduced an analysis of the effect of tunneling near pile foundations. Accomplished by three-dimensional finite element modeling. The numerical simulation is conducted using Abaqus finite element software. By examining different Tunnel-pile scenarios. The paper presents the tunnel induced pile responses, Such as pile settlement, pile internal forces, and the comments made on changing the vertical and transversal location of the tunnel related to the piles, the study contains two pile-supported structure cases, single and a group of piles. A comprehensive comparison between real case study results and numerical simulation is presented. The results of the analysis reveal the critical and safe location of tunnel construction and the positive effect of a group of piles existing instead of single piles. Also, demonstrates the changes in pile responses by changing the tunnel location.

Keywords: pile responses, single pile, group of piles, pile-tunnel interaction

Procedia PDF Downloads 123
5261 Impact of Urban Migration on Caste: Rohinton Mistry’s a Fine Balance and Rural-to-Urban Caste Migration in India

Authors: Mohua Dutta

Abstract:

The primary aim of this research paper is to investigate the forced urban migration of Dalits in India who are fleeing caste persecution in rural areas. This paper examines the relationship between caste and rural-to-urban internal migration in India using a literary text, Rohinton Mistry’s A Fine Balance, highlighting the challenges faced by Dalits in rural areas that force them to migrate to urban areas. Despite the prevalence of such discussions in Dalit autobiographies written in vernacular languages, there is a lack of discussion regarding caste migration in Indian English Literature, including this present text, as evidenced by the existing critical interpretations of the novel, which this paper seeks to rectify. The primary research question is how urban migration affects caste system in India and why rural-to-urban caste migration occurs. The purpose of this paper is to better understand the reasons for Dalit migration, the challenges they face in rural and urban areas, and the lingering influence of caste in both rural and urban areas. The study reveals that the promise of mobility and emancipation provided by class operations drives rural-to-urban caste migration in India, but it also reveals that caste marginalization in rural areas is closely linked to class marginalization and other forms of subalternity in urban areas. Moreover, the caste system persists in urban areas as well, making Dalit migrants more vulnerable to social, political, and economic discrimination. The reason for this is that, despite changes in profession and urban migration, the trapped structure of caste capital and family networks exposes migrants to caste and class oppressions. To reach its conclusion, this study employs a variety of methodologies. Discourse analysis is used to investigate the current debates and narratives surrounding caste migration. Critical race theory, specifically intersectional theory and social constructivism, aids in comprehending the complexities of caste, class, and migration. Mistry's novel is subjected to textual analysis in order to identify and interpret references to caste migration. Secondary data, such as theoretical understanding of the caste system in operation and scholarly works on caste migration, are also used to support and strengthen the findings and arguments presented in the paper. The study concludes that rural-to-urban caste migration in India is primarily motivated by the promise of socioeconomic mobility and emancipation offered by urban spaces. However, the caste system persists in urban areas, resulting in the continued marginalisation and discrimination of Dalit migrants. The study also highlights the limitations of urban migration in providing true emancipation for Dalit migrants, as they remain trapped within caste and family network structures. Overall, the study raises awareness of the complexities surrounding caste migration and its impact on the lives of India's marginalised communities. This study contributes to the field of Migration Studies by shedding light on an often-overlooked issue: Dalit migration. It challenges existing literary critical interpretations by emphasising the significance of caste migration in Indian English Literature. The study also emphasises the interconnectedness of caste and class, broadening understanding of how these systems function in both rural and urban areas.

Keywords: rural-to-urban caste migration in india, internal migration in india, caste system in india, dalit movement in india, rooster coop of caste and class, urban poor as subalterns

Procedia PDF Downloads 49
5260 Homogenization of Cocoa Beans Fermentation to Upgrade Quality Using an Original Improved Fermenter

Authors: Aka S. Koffi, N’Goran Yao, Philippe Bastide, Denis Bruneau, Diby Kadjo

Abstract:

Cocoa beans (Theobroma cocoa L.) are the main components for chocolate manufacturing. The beans must be correctly fermented at first. Traditional process to perform the first fermentation (lactic fermentation) often consists in confining cacao beans using banana leaves or a fermentation basket, both of them leading to a poor product thermal insulation and to an inability to mix the product. Box fermenter reduces this loss by using a wood with large thickness (e>3cm), but mixing to homogenize the product is still hard to perform. Automatic fermenters are not rentable for most of producers. Heat (T>45°C) and acidity produced during the fermentation by microbiology activity of yeasts and bacteria are enabling the emergence of potential flavor and taste of future chocolate. In this study, a cylindro-rotative fermenter (FCR-V1) has been built and coconut fibers were used in its structure to confine heat. An axis of rotation (360°) has been integrated to facilitate the turning and homogenization of beans in the fermenter. This axis permits to put fermenter in a vertical position during the anaerobic alcoholic phase of fermentation, and horizontally during acetic phase to take advantage of the mid height filling. For circulation of air flow during turning in acetic phase, two woven rattan with grid have been made, one for the top and second for the bottom of the fermenter. In order to reduce air flow during acetic phase, two airtight covers are put on each grid cover. The efficiency of the turning by this kind of rotation, coupled with homogenization of the temperature, caused by the horizontal position in the acetic phase of the fermenter, contribute to having a good proportion of well-fermented beans (83.23%). In addition, beans’pH values ranged between 4.5 and 5.5. These values are ideal for enzymatic activity in the production of the aromatic compounds inside beans. The regularity of mass loss during all fermentation makes it possible to predict the drying surface corresponding to the amount being fermented.

Keywords: cocoa fermentation, fermenter, microbial activity, temperature, turning

Procedia PDF Downloads 248
5259 Analysis of Process Methane Hydrate Formation That Include the Important Role of Deep-Sea Sediments with Analogy in Kerek Formation, Sub-Basin Kendeng, Central Java, Indonesia

Authors: Yan Bachtiar Muslih, Hangga Wijaya, Trio Fani, Putri Agustin

Abstract:

Demand of Energy in Indonesia always increases 5-6% a year, but production of conventional energy always decreases 3-5% a year, it means that conventional energy in 20-40 years ahead will not able to complete all energy demand in Indonesia, one of the solve way is using unconventional energy that is gas hydrate, gas hydrate is gas that form by biogenic process, gas hydrate stable in condition with extremely depth and low temperature, gas hydrate can form in two condition that is in pole condition and in deep-sea condition, wherein this research will focus in gas hydrate that association with methane form methane hydrate in deep-sea condition and usually form in depth between 150-2000 m, this research will focus in process of methane hydrate formation that is biogenic process and the important role of deep-sea sediment so can produce accumulation of methane hydrate, methane hydrate usually will be accumulated in find sediment in deep-sea environment with condition high-pressure and low-temperature this condition too usually make methane hydrate change into white nodule, methodology of this research is geology field work and laboratory analysis, from geology field work will get sample data consist of 10-15 samples from Kerek Formation outcrops as random for imagine the condition of deep-sea environment that influence the methane hydrate formation and also from geology field work will get data of measuring stratigraphy in outcrops Kerek Formation too from this data will help to imagine the process in deep-sea sediment like energy flow, supply sediment, and etc, and laboratory analysis is activity to analyze all data that get from geology field work, the result of this research can used to exploration activity of methane hydrate in another prospect deep-sea environment in Indonesia.

Keywords: methane hydrate, deep-sea sediment, kerek formation, sub-basin of kendeng, central java, Indonesia

Procedia PDF Downloads 450
5258 Linearly Polarized Single Photon Emission from Nonpolar, Semipolar and Polar Quantum Dots in GaN/InGaN Nanowires

Authors: Snezana Lazic, Zarko Gacevic, Mark Holmes, Ekaterina Chernysheva, Marcus Müller, Peter Veit, Frank Bertram, Juergen Christen, Yasuhiko Arakawa, Enrique Calleja

Abstract:

The study reports how the pencil-like morphology of a homoepitaxially grown GaN nanowire can be exploited for the fabrication of a thin conformal InGaN nanoshell, hosting nonpolar, semipolar and polar single photon sources (SPSs). All three SPS types exhibit narrow emission lines (FWHM~0.35 - 2 meV) and high degrees of linear optical polarization (P > 70%) in the low-temperature micro-photoluminescence (µ-PL) experiments and are characterized by a pronounced antibunching in the photon correlation measurements (gcorrected(2)(0) < 0.3). The quantum-dot-like exciton localization centers induced by compositional fluctuations within the InGaN nanoshell are identified as the driving mechanism for the single photon emission. As confirmed by the low-temperature transmission electron microscopy combined with cathodoluminescence (TEM-CL) study, the crystal region (i.e. non-polar m-, semi-polar r- and polar c-facets) hosting the single photon emitters strongly affects their emission wavelength, which ranges from ultra-violet for the non-polar to visible for the polar SPSs. The photon emission lifetime is also found to be facet-dependent and varies from sub-nanosecond time scales for the non- and semi-polar SPSs to a few nanoseconds for the polar ones. These differences are mainly attributed to facet-dependent indium content and electric field distribution across the hosting InGaN nanoshell. The hereby reported pencil-like InGaN nanoshell is the first single nanostructure able to host all three types of single photon emitters and is thus a promising building block for tunable quantum light devices integrated into future photonic and optoelectronic circuits.

Keywords: GaN nanowire, InGaN nanoshell, linear polarization, nonpolar, semipolar, polar quantum dots, single-photon sources

Procedia PDF Downloads 377
5257 Removal of Cr (VI) from Water through Adsorption Process Using GO/PVA as Nanosorbent

Authors: Syed Hadi Hasan, Devendra Kumar Singh, Viyaj Kumar

Abstract:

Cr (VI) is a known toxic heavy metal and has been considered as a priority pollutant in water. The effluent of various industries including electroplating, anodizing baths, leather tanning, steel industries and chromium based catalyst are the major source of Cr (VI) contamination in the aquatic environment. Cr (VI) show high mobility in the environment and can easily penetrate cell membrane of the living tissues to exert noxious effects. The Cr (VI) contamination in drinking water causes various hazardous health effects to the human health such as cancer, skin and stomach irritation or ulceration, dermatitis, damage to liver, kidney circulation and nerve tissue damage. Herein, an attempt has been done to develop an efficient adsorbent for the removal of Cr (VI) from water. For this purpose nanosorbent composed of polyvinyl alcohol functionalized graphene oxide (GO/PVA) was prepared. Thus, obtained GO/PVA was characterized through FTIR, XRD, SEM, and Raman Spectroscopy. As prepared nanosorbent of GO/PVA was utilized for the removal Cr (VI) in batch mode experiment. The process variables such as contact time, initial Cr (VI) concentration, pH, and temperature were optimized. The maximum 99.8 % removal of Cr (VI) was achieved at initial Cr (VI) concentration 60 mg/L, pH 2, temperature 35 °C and equilibrium was achieved within 50 min. The two widely used isotherm models viz. Langmuir and Freundlich were analyzed using linear correlation coefficient (R2) and it was found that Langmuir model gives best fit with high value of R2 for the data of present adsorption system which indicate the monolayer adsorption of Cr (VI) on the GO/PVA. Kinetic studies were also conducted using pseudo-first order and pseudo-second order models and it was observed that chemosorptive pseudo-second order model described the kinetics of current adsorption system in better way with high value of correlation coefficient. Thermodynamic studies were also conducted and results showed that the adsorption was spontaneous and endothermic in nature.

Keywords: adsorption, GO/PVA, isotherm, kinetics, nanosorbent, thermodynamics

Procedia PDF Downloads 381
5256 Yields and Composition of the Gas, Liquid and Solid Fractions Obtained by Conventional Pyrolysis of Different Lignocellulosic Biomass Residues

Authors: María del Carmen Recio-Ruiz, Ramiro Ruiz-Rosas, Juana María Rosas, José Rodríguez-Mirasol, Tomás Cordero

Abstract:

Nowadays, fossil resources are main precursors for fuel production. Due to their contribution to the greenhouse effect and their future depletion, there is a constant search for environmentally friendly feedstock alternatives. Biomass residues constitute an interesting replacement for fossil resources because of their zero net CO₂ emissions. One of the main routes to convert biomass into energy and chemicals is pyrolysis. In this work, conventional pyrolysis of different biomass residues highly available such as almond shells, hemp hurds, olive stones, and Kraft lignin, was studied. In a typical experiment, the biomass was crushed and loaded into a fixed bed reactor under continuous nitrogen flow. The influence of temperature (400-800 ºC) and heating rate (10 and 20 ºC/min) on the pyrolysis yield and composition of the different fractions has been studied. In every case, the mass yields revealed that the solid fraction decreased with temperature, while liquid and gas fractions increased due to depolymerization and cracking reactions at high temperatures. The composition of every pyrolysis fraction was studied in detail. The results showed that the composition of the gas fraction was mainly CO, CO₂ when working at low temperatures, and mostly CH₄ and H₂at high temperatures. The solid fraction developed an incipient microporosity, with narrow micropore volume of 0.21 cm³/g. Regarding the liquid fraction, pyrolysis of almond shell, hemp hurds, and olive stones led mainly to a high content in aliphatic acids and furans, due to the high volatile matter content of these biomass (>74 %wt.), and phenols to a lesser degree, which were formed due to the degradation of lignin at higher temperatures. However, when Kraft lignin was used as bio-oil precursor, the presence of phenols was very prominent, and aliphatic compounds were also detected in a lesser extent.

Keywords: Bio-oil, biomass, conventional pyrolysis, lignocellulosic

Procedia PDF Downloads 123
5255 Characterization of Sorption Behavior and Mass Transfer Properties of Four Central Africa Tropical Woods

Authors: Merlin Simo Tagne, Romain Rémond

Abstract:

This study provides the sorption isotherm, its hysteresis and their mass transfer properties of four Central Africa Tropical woods largely used for building construction: frake, lotofa, sapelle and ayous. Characterization of these three species in particular and Central Africa tropical woods, in general, was necessary to develop conservation and treatment of wood after first transformation using the drying. Isotherms were performed using a dynamic vapor sorption apparatus (Surface Measurement Systems) at 20 and 40°C. The mass diffusivity was determined in steady state using a specific vapometer. Permeability was determined using a specialized device developed to measure over a wide range of permeability values. Permeability and mass transfer properties are determined in the tangential direction with a ‘false’ quartersawn cutting (sapelle and lotofa) and in the radial direction with a ‘false’ flatsawn cutting (ayous and frake). The sample of sapelle, ayous and frake are heartwood when lotofa contains as well as heartwood than sapwood. Results obtained showed that the temperature effect on sorption behavior was low than relative humidity effect. We also observed a low difference between the sorption behavior of our woods and hysteresis of sorption decreases when the temperature increases. Hailwood-Horrobin model’s predicts the isotherms of adsorption and desorption of ours woods and parameters of this model are proposed. Results on the characterization of mass transfer properties showed that, in the steady state, mass diffusivity decreases exponentially when basal density increases. In the phase of desorption, mass diffusivity is great than in the phase of adsorption. The permeability of ours woods are greater than Australian hardwoods but lower than temperate woods. It is difficult to define a relationship between permeability and mass diffusivity.

Keywords: tropical woods, sorption isotherm, diffusion coefficient, gas permeability, Central Africa

Procedia PDF Downloads 475
5254 Devulcanization of Waste Rubber Using Thermomechanical Method Combined with Supercritical CO₂

Authors: L. Asaro, M. Gratton, S. Seghar, N. Poirot, N. Ait Hocine

Abstract:

Rubber waste disposal is an environmental problem. Particularly, many researches are centered in the management of discarded tires. In spite of all different ways of handling used tires, the most common is to deposit them in a landfill, creating a stock of tires. These stocks can cause fire danger and provide ambient for rodents, mosquitoes and other pests, causing health hazards and environmental problems. Because of the three-dimensional structure of the rubbers and their specific composition that include several additives, their recycling is a current technological challenge. The technique which can break down the crosslink bonds in the rubber is called devulcanization. Strictly, devulcanization can be defined as a process where poly-, di-, and mono-sulfidic bonds, formed during vulcanization, are totally or partially broken. In the recent years, super critical carbon dioxide (scCO₂) was proposed as a green devulcanization atmosphere. This is because it is chemically inactive, nontoxic, nonflammable and inexpensive. Its critical point can be easily reached (31.1 °C and 7.38 MPa), and residual scCO₂ in the devulcanized rubber can be easily and rapidly removed by releasing pressure. In this study thermomechanical devulcanization of ground tire rubber (GTR) was performed in a twin screw extruder under diverse operation conditions. Supercritical CO₂ was added in different quantities to promote the devulcanization. Temperature, screw speed and quantity of CO₂ were the parameters that were varied during the process. The devulcanized rubber was characterized by its devulcanization percent and crosslink density by swelling in toluene. Infrared spectroscopy (FTIR) and Gel permeation chromatography (GPC) were also done, and the results were related with the Mooney viscosity. The results showed that the crosslink density decreases as the extruder temperature and speed increases, and, as expected, the soluble fraction increase with both parameters. The Mooney viscosity of the devulcanized rubber decreases as the extruder temperature increases. The reached values were in good correlation (R= 0.96) with de the soluble fraction. In order to analyze if the devulcanization was caused by main chains or crosslink scission, the Horikx's theory was used. Results showed that all tests fall in the curve that corresponds to the sulfur bond scission, which indicates that the devulcanization has successfully happened without degradation of the rubber. In the spectra obtained by FTIR, it was observed that none of the characteristic peaks of the GTR were modified by the different devulcanization conditions. This was expected, because due to the low sulfur content (~1.4 phr) and the multiphasic composition of the GTR, it is very difficult to evaluate the devulcanization by this technique. The lowest crosslink density was reached with 1 cm³/min of CO₂, and the power consumed in that process was also near to the minimum. These results encourage us to do further analyses to better understand the effect of the different conditions on the devulcanization process. The analysis is currently extended to monophasic rubbers as ethylene propylene diene monomer rubber (EPDM) and natural rubber (NR).

Keywords: devulcanization, recycling, rubber, waste

Procedia PDF Downloads 365
5253 Rheological and Self-Healing Properties of Poly (Vinyl Butyral)

Authors: Sunatda Arayachukiat, Shogo Nobukawa, Masayuki Yamaguchi

Abstract:

A new self-healing material was developed utilizing molecular entanglements for poly(vinyl butyral) (PVB) containing plasticizers. It was found that PVB shows autonomic self-healing behavior even below the glass transition temperature Tg because of marked molecular motion at surface. Moreover, the plasticizer addition enhances the chain mobility, leading to good healing behavior.

Keywords: Poly(vinyl butyral) (PVB), rheological properties, self-healing behaviour, molecular diffusion

Procedia PDF Downloads 414
5252 Impacts of Climate Change on Number of Snowy Days and Snow Season Lengths in Turkey

Authors: Evren Ozgur, Kasim Kocak

Abstract:

As a result of global warming and climate change, air temperature has increased and will continue to increase in the future. Increases in air temperatures have effects on a large number of variables in meteorology. One of the most important effects is the changes in the types of precipitation, especially in mid-latitudes. Because of increasing air temperatures, less snowfall was observed in the eastern parts of Turkey. Snowfall provides most of the water supply in spring and summer months, especially in mountainous regions of Turkey. When the temperature begins to increase in spring season, this snow starts to melt and plays an important role in agricultural purposes, drinking water supply and energy production. On the other hand, defining the snow season is very crucial especially in mountainous areas which have winter tourism opportunities. A reduction in the length of the snow season (LSS) in these regions will result in serious consequences in the long run. In the study, snow season was examined for 10 meteorological stations that are located above the altitude of 1000m. These stations have decreasing trends in the ratio of number of snowy days to total precipitation days considering earlier studies. Daily precipitation records with the observation period of 1971-2011 were used in the study. Then, the observation period was separated into 4 non-overlapping parts in order to identify decadal variations. Changes in the length of the snow season with increasing temperatures were obtained for these stations. The results of LSS were evaluated with the number of snowy days for each station. All stations have decreasing trend in number of snowy days for 1971-2011 period. In addition, seven of the results are statistically significant. Besides, decrease is observed regarding the length of snow season for studied stations. The decrease varies between 6.6 and 47.6 days according to decadal snow season averages of the stations.

Keywords: climate change, global warming, precipitation, snowfall, Turkey

Procedia PDF Downloads 160
5251 The High Quality Colored Wind Chimes by Anodization on Aluminum Alloy

Authors: Chia-Chih Wei, Yun-Qi Li, Ssu-Ying Chen, Hsuan-Jung Chen, Hsi-Wen Yang, Chih-Yuan Chen, Chien-Chon Chen

Abstract:

In this paper we used high quality anodization technique to make colored wind chime with a nano-tube structure anodic film, which controls the length to diameter ratio of an aluminum rod and controls the oxide film structure on the surface of the aluminum rod by anodizing method. The research experiment used hard anodization to grow a controllable thickness of anodic film on aluminum alloy surface. The hard anodization film has high hardness, high insulation, high temperature resistance, good corrosion resistance, colors, and mass production properties can be further applied to transportation, electronic products, biomedical fields, or energy industry applications. This study also in-depth research and detailed discussion in the related process of aluminum alloy surface hard anodizing including pre-anodization, anodization, and post-anodization. The experiment parameters of anodization including using a mixed acid solution of sulfuric acid and oxalic acid as an anodization electrolyte, and control the temperature, time, current density, and final voltage to obtain the anodic film. In the experiments results, the properties of anodic film including thickness, hardness, insulation, and corrosion characteristics, microstructure of the anode film were measured and the hard anodization efficiency was calculated. Thereby obtaining different transmission speeds of sound in the aluminum rod and different audio sounds can be presented on the aluminum rod. Another feature of the present invention is the use of anodizing method dyeing method, laser engraving patterning and electrophoresis method to make colored aluminum wind chimes.

Keywords: anodization, colored, high quality, wind chime, nano-tube

Procedia PDF Downloads 228
5250 Luminescent Properties of Plastic Scintillator with Large Area Photonic Crystal Prepared by a Combination of Nanoimprint Lithography and Atomic Layer Deposition

Authors: Jinlu Ruan, Liang Chen, Bo Liu, Xiaoping Ouyang, Zhichao Zhu, Zhongbing Zhang, Shiyi He, Mengxuan Xu

Abstract:

Plastic scintillators play an important role in the measurement of a mixed neutron/gamma pulsed radiation, neutron radiography and pulse shape discrimination technology. In some research, these luminescent properties are necessary that photons produced by the interactions between a plastic scintillator and radiations can be detected as much as possible by the photoelectric detectors and more photons can be emitted from the scintillators along a specific direction where detectors are located. Unfortunately, a majority of these photons produced are trapped in the plastic scintillators due to the total internal reflection (TIR), because there is a significant light-trapping effect when the incident angle of internal scintillation light is larger than the critical angle. Some of these photons trapped in the scintillator may be absorbed by the scintillator itself and the others are emitted from the edges of the scintillator. This makes the light extraction of plastic scintillators very low. Moreover, only a small portion of the photons emitted from the scintillator easily can be detected by detectors effectively, because the distribution of the emission directions of this portion of photons exhibits approximate Lambertian angular profile following a cosine emission law. Therefore, enhancing the light extraction efficiency and adjusting the emission angular profile become the keys for improving the number of photons detected by the detectors. In recent years, photonic crystal structures have been covered on inorganic scintillators to enhance the light extraction efficiency and adjust the angular profile of scintillation light successfully. However, that, preparation methods of photonic crystals will deteriorate performance of plastic scintillators and even destroy the plastic scintillators, makes the investigation on preparation methods of photonic crystals for plastic scintillators and luminescent properties of plastic scintillators with photonic crystal structures inadequate. Although we have successfully made photonic crystal structures covered on the surface of plastic scintillators by a modified self-assembly technique and achieved a great enhance of light extraction efficiency without evident angular-dependence for the angular profile of scintillation light, the preparation of photonic crystal structures with large area (the diameter is larger than 6cm) and perfect periodic structure is still difficult. In this paper, large area photonic crystals on the surface of scintillators were prepared by nanoimprint lithography firstly, and then a conformal layer with material of high refractive index on the surface of photonic crystal by atomic layer deposition technique in order to enhance the stability of photonic crystal structures and increase the number of leaky modes for improving the light extraction efficiency. The luminescent properties of the plastic scintillator with photonic crystals prepared by the mentioned method are compared with those of the plastic scintillator without photonic crystal. The results indicate that the number of photons detected by detectors is increased by the enhanced light extraction efficiency and the angular profile of scintillation light exhibits evident angular-dependence for the scintillator with photonic crystals. The mentioned preparation of photonic crystals is beneficial to scintillation detection applications and lays an important technique foundation for the plastic scintillators to meet special requirements under different application backgrounds.

Keywords: angular profile, atomic layer deposition, light extraction efficiency, plastic scintillator, photonic crystal

Procedia PDF Downloads 183
5249 Morphological and Molecular Identification of Endophytic Colletotrichum Species from Medicinal Plants and Their Antimicrobial Potential

Authors: Gauravi Agarkar, Mahendra Rai

Abstract:

Endophytic fungi from medicinal plants are important source of numerous pharmacologically important compounds. In the present investigation, the endophytic fungi were isolated from three medicinal plants; Andrographis paniculata, Rauwolfia serpentina and Tridax procumbens. Endophytic Colletotrichum sp. were identified on the basis of cultural and morphological characteristics as well as internal transcribed spacer (ITS) sequence analysis. Antibacterial and antifungal activity of the ethyl acetate and methanol extract of endophytic Colletotrichum sp. was evaluated against seven different human pathogenic bacteria and six Candida sp. The extracts were effective and showed significant activity against all the test pathogens. In case of yeast Candida, the combined effect of extracts and standard antibiotic was enhanced greatly showing synergistic activity. Further, the extracts were assayed for Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal/Fungicidal Concentration (MBC/MFC) where, MIC values were in the range of 100-250 μg/ml. These results suggest that the endophytic Colletotrichum sp. isolated from the medicinal plants are capable of producing promising antimicrobial metabolites.

Keywords: antimicrobial, colletotrichum, endophytic fungi, medicinal plants

Procedia PDF Downloads 545
5248 Analysis of Lift Arm Failure and Its Improvement for the Use in Farm Tractor

Authors: Japinder Wadhawan, Pradeep Rajan, Alok K. Saran, Navdeep S. Sidhu, Daanvir K. Dhir

Abstract:

Currently, research focus in the development of agricultural equipment and tractor parts in India is innovation and use of alternate materials like austempered ductile iron (ADI). Three-point linkage mechanism of the tractor is susceptible to unpredictable load conditions in the field, and one of the critical components vulnerable to failure is lift arm. Conventionally, lift arm is manufactured either by forging or casting (SG Iron) and main objective of the present work is to reduce the failure occurrences in the lift arm, which is achieved by changing the manufacturing material, i.e ADI, without changing existing design. Effect of four pertinent variables of manufacturing ADI, viz. austenitizing temperature, austenitizing time, austempering temperature, austempering time, was investigated using Taguchi method for design of experiments. To analyze the effect of parameters on the mechanical properties, mean average and signal-to-noise (S/N) ratio was calculated based on the design of experiments with L9 orthogonal array and the linear graph. The best combination for achieving the desired mechanical properties of lift arm is austenitization at 860°C for 90 minutes and austempering at 350°C for 60 minutes. Results showed that the developed component is having 925 MPA tensile strength, 7.8 per cent elongation and 120 joules toughness making it more suitable material for lift arm manufacturing. The confirmatory experiment has been performed and found a good agreement between predicted and experimental value. Also, the CAD model of the existing design was developed in computer aided design software, and structural loading calculations were performed by a commercial finite element analysis package. An optimized shape of the lift arm has also been proposed resulting in light weight and cheaper product than the existing design, which can withstand the same loading conditions effectively.

Keywords: austempered ductile iron, design of experiment, finite element analysis, lift arm

Procedia PDF Downloads 221
5247 Air Pollution on Stroke in Shenzhen, China: A Time-Stratified Case Crossover Study Modified by Meteorological Variables

Authors: Lei Li, Ping Yin, Haneen Khreis

Abstract:

Stroke is the second leading cause of death and a third leading cause of death and disability worldwide in 2019. Given the significant role of environmental factors in stroke development and progression, it is essential to investigate the effect of air pollution on stroke occurrence while considering the modifying effects of meteorological variables. This study aimed to evaluate the association between short-term exposure to air pollution and the incidence of stroke subtypes in Shenzhen, China, and to explore the potential interactions of meteorological factors with air pollutants. The study analyzed data from January 1, 2006, to December 31, 2014, including 88,214 cases of ischemic stroke and 30,433 cases of hemorrhagic stroke among residents of Shenzhen. Using a time-stratified case–crossover design with conditional quasi-Poisson regression, the study estimated the percentage changes in stroke morbidity associated with short-term exposure to nitrogen dioxide (NO₂), sulfur dioxide (SO₂), particulate matter less than 10 mm in aerodynamic diameter (PM10), carbon monoxide (CO), and ozone (O₃). A five-day moving average of air pollution was applied to capture the cumulative effects of air pollution. The estimates were further stratified by sex, age, education level, and season. The additive and multiplicative interaction between air pollutants and meteorologic variables were assessed by the relative excess risk due to interaction (RERI) and adding the interactive term into the main model, respectively. The study found that NO₂ was positively associated with ischemic stroke occurrence throughout the year and in the cold season (November through April), with a stronger effect observed among men. Each 10 μg/m³ increment in the five-day moving average of NO₂ was associated with a 2.38% (95% confidence interval was 1.36% to 3.41%) increase in the risk of ischemic stroke over the whole year and a 3.36% (2.04% to 4.69%) increase in the cold season. The harmful effect of CO on ischemic stroke was observed only in the cold season, with each 1 mg/m³ increment in the five-day moving average of CO increasing the risk by 12.34% (3.85% to 21.51%). There was no statistically significant additive interaction between individual air pollutants and temperature or relative humidity, as demonstrated by the RERI. The interaction term in the model showed a multiplicative antagonistic effect between NO₂ and temperature (p-value=0.0268). For hemorrhagic stroke, no evidence of the effects of any individual air pollutants was found in the whole population. However, the RERI indicated a statistically additive and multiplicative interaction of temperature on the effects of PM10 and O₃ on hemorrhagic stroke onset. Therefore, the insignificant conclusion should be interpreted with caution. The study suggests that environmental NO₂ and CO might increase the morbidity of ischemic stroke, particularly during the cold season. These findings could help inform policy decisions aimed at reducing air pollution levels to prevent stroke and other health conditions. Additionally, the study provides valuable insights into the interaction between air pollution and meteorological variables, which underscores the need for further research into the complex relationship between environmental factors and health.

Keywords: air pollution, meteorological variables, interactive effect, seasonal pattern, stroke

Procedia PDF Downloads 71
5246 Experimental Investigation of the Thermal Performance of Fe2O3 under Magnetic Field in an Oscillating Heat Pipe

Authors: H. R. Goshayeshi, M. Khalouei, S. Azarberamman

Abstract:

This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions. This paper presents an experimental investigation regarding the use of Fe2O3 nano particles added to kerosene as a working fluid, under magnetic field. The experiment was made on Oscillating Heat Pipe (OHP). The experiment was performed in order to measure the temperature distribution and compare the heat transfer rate of the oscillating heat pipe with and without magnetic Field. Results showed that the addition of Fe2o3 nano particles under magnetic field improved thermal performance of OHP, compare with non-magnetic field. Furthermore applying a magnetic field enhance the heat transfer characteristic of Fe2O3 in both start up and steady state conditions.

Keywords: experimental, oscillating heat pipe, heat transfer, magnetic field

Procedia PDF Downloads 247
5245 The Impact of Board of Directors on CEO Compensation: Evidence from the UK

Authors: Saleh Alagla, Murya Habbash

Abstract:

The paper investigates whether the board of directors plays a monitoring role or not in CEO compensation for the UK firms during the eve of the recent financial crisis, 2004-2008. The use of heteroscedastic and autocorrelated error consistent estimation of the panel data shows, surprisingly, that four board characteristics variables are found to play a significant role in increasing the level of CEO compensation. This insightful result would suggest evidence of the managerial power theory in general and the cronyism hypothesis in particular. Moreover, the interesting evidence supporting managerial power perspective is that CEO-Chair duality reduces long-term compensation while increasing short-term compensation, thus suggesting that CEOs are risk averse who prefer short-term compensation to long-term compensation. Finally, consistent with the agency perspective board size is found to increase all compensation variables as expected.

Keywords: corporate governance, CEO compensation, board of directors, internal governance mechanisms, agency theory, managerial power theory, cronyism hypothesis

Procedia PDF Downloads 786
5244 A Statistical Energy Analysis Model of an Automobile for the Prediction of the Internal Sound Pressure Level

Authors: El Korchi Ayoub, Cherif Raef

Abstract:

Interior noise in vehicles is an essential factor affecting occupant comfort. Over recent decades, much work has been done to develop simulation tools for vehicle NVH. At the medium high-frequency range, the statistical energy analysis method (SEA) shows significant effectiveness in predicting noise and vibration responses of mechanical systems. In this paper, the evaluation of the sound pressure level (SPL) inside an automobile cabin has been performed numerically using the statistical energy analysis (SEA) method. A test car cabin was performed using a monopole source as a sound source. The decay rate method was employed to obtain the damping loss factor (DLF) of each subsystem of the developed SEA model. These parameters were then used to predict the sound pressure level in the interior cabin. The results show satisfactory agreement with the directly measured SPL. The developed SEA vehicle model can be used in early design phases and allows the engineer to identify sources contributing to the total noise and transmission paths.

Keywords: SEA, SPL, DLF, NVH

Procedia PDF Downloads 79
5243 Performance Analysis of Organic Rankine Cycle Technology to Exploit Low-Grade Waste Heat to Power Generation in Indian Industry

Authors: Bipul Krishna Saha, Basab Chakraborty, Ashish Alex Sam, Parthasarathi Ghosh

Abstract:

The demand for energy is cumulatively increasing with time.  Since the availability of conventional energy resources is dying out gradually, significant interest is being laid on searching for alternate energy resources and minimizing the wastage of energy in various fields.  In such perspective, low-grade waste heat from several industrial sources can be reused to generate electricity. The present work is to further the adoption of the Organic Rankine Cycle (ORC) technology in Indian industrial sector.  The present paper focuses on extending the previously reported idea to the next level through a comparative review with three different working fluids using practical data from an Indian industrial plant. For comprehensive study in the simulation platform of Aspen Hysys®, v8.6, the waste heat data has been collected from a current coke oven gas plant in India.  A parametric analysis of non-regenerative ORC and regenerative ORC is executed using the working fluids R-123, R-11 and R-21 for subcritical ORC system.  The primary goal is to determine the optimal working fluid considering various system parameters like turbine work output, obtained system efficiency, irreversibility rate and second law efficiency under applied multiple heat source temperature (160 °C- 180 °C).  Selection of the turbo-expanders is one of the most crucial tasks for low-temperature applications in ORC system. The present work is an attempt to make suitable recommendation for the appropriate configuration of the turbine. In a nutshell, this study justifies the proficiency of integrating the ORC technology in Indian perspective and also finds the appropriate parameter of all components integrated in ORC system for building up an ORC prototype.

Keywords: organic Rankine cycle, regenerative organic Rankine cycle, waste heat recovery, Indian industry

Procedia PDF Downloads 363
5242 Optimal Design of Shape for Increasing the Bonding Pressure Drawing of Hot Clad Pipes by Finite Element Method Analysis

Authors: Seok-Hyeon Park, Joon-Hong Park, Mok-Tan-Ahn, Seong-Hun Ha

Abstract:

Clad Pipe is made of a different kind of material, which is different from the internal and external materials, for the corrosive crude oil transportation tube. Most of the clad pipes are produced by hot rolling. However, problems arise due to high product prices and excessive process numbers. Therefore, in this study, the hot drawing process with excellent product cost, process number and productivity is applied. Due to the nature of the drawing process, the shape of the mold greatly influences the formability of the material and the bonding pressure of the two materials because it is a process of drawing the material to the die and reducing the cross-sectional area. Also, in case of hot drawing, if the mold shape is not suitable due to the increased fluidity of the material, it may cause problems such as tearing and stretching. Therefore, in this study, we try to find the shape of the mold which suppresses the occurrence of defects in the hot drawing process and maximizes the bonding pressure between the two materials through the mold shape optimization design by FEM analysis.

Keywords: clad pipe, hot drawing, bonding pressure, mold shape

Procedia PDF Downloads 287
5241 Thermal Characterization of Smart and Large-Scale Building Envelope System in a Subtropical Climate

Authors: Andrey A. Chernousov, Ben Y. B. Chan

Abstract:

The thermal behavior of a large-scale, phase change material (PCM) enhanced building envelope system was studied in regard to the need for pre-fabricated construction in subtropical regions. The proposed large-scale envelope consists of a reinforced aluminum skin, insulation core, phase change material and reinforced gypsum board. The PCM impact on an energy efficiency of an enveloped room was resolved by validation of the Energy Plus numerical scheme and optimization of a smart material location in the core. The PCM location was optimized by a minimization method of a cooling energy demand. It has been shown that there is good agreement between the test and simulation results. The optimal location of the PCM layer in Hong Kong summer conditions has been then recomputed for core thicknesses of 40, 60 and 80 mm. A non-dimensional value of the optimal PCM location was obtained to be same for all the studied cases and the considered external and internal conditions.

Keywords: thermal performance, phase change material, energy efficiency, PCM optimization

Procedia PDF Downloads 391
5240 Equilibrium, Kinetics, and Thermodynamic Studies on Heavy Metal Biosorption by Trichoderma Species

Authors: Sobia Mushtaq, Firdaus E. Bareen, Asma Tayyeb

Abstract:

This study conducted to investigate the metal biosorption potential of indigenous Trichoderma species (T. harzianum KS05T01, T. longibrachiatum KS09T03, Trichoderma sp KS17T09., T. viridi KS17T011, T. atrobruneo KS21T014, and T. citrinoviride) that have been isolated from contaminated soil of Kasur Tannery Waste Management Agency. The effect of different biosorption parameters as initial metal ion concentration, pH, contact time , and temperature of incubation was investigated on the biosorption potential of these species. The metal removal efficiency and (E%) and metal uptake capacity (mg/g) increased along with the increase of initial metal concentration in media. The Trichoderma species can tolerate and survive under heavy metal stress up to 800mg/L. Among the two isotherm models were applied on the biosorption data, Langmuir isotherm model and Freundlich isotherm model, maximum correlation coefficients values (R 2 ) of 1was found for Langmuir model, which showed the better fitted model for the Trichoderma biosorption. The metal biosorption was increased with the increase of temperature and pH of the media. The maximum biosorption was observed between 25-30 o C and at pH 6.-7.5, while the biosorption rate was increased from 3-6 days of incubation, and then the rate of biosorption was slowed down. The biosorption data was better fitted for Pseudo kinetic first order during the initial days of biosorption. Thermodynamic parameters as standard Gibbs free energy (G), standard enthalpy change (H), and standard entropy (S) were calculated. The results confirmed the heavy metal biosorption by Trichoderma species was endothermic and spontaneous reaction in nature. The FTIR spectral analysis and SEM-EDX analysis of the treated and controlled mycelium revealed the changes in the active functional sites and morphological variations of the outer surface. The data analysis envisaged that high metal tolerance exhibited by Trichoderma species indicates its potential as efficacious and successful mediator for bioremediation of the heavy metal polluted environments.

Keywords: heavy metal, fungal biomass, biosorption, kinetics

Procedia PDF Downloads 101
5239 Study on Eco-Feedback of Thermal Comfort and Cost Efficiency for Low Energy Residence

Authors: Y. Jin, N. Zhang, X. Luo, W. Zhang

Abstract:

China with annual increasing 0.5-0.6 billion squares city residence has brought in enormous energy consumption by HVAC facilities and other appliances. In this regard, governments and researchers are encouraging renewable energy like solar energy, geothermal energy using in houses. However, high cost of equipment and low energy conversion result in a very low acceptable to residents. So what’s the equilibrium point of eco-feedback to reach economic benefit and thermal comfort? That is the main question should be answered. In this paper, the objective is an on-site solar PV and heater house, which has been evaluated as a low energy building. Since HVAC system is considered as main energy consumption equipment, the residence with 24-hour monitoring system set to measure temperature, wind velocity and energy in-out value with no HVAC system for one month of summer and winter. Thermal comfort time period will be analyzed and confirmed; then the air-conditioner will be started within thermal discomfort time for the following one summer and winter month. The same data will be recorded to calculate the average energy consumption monthly for a purpose of whole day thermal comfort. Finally, two analysis work will be done: 1) Original building thermal simulation by computer at design stage with actual measured temperature after construction will be contrastive analyzed; 2) The cost of renewable energy facilities and power consumption converted to cost efficient rate to assess the feasibility of renewable energy input for residence. The results of the experiment showed that a certain deviation exists between actual measured data and simulated one for human thermal comfort, especially in summer period. Moreover, the cost-effectiveness is high for a house in targeting city Guilin now with at least 11 years of cost-covering. The conclusion proves that an eco-feedback of a low energy residence is never only consideration of its energy net value, but also the cost efficiency that is the critical factor to push renewable energy acceptable by the public.

Keywords: cost efficiency, eco-feedback, low energy residence, thermal comfort

Procedia PDF Downloads 242
5238 Elaboration and Characterization of in-situ CrC- Ni(Al, Cr) Composites Elaborated from Ni and Cr₂AlC Precursors

Authors: A. Chiker, A. Benamor, A. Haddad, Y. Hadji, M. Hadji

Abstract:

Metal matrix composites (MMCs) have been of big interest for a few decades. Their major drawback lies in their enhanced mechanical performance over unreinforced alloys. They found ground in many engineering fields, such as aeronautics, aerospace, automotive, and other structural applications. One of the most used alloys as a matrix is nickel alloys, which meet the need for high-temperature mechanical properties; some attempts have been made to develop nickel base composites reinforced by high melt point and high modulus particulates. Among the carbides used as reinforcing particulates, chromium carbide is interesting for wear applications; it is widely used as a tribological coating material in high-temperature applications requiring high wear resistance and hardness. Moreover, a set of properties make it suitable for use in MMCs, such as toughness, the good corrosion and oxidation resistance of its three polymorphs -the cubic (Cr23C6), the hexagonal (Cr7C3), and the orthorhombic (Cr3C2)-, and it’s coefficient of thermal expansion that is almost equal to that of metals. The in-situ synthesis of CrC-reinforced Ni matrix composites could be achieved by the powder metallurgy route. To ensure the in-situ reactions during the sintering process, the use of phase precursors is necessary. Recently, new precursor materials have been proposed; these materials are called MAX phases. The MAX phases are thermodynamically stable nano-laminated materials displaying unusual and sometimes unique properties. These novel phases possess Mn+1AXn chemistry, where n is 1, 2, or 3, M is an early transition metal element, A is an A-group element, and X is C or N. Herein, the pressureless sintering method is used to elaborate Ni/Cr2AlC composites. Four composites were elaborated from 5, 10, 15 and 20 wt% of Cr2AlC MAX phase precursor which fully reacted with Ni-matrix at 1100 °C sintering temperature for 4 h in argon atmosphere. XRD results showed that Cr2AlC MAX phase was totally decomposed forming chromium carbide Cr7C3, and the released Al and Cr atoms diffused in Ni matrix giving rise to γ-Ni(Al,Cr) solid solution and γ’-Ni3(Al,Cr) intermetallic. Scanning Electron Microscopy (SEM) of the elaborated samples showed the presence of nanosized Cr7C3 reinforcing particles embedded in the Ni metal matrix, which have a direct impact on the tribological properties of the composites and their hardness. All the composites exhibited higher hardness than pure Ni; whereas adding 15 wt% of Cr2AlC gives the highest hardness (1.85 GPa). Using a ball-on-disc tribometer, dry sliding tests for the elaborated composites against 100Cr6 steel ball were studied under different applied loads. The microstructures and worn surface characteristics were then analyzed using SEM and Raman spectroscopy. The results show that all the composites exhibited better wear resistance compared to pure Ni, which could be explained by the formation of a lubricious tribo-layer during sliding and the good bonding between the Ni matrix and the reinforcing phases.

Keywords: composites, microscopy, sintering, wear

Procedia PDF Downloads 58
5237 Expression of Inflammatory and Cell Death Genes and DNA Damage Induced by Endotoxic Shock in Laying Hens

Authors: Mariam G. Eshak, Ahmed Abbas, M. I. El-Sabry, M. M. Mashaly

Abstract:

This investigation was conducted to determine the physiological response and evaluate the expression of inflammatory and cell death genes and DNA damage induced by endotoxic shock in laying hens. Endotoxic shock was induced by a single intravenous injection of 107 Escherichia coli (E. coli,) colony/hen. In the present study, 240 forty-week-old laying hens (H&N) were randomly assigned into 2 groups with 3 replicates of 40 birds each. Hens were reared in battery cages with wire floors in an open-sided housing system under natural conditions. Housing and general management practices were similar for all groups. At 42-wk of age, 45 hens from the first group (15 replicate) were infected with E. coli, while the same number of hens from the second group was injected with saline and served as a control. Heat shock protein-70 (HSP-70) expression, plasma corticosterone concentration, body temperature, and the gene expression of bax, caspase-3 activity, P38, Interlukin-1β (Il-1β), and tumor necrosis factor alpha (TNF-α) genes and DNA damage in the brain and liver were measured. Hens treated with E. coli showed significant (P≤0.05) increase of body temperature by 1.2 ᴼC and plasma corticosterone by 3 folds compared to the controls. Further, hens injected with E.Coli showed markedly over-expression of HSP-70 and increase DNA damage in brain and liver. These results were synchronized with activating cell death program since our data showed significant (P≤0.05) high expression of bax and caspase-3 activity genes in the brain and liver. These results were related to remarkable over-inflammation gene expression of P38, IL-1β, and TNF-α in brain and liver. In conclusion, our results indicate that endotoxic shock induces inflammatory physiological response and triggers cell death program by promoting P38, IL-1β, and TNF-α gene expression in the brain and liver.

Keywords: chicken, DNA damage, Escherichia coli, gene expression, inflammation

Procedia PDF Downloads 330
5236 The Triple Interpretation of German Historicism and its Theoretical Contribution to Historical Materialism

Authors: Dandan Zhang

Abstract:

Elucidating the original relationship between historical materialism and German historicism from the internal dimension of intellectual history has important theoretical significance for deep understanding and interpretation of the essential characteristics of historical materialism. German historicism contains the triple deduction of scientific historicism, historical relativism, and vitalism. The historicism of science argues for its historical status as science in the name of objective, systematic, and typical research methods, and procedural principles. Historical relativism places history under the specific historical background to study epistemological and methodological issues about the nature of human beings and the value of history. German historicism walks up to natural and cultural relativism on the basis of romanticism. Vitalism emphasizes intuition, will, and experience of life from individuals and places history on the ontology of organic life and vitality. Historical materialism and German historicism have a theoretical relationship in the genetic field. The former criticizes and surpasses the latter. Meanwhile, in the evolution of German historicism, the differences between historical materialism with it are essential features of historical science.

Keywords: German historicism, scientific historicism, historical relativism, vitalism, historical materialism

Procedia PDF Downloads 19
5235 A Review on the Potential of Electric Vehicles in Reducing World CO2 Footprints

Authors: S. Alotaibi, S. Omer, Y. Su

Abstract:

The conventional Internal Combustion Engine (ICE) based vehicles are a threat to the environment as they account for a large proportion of the overall greenhouse gas (GHG) emissions in the world. Hence, it is required to replace these vehicles with more environment-friendly vehicles. Electric Vehicles (EVs) are promising technologies which offer both human comfort “noise, pollution” as well as reduced (or no) emissions of GHGs. In this paper, different types of EVs are reviewed and their advantages and disadvantages are identified. It is found that in terms of fuel economy, Plug-in Hybrid EVs (PHEVs) have the best fuel economy, followed by Hybrid EVs (HEVs) and ICE vehicles. Since Battery EVs (BEVs) do not use any fuel, their fuel economy is estimated as price per kilometer. Similarly, in terms of GHG emissions, BEVs are the most environmentally friendly since they do not result in any emissions while HEVs and PHEVs produce less emissions compared to the conventional ICE based vehicles. Fuel Cell EVs (FCEVs) are also zero-emission vehicles, but they have large costs associated with them. Finally, if the electricity is provided by using the renewable energy technologies through grid connection, then BEVs could be considered as zero emission vehicles.

Keywords: electric vehicles, zero emission car, fuel economy, CO₂ footprint

Procedia PDF Downloads 128