Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2654

Search results for: molecular diffusion

2654 Molecular Communication Noise Effect Analysis of Diffusion-Based Channel for Considering Minimum-Shift Keying and Molecular Shift Keying Modulations

Authors: A. Azari, S. S. K. Seyyedi


One of the unaddressed and open challenges in the nano-networking is the characteristics of noise. The previous analysis, however, has concentrated on end-to-end communication model with no separate modelings for propagation channel and noise. By considering a separate signal propagation and noise model, the design and implementation of an optimum receiver will be much easier. In this paper, we justify consideration of a separate additive Gaussian noise model of a nano-communication system based on the molecular communication channel for which are applicable for MSK and MOSK modulation schemes. The presented noise analysis is based on the Brownian motion process, and advection molecular statistics, where the received random signal has a probability density function whose mean is equal to the mean number of the received molecules. Finally, the justification of received signal magnitude being uncorrelated with additive non-stationary white noise is provided.

Keywords: molecular, noise, diffusion, channel

Procedia PDF Downloads 185
2653 Solutions of Fractional Reaction-Diffusion Equations Used to Model the Growth and Spreading of Biological Species

Authors: Kamel Al-Khaled


Reaction-diffusion equations are commonly used in population biology to model the spread of biological species. In this paper, we propose a fractional reaction-diffusion equation, where the classical second derivative diffusion term is replaced by a fractional derivative of order less than two. Based on the symbolic computation system Mathematica, Adomian decomposition method, developed for fractional differential equations, is directly extended to derive explicit and numerical solutions of space fractional reaction-diffusion equations. The fractional derivative is described in the Caputo sense. Finally, the recent appearance of fractional reaction-diffusion equations as models in some fields such as cell biology, chemistry, physics, and finance, makes it necessary to apply the results reported here to some numerical examples.

Keywords: fractional partial differential equations, reaction-diffusion equations, adomian decomposition, biological species

Procedia PDF Downloads 241
2652 A Study on Temperature and Drawing Speed for Diffusion Bonding Enhancement in Drawing of Hot Lined Pipes by FEM Analysis

Authors: M. T. Ahn, J. H. Park, S. H. Park, S. H. Ha


Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in hot drawing even if the reduction in the section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision.

Keywords: diffusion bonding, temperature, pressure, drawing speed

Procedia PDF Downloads 292
2651 Analysis of Vapor-Phase Diffusion of Benzene from Contaminated Soil

Authors: Asma A. Parlin, K. Nakamura, N. Watanabe, T. Komai


Understanding the effective diffusion of benzene vapor in the soil-atmosphere interface is important as an intrusion of benzene into the atmosphere from the soil is largely driven by diffusion. To analyze the vertical one dimensional effective diffusion of benzene vapor in porous medium with high water content, diffusion experiments were conducted in soil columns using Andosol soil and Toyoura silica sand with different water content; for soil water content was from 0 to 30 wt.% and for sand it was from 0.06 to 10 wt.%. In soil, a linear relation was found between water content and effective diffusion coefficient while the effective diffusion coefficient didn’t change in the sand with increasing water. A numerical transport model following unsteady-state approaches based on Fick’s second law was used to match the required time for a steady state of the gas phase concentration profile of benzene to the experimentally measured concentration profile gas phase in the column. The result highlighted that both the water content and porosity might increase vertical diffusion of benzene vapor in soil.

Keywords: benzene vapor-phase, effective diffusion, subsurface soil medium, unsteady state

Procedia PDF Downloads 53
2650 Interaction of Vegetable Fillers with Polyethylene Matrix in Biocomposites

Authors: P. V. Pantyukhov, T. V. Monakhova, A. A. Popov


The paper studies the diffusion of low molecular weight components from vegetable fillers into polyethylene matrix during the preparation of biocomposites. In order to identify the diffusible substances a model experiment used where the hexadecane acted as a model of polyethylene. It was determined that polyphenolic compounds and chlorophyll penetrate from vegetable fillers to hexadecane to the maximum extent. There was found a correlation between the amount of polyphenolic compounds diffusible from the fillers to hexadecane and thermal oxidation kinetics of real biocomposites based on polyethylene and vegetable fillers. Thus, it has been assumed the diffusion of polyphenols and chlorophyll from vegetable fillers into polyethylene matrix during the preparation of biocomposites.

Keywords: biocomposite, composite, diffusion, polyethylene, vegetable filler

Procedia PDF Downloads 380
2649 Effects of Electric Field on Diffusion Coefficients and Share Viscosity in Dusty Plasmas

Authors: Muhammad Asif ShakoorI, Maogang He, Aamir Shahzad


Dusty (complex) plasmas contained micro-sized charged dust particles in addition to ions, electrons, and neutrals. It is typically low-temperature plasma and exists in a wide variety of physical systems. In this work, the effects of an external electric field on the diffusion coefficient and share viscosity are investigated through equilibrium molecular dynamics (EMD) simulations in three-dimensional (3D) strongly coupled (SC) dusty plasmas (DPs). The effects of constant and varying normalized electric field strength (E*) have been computed along with different combinations of plasma states on the diffusion of dust particles using EMD simulations. Diffusion coefficient (D) and share viscosity (η) along with varied system sizes, in the limit of varying E* values, is accounted for an appropriate range of plasma coupling (Γ) and screening strength (κ) parameters. At varying E* values, it is revealed that the 3D diffusion coefficient increases with increasing E* and κ; however, it decreases with an increase of Γ but within statistical limits. The share viscosity increases with increasing E*and Γ and decreases with increasing κ. New simulation results are outstanding that the combined effects of electric field and screening strengths give well-matched values of Dandη at low-intermediate to large Γ with varying small-intermediate to large N. The current EMD simulation outcomes under varying electric field strengths are in satisfactory well-matched with previous known simulation data of EMD simulations of the SC-DPs. It has been shown that the present EMD simulation data enlarged the range of E* strength up to 0.1 ≤ E*≤ 1.0 in order to find the linear range of the DPs system and to demonstrate the fundamental nature of electric field linearity of 3D SC-DPs.

Keywords: strongly coupled dusty plasma, diffusion coefficient, share viscosity, molecular dynamics simulation, electric field strength

Procedia PDF Downloads 80
2648 A Simple Finite Element Method for Glioma Tumor Growth Model with Density Dependent Diffusion

Authors: Shangerganesh Lingeshwaran


In this presentation, we have performed numerical simulations for a reaction-diffusion equation with various nonlinear density-dependent diffusion operators and proliferation functions. The mathematical model represented by parabolic partial differential equation is considered to study the invasion of gliomas (the most common type of brain tumors) and to describe the growth of cancer cells and response to their treatment. The unknown quantity of the given reaction-diffusion equation is the density of cancer cells and the mathematical model based on the proliferation and migration of glioma cells. A standard Galerkin finite element method is used to perform the numerical simulations of the given model. Finally, important observations on the each of nonlinear diffusion functions and proliferation functions are presented with the help of computational results.

Keywords: glioma invasion, nonlinear diffusion, reaction-diffusion, finite eleament method

Procedia PDF Downloads 158
2647 Rheological and Self-Healing Properties of Poly (Vinyl Butyral)

Authors: Sunatda Arayachukiat, Shogo Nobukawa, Masayuki Yamaguchi


A new self-healing material was developed utilizing molecular entanglements for poly(vinyl butyral) (PVB) containing plasticizers. It was found that PVB shows autonomic self-healing behavior even below the glass transition temperature Tg because of marked molecular motion at surface. Moreover, the plasticizer addition enhances the chain mobility, leading to good healing behavior.

Keywords: Poly(vinyl butyral) (PVB), rheological properties, self-healing behaviour, molecular diffusion

Procedia PDF Downloads 339
2646 A Study of Numerical Reaction-Diffusion Systems on Closed Surfaces

Authors: Mei-Hsiu Chi, Jyh-Yang Wu, Sheng-Gwo Chen


The diffusion-reaction equations are important Partial Differential Equations in mathematical biology, material science, physics, and so on. However, finding efficient numerical methods for diffusion-reaction systems on curved surfaces is still an important and difficult problem. The purpose of this paper is to present a convergent geometric method for solving the reaction-diffusion equations on closed surfaces by an O(r)-LTL configuration method. The O(r)-LTL configuration method combining the local tangential lifting technique and configuration equations is an effective method to estimate differential quantities on curved surfaces. Since estimating the Laplace-Beltrami operator is an important task for solving the reaction-diffusion equations on surfaces, we use the local tangential lifting method and a generalized finite difference method to approximate the Laplace-Beltrami operators and we solve this reaction-diffusion system on closed surfaces. Our method is not only conceptually simple, but also easy to implement.

Keywords: closed surfaces, high-order approachs, numerical solutions, reaction-diffusion systems

Procedia PDF Downloads 267
2645 A Study on the Relationship between Shear Strength and Surface Roughness of Lined Pipes by Cold Drawing

Authors: Mok-Tan Ahn, Joon-Hong Park, Yeon-Jong Jeong


Diffusion bonding has been continuously studied. Temperature and pressure are the most important factors to increase the strength between diffusion bonded interfaces. Diffusion bonding is an important factor affecting the bonding strength of the lined pipe. The increase of the diffusion bonding force results in a high formability clad pipe. However, in the case of drawing, it is difficult to obtain a high pressure between materials due to a relatively small reduction in cross-section, and it is difficult to prevent elongation or to tear of material in heat drawing even if the reduction in section is increased. In this paper, to increase the diffusion bonding force, we derive optimal temperature and pressure to suppress material stretching and realize precise thickness precision.

Keywords: drawing speed, FEM (Finite Element Method), diffusion bonding, temperature, heat drawing, lined pipe

Procedia PDF Downloads 194
2644 Heat Transfer and Diffusion Modelling

Authors: R. Whalley


The heat transfer modelling for a diffusion process will be considered. Difficulties in computing the time-distance dynamics of the representation will be addressed. Incomplete and irrational Laplace function will be identified as the computational issue. Alternative approaches to the response evaluation process will be provided. An illustration application problem will be presented. Graphical results confirming the theoretical procedures employed will be provided.

Keywords: heat, transfer, diffusion, modelling, computation

Procedia PDF Downloads 439
2643 Influence Maximization in Dynamic Social Networks and Graphs

Authors: Gkolfo I. Smani, Vasileios Megalooikonomou


Social influence and influence diffusion have been studied in social networks. However, most existing tasks on this subject focus on static networks. In this paper, the problem of maximizing influence diffusion in dynamic social networks, i.e., the case of networks that change over time, is studied. The DM algorithm is an extension of the MATI algorithm and solves the influence maximization (IM) problem in dynamic networks and is proposed under the linear threshold (LT) and independent cascade (IC) models. Experimental results show that our proposed algorithm achieves a diffusion performance better by 1.5 times than several state-of-the-art algorithms and comparable results in diffusion scale with the Greedy algorithm. Also, the proposed algorithm is 2.4 times faster than previous methods.

Keywords: influence maximization, dynamic social networks, diffusion, social influence, graphs

Procedia PDF Downloads 111
2642 Alterations of Molecular Characteristics of Polyethylene under the Influence of External Effects

Authors: Vigen Barkhudaryan


The influence of external effects (γ-, UV–radiations, high temperature) in presence of air oxygen on structural transformations of low-density polyethylene (LDPE) have been investigated dependent on the polymers’ thickness, the intensity and the dose of external actions. The methods of viscosimetry, light scattering, turbidimetry and gelation measuring were used for this purpose. The comparison of influence of external effects on LDPE shows, that the destruction and cross-linking processes of macromolecules proceed simultaneously with all kinds of external effects. A remarkable growth of average molecular mass of LDPE along with the irradiation doses and heat treatment exposure growth was established. It was linear for the mass average molecular mass and at the initial doses is mainly the result of the increase of the macromolecular branching. As a result, the macromolecular hydrodynamic volumes have been changed, and therefore the dependence of viscosity average molecular mass on the doses was going through the minimum at initial doses. A significant change of molecular mass, sizes and shape of macromolecules of LDPE occurs under the influence of external effects. The influence is limited only by diffusion of oxygen during -irradiation and heat treatment. At UV–irradiation the influence is limited both by diffusion of oxygen and penetration of radiation. Consequently, the molecular transformations are deeper and evident in case of -irradiation, as soon as the polymer is transformed in a whole volume. It was also established, that the mechanism of molecular transformations in polymers from the surface layer distinctly differs from those of the sample deeper layer. A comparison of the results of these investigations allows us to conclude, that the mechanisms of influence of investigated external effects on polyethylene are similar.

Keywords: cross-linking, destruction, high temperature, LDPE, γ-radiations, UV-radiations

Procedia PDF Downloads 239
2641 Influence of Photophysical Parameters of Photoactive Materials on Exciton Diffusion Length and Diffusion Coefficient in Bulk Heterojunction Organic Solar Cells

Authors: Douglas Yeboah, Jai Singh


It has been experimentally demonstrated that exciton diffusion length in organic solids can be improved by fine-tuning the material parameters that govern exciton transfer. Here, a theoretical study is carried out to support this finding. We have therefore derived expressions for the exciton diffusion length and diffusion coefficient of singlet and triplet excitons using Förster resonance energy transfer and Dexter carrier transfer mechanisms and are plotted as a function of photoluminescence (PL) quantum yield, spectral overlap integral, refractive index and dipole moment of the photoactive material. We found that singlet exciton diffusion length increases with PL quantum yield and spectral overlap integral, and decreases with increase in refractive index. Likewise, the triplet exciton diffusion length increases when PL quantum yield increases and dipole moment decreases. The calculated diffusion lengths in different organic materials are compared with existing experimental values and found to be in reasonable agreement. The results are expected to provide insight in developing new organic materials for fabricating bulk heterojunction (BHJ) organic solar cells (OSCs) with better photoconversion efficiency.

Keywords: Dexter carrier transfer, diffusion coefficient, exciton diffusion length, Föster resonance energy transfer, photoactive materials, photophysical parameters

Procedia PDF Downloads 253
2640 Investigation of Mesoporous Silicon Carbonization Process

Authors: N. I. Kargin, G. K. Safaraliev, A. S. Gusev, A. O. Sultanov, N. V. Siglovaya, S. M. Ryndya, A. A. Timofeev


In this paper, an experimental and theoretical study of the processes of mesoporous silicon carbonization during the formation of buffer layers for the subsequent epitaxy of 3C-SiC films and related wide-band-gap semiconductors is performed. Experimental samples were obtained by the method of chemical vapor deposition and investigated by scanning electron microscopy. Analytic expressions were obtained for the effective diffusion factor and carbon atoms diffusion length in a porous system. The proposed model takes into account the processes of Knudsen diffusion, coagulation and overgrowing of pores during the formation of a silicon carbide layer.

Keywords: silicon carbide, porous silicon, carbonization, electrochemical etching, diffusion

Procedia PDF Downloads 163
2639 Formation of Chemical Compound Layer at the Interface of Initial Substances A and B with Dominance of Diffusion of the A Atoms

Authors: Pavlo Selyshchev, Samuel Akintunde


A theoretical approach to consider formation of chemical compound layer at the interface between initial substances A and B due to the interfacial interaction and diffusion is developed. It is considered situation when speed of interfacial interaction is large enough and diffusion of A-atoms through AB-layer is much more then diffusion of B-atoms. Atoms from A-layer diffuse toward B-atoms and form AB-atoms on the surface of B-layer. B-atoms are assumed to be immobile. The growth kinetics of the AB-layer is described by two differential equations with non-linear coupling, producing a good fit to the experimental data. It is shown that growth of the thickness of the AB-layer determines by dependence of chemical reaction rate on reactants concentration. In special case the thickness of the AB-layer can grow linearly or parabolically depending on that which of processes (interaction or the diffusion) controls the growth. The thickness of AB-layer as function of time is obtained. The moment of time (transition point) at which the linear growth are changed by parabolic is found.

Keywords: phase formation, binary systems, interfacial reaction, diffusion, compound layers, growth kinetics

Procedia PDF Downloads 493
2638 Operational Matrix Method for Fuzzy Fractional Reaction Diffusion Equation

Authors: Sachin Kumar


Fuzzy fractional diffusion equation is widely useful to depict different physical processes arising in physics, biology, and hydrology. The motive of this article is to deal with the fuzzy fractional diffusion equation. We study a mathematical model of fuzzy space-time fractional diffusion equation in which unknown function, coefficients, and initial-boundary conditions are fuzzy numbers. First, we find out a fuzzy operational matrix of Legendre polynomial of Caputo type fuzzy fractional derivative having a non-singular Mittag-Leffler kernel. The main advantages of this method are that it reduces the fuzzy fractional partial differential equation (FFPDE) to a system of fuzzy algebraic equations from which we can find the solution of the problem. The feasibility of our approach is shown by some numerical examples. Hence, our method is suitable to deal with FFPDE and has good accuracy.

Keywords: fractional PDE, fuzzy valued function, diffusion equation, Legendre polynomial, spectral method

Procedia PDF Downloads 55
2637 Natural Gas Production Forecasts Using Diffusion Models

Authors: Md. Abud Darda


Different options for natural gas production in wide geographic areas may be described through diffusion of innovation models. This type of modeling approach provides an indirect estimate of an ultimately recoverable resource, URR, capture the quantitative effects of observed strategic interventions, and allow ex-ante assessments of future scenarios over time. In order to ensure a sustainable energy policy, it is important to forecast the availability of this natural resource. Considering a finite life cycle, in this paper we try to investigate the natural gas production of Myanmar and Algeria, two important natural gas provider in the world energy market. A number of homogeneous and heterogeneous diffusion models, with convenient extensions, have been used. Models validation has also been performed in terms of prediction capability.

Keywords: diffusion models, energy forecast, natural gas, nonlinear production

Procedia PDF Downloads 133
2636 Diffusive Transport of VOCs Through Composite Liners

Authors: Christina Jery, R. K. Anjana, D. N. Arnepalli, R. Sobha


Modern landfills employ a composite liner consisting of a geomembrane overlying a compacted clay liner (CCL) or a geosynthetic clay liner (GCL) as a barrier system. The primary function of a barrier system is to control the contaminant transport from the leachate (dissolved phase) and landfill gas (vapour phase) out of the landfill thereby minimizing the environmental impact. This study is undertaken to investigate the diffusive migration of VOCs through composite liners. VOCs are known hazardous air pollutants were often existing in both the vapour phase and dissolved phase. These compounds are known to diffuse readily through the polymeric geomembranes. The objective of the research is to develop a comprehensive data set of diffusive parameters involved in the diffusion of VOCs in the composite liner (1.5 mm HDPE geomembrane overlying a 30mm compacted clay layer). For this purpose, the study aims to develop a new experimental setup for determining the diffusion characteristics. The key parameters of diffusion (partitioning, diffusion and permeation coefficients) are examined. The diffusion tests are carried out both in aqueous and vapor phase. Finally, an attempt is also made to study the effect of low temperature on the diffusion characteristics.

Keywords: diffusion, sorption, organic compounds, composite liners, geomembrane

Procedia PDF Downloads 298
2635 A Combinatorial Representation for the Invariant Measure of Diffusion Processes on Metric Graphs

Authors: Michele Aleandri, Matteo Colangeli, Davide Gabrielli


We study a generalization to a continuous setting of the classical Markov chain tree theorem. In particular, we consider an irreducible diffusion process on a metric graph. The unique invariant measure has an atomic component on the vertices and an absolutely continuous part on the edges. We show that the corresponding density at x can be represented by a normalized superposition of the weights associated to metric arborescences oriented toward the point x. A metric arborescence is a metric tree oriented towards its root. The weight of each oriented metric arborescence is obtained by the product of the exponential of integrals of the form ∫a/b², where b is the drift and σ² is the diffusion coefficient, along the oriented edges, for a weight for each node determined by the local orientation of the arborescence around the node and for the inverse of the diffusion coefficient at x. The metric arborescences are obtained by cutting the original metric graph along some edges.

Keywords: diffusion processes, metric graphs, invariant measure, reversibility

Procedia PDF Downloads 75
2634 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter

Authors: Amartya Hatua, Trung Nguyen, Andrew Sung


In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.

Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter

Procedia PDF Downloads 310
2633 Reduced Differential Transform Methods for Solving the Fractional Diffusion Equations

Authors: Yildiray Keskin, Omer Acan, Murat Akkus


In this paper, the solution of fractional diffusion equations is presented by means of the reduced differential transform method. Fractional partial differential equations have special importance in engineering and sciences. Application of reduced differential transform method to this problem shows the rapid convergence of the sequence constructed by this method to the exact solution. The numerical results show that the approach is easy to implement and accurate when applied to fractional diffusion equations. The method introduces a promising tool for solving many fractional partial differential equations.

Keywords: fractional diffusion equations, Caputo fractional derivative, reduced differential transform method, partial

Procedia PDF Downloads 433
2632 Nitrogen Effects on Ignition Delay Time in Supersonic Premixed and Diffusion Flames

Authors: A. M. Tahsini


Computational study of two dimensional supersonic reacting hydrogen-air flows is performed to investigate the nitrogen effects on ignition delay time for premixed and diffusion flames. Chemical reaction is treated using detail kinetics and the advection upstream splitting method is used to calculate the numerical inviscid fluxes. The results show that only in the stoichiometric condition for both premixed and diffusion flames, there is monotone dependency of the ignition delay time to the nitrogen addition. In other situations, the optimal condition from ignition viewpoint should be found using numerical investigations.

Keywords: diffusion flame, ignition delay time, mixing layer, numerical simulation, premixed flame, supersonic flow

Procedia PDF Downloads 331
2631 Determination of Natural Logarithm of Diffusion Coefficient and Activation Energy of Thin Layer Drying Process of Ginger Rhizome Slices

Authors: Austin Ikechukwu Gbasouzor, Sam Nna Omenyi, Sabuj Malli


This study is an extension of the previous work done with ARS-680 Environmental Chamber. Drying is a complex operation that demands much energy and time. Drying is essentially important for preservation of ginger rhizome. Drying of ginger was modeled, and then the effective diffusion coefficient and activation energy where determined. For this purpose, the experiments were done at six levels of varied temperature ranging from (10, 20, 30, 40, 50, 60°C). The average effective diffusion coefficient for their studies samples for temperature range of 40°C to 70°C was 4.48 x10-10m²/s, 4.96 x10-10m²/s, and 5.31 x10-10m²/s for 0.8, 1.5 and 3m/s drying air velocity respectively. These values closely agreed with the values of effective diffusion coefficients obtained in these studies for the variously treated ginger rhizomes and test conducted.

Keywords: activation energy, diffusion coefficients, drying model, drying time, ginger rhizomes, moisture ratio, thin layer

Procedia PDF Downloads 74
2630 An Agent-Based Model of Innovation Diffusion Using Heterogeneous Social Interaction and Preference

Authors: Jang kyun Cho, Jeong-dong Lee


The advent of the Internet, mobile communications, and social network services has stimulated social interactions among consumers, allowing people to affect one another’s innovation adoptions by exchanging information more frequently and more quickly. Previous diffusion models, such as the Bass model, however, face limitations in reflecting such recent phenomena in society. These models are weak in their ability to model interactions between agents; they model aggregated-level behaviors only. The agent based model, which is an alternative to the aggregate model, is good for individual modeling, but it is still not based on an economic perspective of social interactions so far. This study assumes the presence of social utility from other consumers in the adoption of innovation and investigates the effect of individual interactions on innovation diffusion by developing a new model called the interaction-based diffusion model. By comparing this model with previous diffusion models, the study also examines how the proposed model explains innovation diffusion from the perspective of economics. In addition, the study recommends the use of a small-world network topology instead of cellular automata to describe innovation diffusion. This study develops a model based on individual preference and heterogeneous social interactions using utility specification, which is expandable and, thus, able to encompass various issues in diffusion research, such as reservation price. Furthermore, the study proposes a new framework to forecast aggregated-level market demand from individual level modeling. The model also exhibits a good fit to real market data. It is expected that the study will contribute to our understanding of the innovation diffusion process through its microeconomic theoretical approach.

Keywords: innovation diffusion, agent based model, small-world network, demand forecasting

Procedia PDF Downloads 271
2629 Basket Option Pricing under Jump Diffusion Models

Authors: Ali Safdari-Vaighani


Pricing financial contracts on several underlying assets received more and more interest as a demand for complex derivatives. The option pricing under asset price involving jump diffusion processes leads to the partial integral differential equation (PIDEs), which is an extension of the Black-Scholes PDE with a new integral term. The aim of this paper is to show how basket option prices in the jump diffusion models, mainly on the Merton model, can be computed using RBF based approximation methods. For a test problem, the RBF-PU method is applied for numerical solution of partial integral differential equation arising from the two-asset European vanilla put options. The numerical result shows the accuracy and efficiency of the presented method.

Keywords: basket option, jump diffusion, ‎radial basis function, RBF-PUM

Procedia PDF Downloads 266
2628 Factors That Affect the Diffusion of Innovation in Greek Archaeological Museums

Authors: Maria Boile, Eirini Sifaki


This study, based on desktop research and the analysis of questionnaires completed by a representative sample of museums, adopts the Diffusion of Innovation (DOI) theory of Everett Rogers as a theoretical basis to figure out the perceived benefits that occur for any organization after the adoption of an official website, and identify the factors that affect its diffusion process. The most important conclusion is that Greek archaeological museums are far away from involving such technologies in their strategies, mainly because of the bureaucracy, the lack of necessary funds, and the lack of personnel.

Keywords: dDiffusion of innovation, websites, archaeological museums, economic crisis

Procedia PDF Downloads 310
2627 An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells

Authors: Yanqin Chen, Chao Jiang, Chongdu Cho


This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.

Keywords: gas diffusion layer, proton electrolyte membrane fuel cell, stiffness matrix, three-dimensional mechanical characteristics, user-defined material model

Procedia PDF Downloads 92
2626 The Application of the Analytic Basis Function Expansion Triangular-z Nodal Method for Neutron Diffusion Calculation

Authors: Kunpeng Wang, Hongchun, Wu, Liangzhi Cao, Chuanqi Zhao


The distributions of homogeneous neutron flux within a node were expanded into a set of analytic basis functions which satisfy the diffusion equation at any point in a triangular-z node for each energy group, and nodes were coupled with each other with both the zero- and first-order partial neutron current moments across all the interfaces of the triangular prism at the same time. Based this method, a code TABFEN has been developed and applied to solve the neutron diffusion equation in a complicated geometry. In addition, after a series of numerical derivation, one can get the neutron adjoint diffusion equations in matrix form which is the same with the neutron diffusion equation; therefore, it can be solved by TABFEN, and the low-high scan strategy is adopted to improve the efficiency. Four benchmark problems are tested by this method to verify its feasibility, the results show good agreement with the references which demonstrates the efficiency and feasibility of this method.

Keywords: analytic basis function expansion method, arbitrary triangular-z node, adjoint neutron flux, complicated geometry

Procedia PDF Downloads 370
2625 Numerical Evolution Methods of Rational Form for Diffusion Equations

Authors: Said Algarni


The purpose of this study was to investigate selected numerical methods that demonstrate good performance in solving PDEs. We adapted alternative method that involve rational polynomials. Padé time stepping (PTS) method, which is highly stable for the purposes of the present application and is associated with lower computational costs, was applied. Furthermore, PTS was modified for our study which focused on diffusion equations. Numerical runs were conducted to obtain the optimal local error control threshold.

Keywords: Padé time stepping, finite difference, reaction diffusion equation, PDEs

Procedia PDF Downloads 235