Search results for: plastic bottle consumption
942 Quantifying the Impact of Climate Change on Agritourism: The Transformative Role of Solar Energy in Enhancing Growth and Resilience in Eritrea
Authors: Beyene Daniel Abrha
Abstract:
Agritourism in Eritrea is increasingly threatened by climate change, manifesting through rising temperatures, shifting rainfall patterns, and resource scarcity. This study employs quantitative methods to assess the economic and environmental impacts of climate change on agritourism, utilizing metrics such as annual income fluctuations, changes in visitor numbers, and energy consumption patterns. The methodology relies on secondary data sourced from the World Bank, government reports, and academic publications to analyze the economic viability of integrating solar energy into agritourism operations. Key variables include the Benefits from Renewable Energy (BRE), encompassing cost savings from reduced energy expenses and the monetized value of avoided greenhouse gas emissions. Using a net present value (NPV) framework, the research compares the impact of solar energy against traditional fossil fuel sources by evaluating the Value of Reduced Greenhouse Gas Emissions (CO2) and the Value of Health-Related Costs (VHRC) due to air pollution. The preliminary findings of this research are of utmost importance. They indicate that the adoption of solar energy can enhance energy independence by up to 40%, reduce operational costs by 25%, and stabilize agritourism activities in climate-sensitive regions. This research aims to provide actionable insights for policymakers and stakeholders, supporting the sustainable development of agritourism in Eritrea and contributing to broader climate adaptation strategies. By employing a comprehensive cost-benefit analysis, the study highlights the economic advantages and environmental benefits of transitioning to renewable energy in the face of climate change.Keywords: agritourism, climate change, renewable energy, cost benefit analysis, resilience, cost-benefit analysis
Procedia PDF Downloads 12941 The Environmental and Economic Analysis of Extended Input-Output Table for Thailand’s Biomass Pellet Industry
Authors: Prangvalai Buasan, Boonrod Sajjakulnukit, Thongchart Bowonthumrongchai
Abstract:
The demand for biomass pellets in the industrial sector has significantly increased since 2020. The revised version of Thailand’s power development plan as well as the Alternative Energy Development Plan, aims to promote biomass fuel consumption by around 485 MW by 2030. The replacement of solid fossil fuel with biomass pellets will affect medium-term and long-term national benefits for all industries throughout the supply chain. Therefore, the evaluation of environmental and economic impacts throughout the biomass pellet supply chain needs to be performed to provide better insight into the goods and financial flow of this activity. This study extended the national input-output table for the biomass pellet industry and applied the input-output analysis (IOA) method, a sort of macroeconomic analysis, to interpret the result of transactions between industries in the monetary unit when the revised national power development plan was adopted and enforced. Greenhouse gas emissions from consuming energy and raw material through the supply chain are also evaluated. The total intermediate transactions of all economic sectors, which included the biomass pellets sector (CASE 2), increased by 0.02% when compared with the conservative case (CASE 1). The control total, which is the sum of total intermediate transactions and value-added, the control total of CASE 2 is increased by 0.07% when compared with CASE 1. The pellet production process emitted 432.26 MtCO2e per year. The major sharing of the GHG is from the plantation process of raw biomass.Keywords: input-output analysis, environmental extended input-output analysis, macroeconomic planning, biomass pellets, renewable energy
Procedia PDF Downloads 101940 Hardware-In-The-Loop Relative Motion Control: Theory, Simulation and Experimentation
Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini
Abstract:
This paper presents a Guidance and Control (G&C) strategy to address spacecraft maneuvering problem for future Rendezvous and Docking (RVD) missions. The proposed strategy allows safe and propellant efficient trajectories for space servicing missions including tasks such as approaching, inspecting and capturing. This work provides the validation test results of the G&C laws using a Hardware-In-the-Loop (HIL) setup with two robotic mockups representing the chaser and the target spacecraft. Through this paper, the challenges of the relative motion control in space are first summarized, and in particular, the constraints imposed by the mission, spacecraft and, onboard processing capabilities. Second, the proposed algorithm is introduced by presenting the formulation of constrained Model Predictive Control (MPC) to optimize the fuel consumption and explicitly handle the physical and geometric constraints in the system, e.g. thruster or Line-Of-Sight (LOS) constraints. Additionally, the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description and accordingly explained. The resulting convex optimization problem allows real-time implementation capability based on a detailed discussion on the computational time requirements and the obtained results with respect to the onboard computer and future trends of space processors capabilities. Finally, the performance of the algorithm is presented in the scope of a potential future mission and of the available equipment. The results also cover a comparison between the proposed algorithms with Linear–quadratic regulator (LQR) based control law to highlight the clear advantages of the MPC formulation.Keywords: autonomous vehicles, embedded optimization, real-time experiment, rendezvous and docking, space robotics
Procedia PDF Downloads 124939 The Role of Social Capital and Dynamic Capabilities in a Circular Economy: Evidence from German Small and Medium-Sized Enterprises
Authors: Antonia Hoffmann, Andrea Stübner
Abstract:
Resource scarcity and rising material prices are forcing companies to rethink their business models. The conventional linear system of economic growth and rising social needs further exacerbates the problem of resource scarcity. Therefore, it is necessary to separate economic growth from resource consumption. This can be achieved through the circular economy (CE), which focuses on sustainable product life cycles. However, companies face challenges in implementing CE into their businesses. Small and medium-sized enterprises are particularly affected by these problems, as they have a limited resource base. Collaboration and social interaction between different actors can help to overcome these obstacles. Based on a self-generated sample of 1,023 German small and medium-sized enterprises, we use a questionnaire to investigate the influence of social capital and its three dimensions - structural, relational, and cognitive capital - on the implementation of CE and the mediating effect of dynamic capabilities in explaining these relationships. Using regression analyses and structural equation modeling, we find that social capital is positively associated with CE implementation and dynamic capabilities partially mediate this relationship. Interestingly, our findings suggest that not all social capital dimensions are equally important for CE implementation. We theoretically and empirically explore the network forms of social capital and extend the CE literature by suggesting that dynamic capabilities help organizations leverage social capital to drive the implementation of CE practices. The findings of this study allow us to suggest several implications for managers and institutions. From a practical perspective, our study contributes to building circular production and service capabilities in small and medium-sized enterprises. Various CE activities can transform products and services to contribute to a better and more responsible world.Keywords: circular economy, dynamic capabilities, SMEs, social capital
Procedia PDF Downloads 82938 Adaptive Design of Large Prefabricated Concrete Panels Collective Housing
Authors: Daniel M. Muntean, Viorel Ungureanu
Abstract:
More than half of the urban population in Romania lives today in residential buildings made out of large prefabricated reinforced concrete panels. Since their initial design was made in the 1960’s, these housing units are now being technically and morally outdated, consuming large amounts of energy for heating, cooling, ventilation and lighting, while failing to meet the needs of the contemporary life-style. Due to their widespread use, the design of a system that improves their energy efficiency would have a real impact, not only on the energy consumption of the residential sector, but also on the quality of life that it offers. Furthermore, with the transition of today’s existing power grid to a “smart grid”, buildings could become an active element for future electricity networks by contributing in micro-generation and energy storage. One of the most addressed issues today is to find locally adapted strategies that can be applied considering the 20-20-20 EU policy criteria and to offer sustainable and innovative solutions for the cost-optimal energy performance of buildings adapted on the existing local market. This paper presents a possible adaptive design scenario towards sustainable retrofitting of these housing units. The apartments are transformed in order to meet the current living requirements and additional extensions are placed on top of the building, replacing the unused roof space, acting not only as housing units, but as active solar energy collection systems. An adaptive building envelope is ensured in order to achieve overall air-tightness and an elevator system is introduced to facilitate access to the upper levels.Keywords: adaptive building, energy efficiency, retrofitting, residential buildings, smart grid
Procedia PDF Downloads 297937 CFD Modeling of Air Stream Pressure Drop inside Combustion Air Duct of Coal-Fired Power Plant with and without Airfoil
Authors: Pakawhat Khumkhreung, Yottana Khunatorn
Abstract:
The flow pattern inside rectangular intake air duct of 300 MW lignite coal-fired power plant is investigated in order to analyze and reduce overall inlet system pressure drop. The system consists of the 45-degree inlet elbow, the flow instrument, the 90-degree mitered elbow and fans, respectively. The energy loss in each section can be determined by Bernoulli’s equation and ASHRAE standard table. Hence, computational fluid dynamics (CFD) is used in this study based on Navier-Stroke equation and the standard k-epsilon turbulence modeling. Input boundary condition is 175 kg/s mass flow rate inside the 11-m2 cross sectional duct. According to the inlet air flow rate, the Reynolds number of airstream is 2.7x106 (based on the hydraulic duct diameter), thus the flow behavior is turbulence. The numerical results are validated with the real operation data. It is found that the numerical result agrees well with the operating data, and dominant loss occurs at the flow rate measurement device. Normally, the air flow rate is measured by the airfoil and it gets high pressure drop inside the duct. To overcome this problem, the airfoil is planned to be replaced with the other type measuring instrument, such as the average pitot tube which generates low pressure drop of airstream. The numerical result in case of average pitot tube shows that the pressure drop inside the inlet airstream duct is decreased significantly. It should be noted that the energy consumption of inlet air system is reduced too.Keywords: airfoil, average pitot tube, combustion air, CFD, pressure drop, rectangular duct
Procedia PDF Downloads 157936 Retrospective Statistical Study on the Evolution of Brucellosis during the Last Decade (2011-2021) in Medea, Algeria
Authors: Mammar Khames, Mustapha Oumouna
Abstract:
Brucellosis is one of the most common zoonoses in the world. It represents a serious threat to human health; the existence of brucellosis in Algeria dates back to the beginning of the 19th century. Its transmission to humans is through coccobacilli of the genus Brucella following direct contact with contaminated animals or indirectly through the consumption of their unpasteurized dairy products. The present investigation covers a retrospective study on human brucellosis in the district of Medea over a period from 2011 to 2021 at the level of two public health establishments. In the first place, it is at the level of the Directorate of Public Health and in the infectious department level at Medea Hospital, and at the level of the directorate of agricultural services in the third place. The results showed that during these eleven years of study, 795 cases were collected from the department of health and population, and 141 cases were collected from the infectious department of the district of Medea. A total of 56 cases of bovine brucellosis were obtained from the directorate of agricultural services of the district of Medea. Human brucellosis affects all age groups with different percentages, but the rate has been higher in the 20-44 age group, with a predominance of men. However, the geographic distribution map of the cases shows that the western part of the district was the most affected. A cohort of 141 cases was hospitalized at the infectious service level of Medea Hospital. They were 89 men and 52 women. The most common age reached is [20-44] years. The majority were of rural origin. Two serological reactions were performed for diagnosis: the buffered antigen test and Wright's serodiagnosis. Bovine brucellosis affects all age groups with different percentages, but the rate was higher in the 2-to-4-year age group, with a predominance of females. From these data, we conclude that brucellosis has a strong spread in the region studied.Keywords: human brucellosis, serology, Medea, Algeria
Procedia PDF Downloads 63935 Value Chain Network: A Social Network Analysis of the Value Chain Actors of Recycled Polymer Products in Lagos Metropolis, Nigeria
Authors: Olamide Shittu, Olayinka Akanle
Abstract:
Value Chain Analysis is a common method of examining the stages involved in the production of a product, mostly agricultural produce, from the input to the consumption stage including the actors involved in each stage. However, the Functional Institutional Analysis is the most common method in literature employed to analyze the value chain of products. Apart from studying the relatively neglected phenomenon of recycled polymer products in Lagos Metropolis, this paper adopted the use of social network analysis to attempt a grounded theory of the nature of social network that exists among the value chain actors of the subject matter. The study adopted a grounded theory approach by conducting in-depth interviews, administering questionnaires and conducting observations among the identified value chain actors of recycled polymer products in Lagos Metropolis, Nigeria. The thematic analysis of the collected data gave the researchers the needed background to formulate a truly representative network of the social relationships among the value chain actors of recycled polymer products in Lagos Metropolis. The paper introduced concepts such as Transient and Perennial Social Ties to explain the observed social relations among the actors. Some actors have more social capital than others as a result of the structural holes that exist in their triad network. Households and resource recoverers are at disadvantaged position in the network as they have high constraints in their relationships with other actors. The study attempted to provide a new perspective in the study of the environmental value chain by analyzing the network of actors to bring about policy action points and improve recycling in Nigeria. Government and social entrepreneurs can exploit the structural holes that exist in the network for the socio-economic and sustainable development of the state.Keywords: recycled polymer products, social network analysis, social ties, value chain analysis
Procedia PDF Downloads 410934 Influence of Gold Nanoparticles on NiAlZr Type Layered Double Hydroxide for the Catalytic Transfer Oxidation of Biomass Derived Aldehydes
Authors: Nihel Dib, Redouane Bachir, Ghezlane Berrahou, Chaima Zoulikha Tabet Zatla, Sumeya Bedrane, Ginessa Blanco Montilla, Jose Juan Calvino Gamez
Abstract:
In recent decades, the world’s population has rapidly increased annually, resulting in the consumption of huge amounts of conventional non-renewable petroleum-based resources at an alarming rate. The scarcity of such resources will shut down the corresponding industries and consequently have negative effects on the well-being of humanity. Accordingly, to combat the forthcoming crises and to serve the ever-growing demands, seeking potentially sustainable resources such as geothermal, wind, solar, and biomass has become an active field of study. Currently, lignocellulosic biomass, one of the world’s most plentiful resources, is acknowledged as a cost-effective material that has drawn great interest from many researchers since it has substantial energy potential as well as containing useful C5 and C6 sugars. These C5 and C6 sugars are the key reactants for the production of the valuable 16-platform chemicals such as 5-hydroxymethyl furfural, furfural, levulinic acid, succinic acid, and fumaric acid, all of which are crucial intermediates for synthesizing high-value bio-based chemicals and polymers. Succinic acid (SA) has been predicted to make a significant contribution to the global bio-based economy soon since it serves as a C4 building block that is used in a wide spectrum of industries, including biopolymers, solvents, and pharmaceuticals. In the present work, we modify the HDL MgAl with Zr to try to create acid sites on the supports and deposit gold by deposition precipitation with urea with a low gold content (0.25%). The catalyst was used to produce succinic acid by selective oxidation of furfuraldehyde with hydrogen peroxide under mild reaction conditions.Keywords: hydrotalcite, catalysis, gold, biomass, furfural, oxidation
Procedia PDF Downloads 69933 Optimizing Super Resolution Generative Adversarial Networks for Resource-Efficient Single-Image Super-Resolution via Knowledge Distillation and Weight Pruning
Authors: Hussain Sajid, Jung-Hun Shin, Kum-Won Cho
Abstract:
Image super-resolution is the most common computer vision problem with many important applications. Generative adversarial networks (GANs) have promoted remarkable advances in single-image super-resolution (SR) by recovering photo-realistic images. However, high memory requirements of GAN-based SR (mainly generators) lead to performance degradation and increased energy consumption, making it difficult to implement it onto resource-constricted devices. To relieve such a problem, In this paper, we introduce an optimized and highly efficient architecture for SR-GAN (generator) model by utilizing model compression techniques such as Knowledge Distillation and pruning, which work together to reduce the storage requirement of the model also increase in their performance. Our method begins with distilling the knowledge from a large pre-trained model to a lightweight model using different loss functions. Then, iterative weight pruning is applied to the distilled model to remove less significant weights based on their magnitude, resulting in a sparser network. Knowledge Distillation reduces the model size by 40%; pruning then reduces it further by 18%. To accelerate the learning process, we employ the Horovod framework for distributed training on a cluster of 2 nodes, each with 8 GPUs, resulting in improved training performance and faster convergence. Experimental results on various benchmarks demonstrate that the proposed compressed model significantly outperforms state-of-the-art methods in terms of peak signal-to-noise ratio (PSNR), structural similarity index measure (SSIM), and image quality for x4 super-resolution tasks.Keywords: single-image super-resolution, generative adversarial networks, knowledge distillation, pruning
Procedia PDF Downloads 96932 The Brain’s Attenuation Coefficient as a Potential Estimator of Temperature Elevation during Intracranial High Intensity Focused Ultrasound Procedures
Authors: Daniel Dahis, Haim Azhari
Abstract:
Noninvasive image-guided intracranial treatments using high intensity focused ultrasound (HIFU) are on the course of translation into clinical applications. They include, among others, tumor ablation, hyperthermia, and blood-brain-barrier (BBB) penetration. Since many of these procedures are associated with local temperature elevation, thermal monitoring is essential. MRI constitutes an imaging method with high spatial resolution and thermal mapping capacity. It is the currently leading modality for temperature guidance, commonly under the name MRgHIFU (magnetic-resonance guided HIFU). Nevertheless, MRI is a very expensive non-portable modality which jeopardizes its accessibility. Ultrasonic thermal monitoring, on the other hand, could provide a modular, cost-effective alternative with higher temporal resolution and accessibility. In order to assess the feasibility of ultrasonic brain thermal monitoring, this study investigated the usage of brain tissue attenuation coefficient (AC) temporal changes as potential estimators of thermal changes. Newton's law of cooling describes a temporal exponential decay behavior for the temperature of a heated object immersed in a relatively cold surrounding. Similarly, in the case of cerebral HIFU treatments, the temperature in the region of interest, i.e., focal zone, is suggested to follow the same law. Thus, it was hypothesized that the AC of the irradiated tissue may follow a temporal exponential behavior during cool down regime. Three ex-vivo bovine brain tissue specimens were inserted into plastic containers along with four thermocouple probes in each sample. The containers were placed inside a specially built ultrasonic tomograph and scanned at room temperature. The corresponding pixel-averaged AC was acquired for each specimen and used as a reference. Subsequently, the containers were placed in a beaker containing hot water and gradually heated to about 45ᵒC. They were then repeatedly rescanned during cool down using ultrasonic through-transmission raster trajectory until reaching about 30ᵒC. From the obtained images, the normalized AC and its temporal derivative as a function of temperature and time were registered. The results have demonstrated high correlation (R² > 0.92) between both the brain AC and its temporal derivative to temperature. This indicates the validity of the hypothesis and the possibility of obtaining brain tissue temperature estimation from the temporal AC thermal changes. It is important to note that each brain yielded different AC values and slopes. This implies that a calibration step is required for each specimen. Thus, for a practical acoustic monitoring of the brain, two steps are suggested. The first step consists of simply measuring the AC at normal body temperature. The second step entails measuring the AC after small temperature elevation. In face of the urging need for a more accessible thermal monitoring technique for brain treatments, the proposed methodology enables a cost-effective high temporal resolution acoustical temperature estimation during HIFU treatments.Keywords: attenuation coefficient, brain, HIFU, image-guidance, temperature
Procedia PDF Downloads 161931 Low-Voltage and Low-Power Bulk-Driven Continuous-Time Current-Mode Differentiator Filters
Authors: Ravi Kiran Jaladi, Ezz I. El-Masry
Abstract:
Emerging technologies such as ultra-wide band wireless access technology that operate at ultra-low power present several challenges due to their inherent design that limits the use of voltage-mode filters. Therefore, Continuous-time current-mode (CTCM) filters have become very popular in recent times due to the fact they have a wider dynamic range, improved linearity, and extended bandwidth compared to their voltage-mode counterparts. The goal of this research is to develop analog filters which are suitable for the current scaling CMOS technologies. Bulk-driven MOSFET is one of the most popular low power design technique for the existing challenges, while other techniques have obvious shortcomings. In this work, a CTCM Gate-driven (GD) differentiator has been presented with a frequency range from dc to 100MHz which operates at very low supply voltage of 0.7 volts. A novel CTCM Bulk-driven (BD) differentiator has been designed for the first time which reduces the power consumption multiple times that of GD differentiator. These GD and BD differentiator has been simulated using CADENCE TSMC 65nm technology for all the bilinear and biquadratic band-pass frequency responses. These basic building blocks can be used to implement the higher order filters. A 6th order cascade CTCM Chebyshev band-pass filter has been designed using the GD and BD techniques. As a conclusion, a low power GD and BD 6th order chebyshev stagger-tuned band-pass filter was simulated and all the parameters obtained from all the resulting realizations are analyzed and compared. Monte Carlo analysis is performed for both the 6th order filters and the results of sensitivity analysis are presented.Keywords: bulk-driven (BD), continuous-time current-mode filters (CTCM), gate-driven (GD)
Procedia PDF Downloads 260930 Indoor and Outdoor Forest Farming for Year-Round Food and Medicine Production, Carbon Sequestration, Soil-Building, and Climate Change Mitigation
Authors: Jerome Osentowski
Abstract:
The objective at Central Rocky Mountain Permaculture Institute has been to put in practice a sustainable way of life while growing food, medicine, and providing education. This has been done by applying methods of farming such as agroforestry, forest farming, and perennial polycultures. These methods have been found to be regenerative to the environment through carbon sequestration, soil-building, climate change mitigation, and the provision of food security. After 30 years of implementing carbon farming methods, the results are agro-diversity, self-sustaining systems, and a consistent provision of food and medicine. These results are exhibited through polyculture plantings in an outdoor forest garden spanning roughly an acre containing about 200 varieties of fruits, nuts, nitrogen-fixing trees, and medicinal herbs, and two indoor forest garden greenhouses (one Mediterranean and one Tropical) containing about 50 varieties of tropical fruits, beans, herbaceous plants and more. While the climate zone outside the greenhouse is 6, the tropical forest garden greenhouse retains an indoor climate zone of 11 with near-net-zero energy consumption through the use of a climate battery, allowing the greenhouse to serve as a year-round food producer. The effort to source food from the forest gardens is minimal compared to annual crop production. The findings at Central Rocky Mountain Permaculture Institute conclude that agroecological methods are not only beneficial but necessary in order to revive and regenerate the environment and food security.Keywords: agroecology, agroforestry, carbon farming, carbon sequestration, climate battery, food security, forest farming, forest garden, greenhouse, near-net-zero, perennial polycultures
Procedia PDF Downloads 442929 Comparative Therapeutic Effect of Acalypha indica Linn. Extract and Gemfibrozil on High Fructose and Cholesterol Diet Induced Pancreas Steatosis in Sprague-Dawley Mice
Authors: Adrian Reynaldo Sudirman, Siti Farida, Aisyah Aminy Maulidina, Caren Andika Surbakti
Abstract:
Sedentary lifestyle and imbalance consumption pattern has made metabolic syndrome as the global time bomb phenomenon in the world. The increasing tendency of people in consuming high amount of fructose and cholesterol food has worsened this issue in the society. Pancreas steatosis become one of the most comorbid when early diagnosis and prompt treatment has not been applied on hyperglycemic and hyperlipidemic condition in metabolic syndrome patient. Gemfibrozil become the drug of choice to prevent this issue, yet the efficacy of this regiment was still questionable. Acalypha indica Linn. is the herb that has protective effect on hyperlipidemic and hyperglycemic condition. This study was aimed to compare therapeutic effect of gemfibrozil (G) and Acalypha indica Linn. (AI) on high fructose and cholesterol diet-induced pancreas steatosis in Sprague-Dawley mice. The post induction mice were divided into four groups: control, gemfibrozil, AI extract, and G+AI combination regiment. Each group received four weeks intervention. The result of statistical analysis using the One-Way ANOVA test and Tukey Post Hoc test showed significant decrease in pancreatic steatosis between the control group and administered Acalypha indica group (p = 0.004, 95% CI: 0.170-0.959) and the group administered with a combination of Gemfibrozil-Acalypha indica (p = 0.023, 95% CI: 0.537-0.813). The protective effect of Acalypha indica Linn. shows that this plant has the potential as therapeutic option in overcoming the condition of pancreas steatosis in metabolic syndrome.Keywords: Acalypha Indica Linn., Cholesterol, Fructose, Gemfibrozil, Pancreas Steatosis
Procedia PDF Downloads 307928 Experimental Investigation for Reducing Emissions in Maritime Industry
Authors: Mahmoud Ashraf Farouk
Abstract:
Shipping transportation is the foremost imperative mode of transportation in universal coordination. At display, more than 2/3 of the full worldwide exchange volume accounts for shipping transportation. Ships are utilized as an implies of marine transportation, introducing large-power diesel motors with exhaust containing nitrogen oxide NOx, sulfur oxide SOx, carbo di-oxide CO₂, particular matter PM10, hydrocarbon HC and carbon mono-oxide CO which are the most dangerous contaminants found in exhaust gas from ships. Ships radiating a large amount of exhaust gases have become a significant cause of pollution in the air in coastal areas, harbors and oceans. Therefore, IMO (the International Maritime Organization) has established rules to reduce this emission. This experiment shows the measurement of the exhaust gases emitted from the Aida IV ship's main engine using marine diesel oil fuel (MDO). The measurement is taken by the Sensonic2000 device on 85% load, which is the main sailing load. Moreover, the paper studies different emission reduction technologies as an alternative fuel, which as liquefied natural gas (LNG) applied to the system and reduction technology which is represented as selective catalytic reduction technology added to the marine diesel oil system (MDO+SCR). The experiment calculated the amount of nitrogen oxide NOx, sulfur oxide SOx, carbon-di-oxide CO₂, particular matter PM10, hydrocarbon HC and carbon mono-oxide CO because they have the most effect on the environment. The reduction technologies are applied on the same ship engine with the same load. Finally, the study found that MDO+SCR is the more efficient technology for the Aida IV ship as a training and supply ship due to low consumption and no need to modify the engine. Just add the SCR system to the exhaust line, which is easy and cheapest. Moreover, the differences between them in the emission are not so big.Keywords: marine, emissions, reduction, shipping
Procedia PDF Downloads 76927 Nutritional Status of Rural Women in Bengaluru Rural District of Karnataka, India
Authors: A. M. Maruthesh, B. M. Anandakumar, O. Kumara, Akshatha Gombi, S. R. Rajini
Abstract:
Women play a vital role in ensuring proper development and growth of children. They also contribute significantly towards income generation, food preparation and health. Nutritional status reflects the health of a person and is influenced by the quality of foods eaten and the ability of the body to utilize these foods to meet its needs it is affected by various socio-economic factors including income, family size, occupation and educational status of the people. The study was undertaken on nutritional status of rural women in Heggadehalli of Doddaballapurtaluk and Venkathalli of Devanahallitaluk in Bengaluru rural district with the sample size of 200 respondents. The prevalence of symptoms of malnutrition in a community is in turn a reflection of dietary consumption of its members. Mean anthropometric measurement of rural women were 153.8 cm of height, 46.8 kg of weight. In comparison with the mean BMI standards, it was observed that 20 percent of women were under nourished, 64 percent of women were normal and 16 percent women were obese. In comparison with the mean waist/hip ratio with standards, it was observed that 84 percent were in normal category and 16 percent were obese. Education, land holding, income and age had significant positive association with anthropometric measurements of rural women. The deficient level of haemoglobin existed in 53 percent of rural women, low in 20 percent and only 27 percent had acceptable level. The occurrence of morbidity symptoms was higher in rural women, its illness reported among women in the study were pain in hands and legs, backache, headache, pain in abdomen, fever, weakness, cold and cough and acidity. This may be due to considerable amount of workload on women who spend 8 to 9 hours at work and after returning continue their day’s work at home also.Keywords: anthrometry, body index, hemoglobin, nutrient deficiency, rural women, nutritional status
Procedia PDF Downloads 266926 Optimization of Samarium Extraction via Nanofluid-Based Emulsion Liquid Membrane Using Cyanex 272 as Mobile Carrier
Authors: Maliheh Raji, Hossein Abolghasemi, Jaber Safdari, Ali Kargari
Abstract:
Samarium as a rare-earth element is playing a growing important role in high technology. Traditional methods for extraction of rare earth metals such as ion exchange and solvent extraction have disadvantages of high investment and high energy consumption. Emulsion liquid membrane (ELM) as an improved solvent extraction technique is an effective transport method for separation of various compounds from aqueous solutions. In this work, the extraction of samarium from aqueous solutions by ELM was investigated using response surface methodology (RSM). The organic membrane phase of the ELM was a nanofluid consisted of multiwalled carbon nanotubes (MWCNT), Span80 as surfactant, Cyanex 272 as mobile carrier, and kerosene as base fluid. 1 M nitric acid solution was used as internal aqueous phase. The effects of the important process parameters on samarium extraction were investigated, and the values of these parameters were optimized using the Central Composition Design (CCD) of RSM. These parameters were the concentration of MWCNT in nanofluid, the carrier concentration, and the volume ratio of organic membrane phase to internal phase (Roi). The three-dimensional (3D) response surfaces of samarium extraction efficiency were obtained to visualize the individual and interactive effects of the process variables. A regression model for % extraction was developed, and its adequacy was evaluated. The result shows that % extraction improves by using MWCNT nanofluid in organic membrane phase and extraction efficiency of 98.92% can be achieved under the optimum conditions. In addition, demulsification was successfully performed and the recycled membrane phase was proved to be effective in the optimum condition.Keywords: Cyanex 272, emulsion liquid membrane, MWCNT nanofluid, response surface methology, Samarium
Procedia PDF Downloads 424925 Accuracy of Peak Demand Estimates for Office Buildings Using Quick Energy Simulation Tool
Authors: Mahdiyeh Zafaranchi, Ethan S. Cantor, William T. Riddell, Jess W. Everett
Abstract:
The New Jersey Department of Military and Veteran’s Affairs (NJ DMAVA) operates over 50 facilities throughout the state of New Jersey, U.S. NJDMAVA is under a mandate to move toward decarbonization, which will eventually include eliminating the use of natural gas and other fossil fuels for heating. At the same time, the organization requires increased resiliency regarding electric grid disruption. These competing goals necessitate adopting the use of on-site renewables such as photovoltaic and geothermal power, as well as implementing power control strategies through microgrids. Planning for these changes requires a detailed understanding of current and future electricity use on yearly, monthly, and shorter time scales, as well as a breakdown of consumption by heating, ventilation, and air conditioning (HVAC) equipment. This paper discusses case studies of two buildings that were simulated using the QUick Energy Simulation Tool (eQUEST). Both buildings use electricity from the grid and photovoltaics. One building also uses natural gas. While electricity use data are available in hourly intervals and natural gas data are available in monthly intervals, the simulations were developed using monthly and yearly totals. This approach was chosen to reflect the information available for most NJ DMAVA facilities. Once completed, simulation results are compared to metrics recommended by several organizations to validate energy use simulations. In addition to yearly and monthly totals, the simulated peak demands are compared to actual monthly peak demand values. The simulations resulted in monthly peak demand values that were within 30% of the measured values. These benchmarks will help to assess future energy planning efforts for NJ DMAVA.Keywords: building energy modeling, eQUEST, peak demand, smart meters
Procedia PDF Downloads 68924 The Influence of Different Technologies on the Infiltration Properties and Soil Surface Crusting Processing in the North Bohemia Region
Authors: Miroslav Dumbrovsky, Lucie Larisova
Abstract:
The infiltration characteristic of the soil surface is one of the major factors that determines the potential soil degradation risk. The physical, chemical and biological characteristic of soil is changed by the processing of soil. The infiltration soil ability has an important role in soil and water conservation. The subject of the contribution is the evaluation of the influence of the conventional tillage and reduced tillage technology on soil surface crusting processing and infiltration properties of the soil in the North Bohemia region. Field experimental work at the area was carried out in the years 2013-2016 on Cambisol district medium-heavy clayey soil. The research was conducted on sloping erosion-endangered blocks of compacted arable land. The areas were chosen each year in the way that one of the experimental areas was handled by conventional tillage technologies and the other by reduced tillage technologies. Intact soil samples were taken into Kopecký´s cylinders in the three landscape positions, at a depth of 10 cm (representing topsoil) and 30 cm (representing subsoil). The cumulative infiltration was measured using a mini-disc infiltrometer near the consumption points. The Zhang method (1997), which provides an estimate of the unsaturated hydraulic conductivity K(h), was used for the evaluation of the infiltration tests of the mini-disc infiltrometer. The soil profile processed by conventional tillage showed a higher degree of compaction and soil crusting processing. The bulk density was between 1.10–1.67 g.cm⁻³, compared to the land processed by the reduced tillage technology, where the values were between 0.80–1.29 g.cm⁻³. Unsaturated hydraulic conductivity values were about one-third higher within the reduced tillage technology soil processing.Keywords: soil crusting processing, unsaturated hydraulic conductivity, cumulative infiltration, bulk density, porosity
Procedia PDF Downloads 247923 The Implementation of Incineration for Waste Reduction
Authors: Kong Wing Man
Abstract:
The purpose of this paper is to review the waste generation and management in different parts of the world. It is undeniable that waste generation and management has become an alarming environmental issue. Solid waste generation links inextricably to the degree of industrialization and economic development. Urbanization increases with the economic wealth of the countries. As the income of people and standard of living enhances, so does their consumption of goods and services, leading to a corresponding increase in waste generation. Based on the latest statistics from What A Waste Report published by World Bank (2012), it is estimated that the current global Municipal Solid Waste (MSW) generation levels are about 1.3 billion tonnes per year (1.2 kg per capita per day). By 2050, it is projected that the waste generation will be doubled. Although many waste collection practices have been implemented in various countries, the amount of waste generation keeps increasing. An integrated solid waste management is needed in order to reduce the continuous significant increase in waste generation rates. Although many countries have introduced and implemented the 3Rs strategy and landfill, however, these are only the ways to diverse waste, but cannot reduce the volume. Instead, the advanced thermal treatment technology, incineration, can reduce up to 90% volume of disposed waste prior to dispose at landfills is discussed. Sweden and Tokyo were chosen as case studies, which provide an overview of the municipal solid waste management system. With the condition of escalating amount of wastes generated, it is crucial to build incinerators to relief pressing needs of landfill. Two solutions are proposed to minimize waste generation, including one incineration in one city and several small incinerators in different cities. While taking into consideration of a sustainable model and the perspectives of all stakeholders, building several incinerators at different cities and different sizes would be the best option to reduce waste. Overall, the solution to the global solid waste management should be a holistic approach with the involvement of both government and citizens.Keywords: Incineration, Municipal Solid Waste, Thermal Treatment, Waste generation
Procedia PDF Downloads 475922 Social Aspect of Energy Transition in Frankfurt
Authors: Aly Ahmed, Aber Kay Obwona, Mokrzecka Martyna, Piotrowska Małgorzata, Richardson Stephen
Abstract:
Frankfurt am Main, the fifth largest city in Germany, ranked at 15th place by the Global Financial Centers Index in 2014, and a finalist of European Green Capital, 214 is a crucial player in German Environmental Policy. Since 2012 the city Authorities have been working on implementing the plan, which assumed to reduce the energy consumption by 50%, and fully switch to renewable energy by the year 2050. To achieve this goal, the Municipality of Frankfurt has begun preparing the Master plan, which will be introduced to public by the end of 2015. A significant question when facing the starting of Master Plan public’s introduction was deciding which method should be used to increase the public engagement. In order to answer this question, the city and region authorities in the cooperation with Frankfurt’s Universities and Climate KIC, organized a two-week PhD scientific workshops, in which participated more than 30 students from numerous countries. The paper presented the outcome of the research and solution proposal of the winning team. Transitions theory tells, that to address challenges as complex as Climate Change and the Energiewende, using of new technologies and system to the public is not sufficient. Transition –by definition is a process, and in such a large scale (city and region transition) can be fulfilled only, when operates within a broad socio – technical system. Authors believe that only by close cooperation with city dwellers, as well as different stakeholders, the Transition in Frankfurt can be successful. The vital part is the strategy which will ensure the engagement, sense of ownership and broad support within Frankfurt society. Author proposal based therefore, on fostering the citizens engagement through a comprehensive, innovative communication strategy.Keywords: city development, communication strategies, social transition, sustainability
Procedia PDF Downloads 304921 The Gastroprotective Potential of Clematis Flammula Leaf Extracts
Authors: Dina Atmani-Kilani, Farah Yous, Djebbar Atmani
Abstract:
The etiology of peptic ulcer is closely related to stress, excessive consumption of nonsteroidal anti-inflammatory drugs, or ethanol. Clematis flammula (Ranunculaceae) is a medicinal plant widely used by rural populations to treat inflammatory disorders. This study was designed to assess the gastroprotective potential of C. flammula extracts. Gastric ulcer was induced by stress, indomethacin, HCl / ethanol, and absolute ethanol on NMRI-type mice. The antioxidant potency of the ethanolic extract of Clematis flammula (EECF) was evaluated on catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) activities. Glutathione (GSH) and malonaldehyde (MDA) levels were also quantified. The anti-inflammatory potential was evaluated through the effect of EECF on myeloperoxidase activity (MPO) and vascular permeability. Complementary tests concerning the quantification of mucus levels, gastric motility, inhibition of ATPase H+/K+activity, as well as a histopathological study were also undertaken to explore the mechanism of action of the EECF. The EECF exhibited a significant (p <0.001) and optimal (100 mg/kg) gastroprotective effect by elevating SOD, CAT, and GSH levels, thereby minimizing the production of MDA and lowering the activity of MPO and vascular permeability. EECF also increased the rate of mucus production, decreased gastric motility, and completely suppressed the H+/K+ ATPase activity. Histopathological study confirmed the effectiveness of the extract in the prevention of peptic ulcer. The results obtained in this study demonstrated the gastro-protective effect of EECF via acidic antioxidant, anti-inflammatory, cytoprotective and anti-secretory mechanisms, which may justify its use as a substitute in peptic ulcer treatment.Keywords: clematis flammula, superoxide dismutase, myeloperoxidase, ATPase, pump
Procedia PDF Downloads 200920 Designing of Almond Drink with Phytonutrients Assigned for Pro-Health Oriented Consumers
Authors: Gramza-Michalowska Anna, Skrety Joanna, Kobus-Cisowska Joanna, Kmiecik Dominik, Korczak Jozef, Anna Zywica
Abstract:
Background: Recent research presented many evidences confirming that food besides its basic nutritional function, possess significant therapeutic and prophylactic potential. Conscious consumer is aware of diet habits and well being lifestyle influencing a proper functioning that is why there is a need of new pro-health products. Objective: Proposition of the technology of unsweetened almond drinks enriched with plant extracts for pro-health oriented individuals. Research investigated the influence of selected plant extracts addition on antioxidative activity and consumer’s acceptance of drinks as all day diet product representatives. Methods: The analysis of the basic composition and antioxidant properties of the almond drink was conducted. Research included analysis of basic composition (protein, lipids and fiber content) and antioxidant capacity of drink (DPPH, ABTS, ORAC value, and FRAP). Proposed drink was also characterized with sensory analysis, including color, aroma, taste, consistency, and overall acceptance. Results: Results showed that addition of plant extracts into an almond drink allowed to improve its antioxidant capacity and sensory value of the drinks. Profitable composition and pro-health properties of designed drink permits offering healthy product for all day consumption. Conclusion: Designed almond drink would be a significant supplement for pro-healthy life style of the consumers. Results showed that plant extracts enriched almond drink would be a good source of antioxidants and accepted by the consumers.Keywords: phytonutrients, pro-health, almond, wellbeing, antioxidant potential, sensory value
Procedia PDF Downloads 474919 The Effect of Vitamin D Supplements and Aerobic Exercise on Hunger and Serum Insulin Levels in Adolescents With Metabolic Syndrome
Authors: Vahab Behmanesh
Abstract:
Metabolic syndrome is defined as having at least three of the five metabolic risk factors, including abdominal obesity, high blood pressure, high triglycerides, low HDL, and insulin resistance. Lifestyle changes towards reducing physical activity, unhealthy eating habits Especially the high-fat and high-carbohydrate diet is directly related to metabolic syndrome, and due to the epidemic of overweight and sedentary life, metabolic syndrome is a serious problem worldwide. On the other hand, vitamin D deficiency is considered as one of the most common problems in the world, which is related to the dysfunction of beta cells and insulin resistance, and therefore, vitamin D deficiency is considered as a factor in the occurrence of metabolic syndrome. 40 subjects (age: 16.12 ± 4.4 years and body mass index 25.61 ± 4.4 kg/m2) were randomly assigned to groups of aerobic exercise and placebo, aerobic exercise and vitamin D and placebo (no exercise) were divided. Vitamin D was taken at a dose of 50,000 units per week in a double-blind format for eight weeks, and the daily aerobic exercise program was performed for 50 to 60 minutes, three doses per week, with an intensity of 50-60% of the maximum heart rate. From one-way analysis of variance, Factorial variance analysis (2x2) repeated measurement and correlated t-test were used for data analysis. Aerobic exercise and vitamin D intake reduced all metabolic risk indicators and blood insulin (P < 0.05). However, the subjective feeling of hunger did not change significantly (P < 0.05). Regarding waist circumference and blood glucose, the effect of exercise combined with vitamin D consumption was greater than the corresponding effect in the vitamin D group (P < 0.05). Aerobic exercises and vitamin D intake are safe and effective for improving cardiometabolic health, Imam adds vitamin D to the exercise program has more benefits for weight and blood sugar control, which suggests prescribing it for patients with metabolic syndrome.Keywords: vitamin D, aerobic exercise, metabolic control, adolescents
Procedia PDF Downloads 101918 Precious Gold and Diamond Accessories Versus False Fashion Diamond and Stained Accessories
Authors: Amira Yousef Mahrous Yousef
Abstract:
This paper includes fast fashion verses sustainable fashion or slow fashion Indian based consumers. The expression ‘Fast fashion’ is generally referred to low-cost clothing collections that considered first hand copy of luxury brands, sometime interchangeably used with ‘mass fashion’. Whereas slow fashion or limited fashion which are consider to be more organic or eco-friendly. "Sustainable fashion is ethical fashion and here the consumer is just not design conscious but also social-environment conscious". Paper will deal with desire of young Indian consumer towards such luxury brands present in India, and their understanding of sustainable fashion, how to maintain the equilibrium between never newer fashion, style, and fashion sustainability. The green fashion market is growing rapidly as eco-friendly consumers are willing to expand their organic lifestyle to include clothing. With an increasing share of fashion consumers globally, Indian consumers are observed to consider the social and environmental ethics while making purchasing decisions. While some research clearly identifies the efforts of responsible consumers towards green fashion, some argue that fashion-orientated consumers who are sensitive towards environment do not actively participate towards supporting green fashion. This study aims to analyze the current perception of green fashion among Indian consumers. A small-scale exploratory study is conducted where consumers’ perception of green fashion is examined followed by an analysis of translation of this perception into purchase decision making. This research paper gives insight into consumer awareness on green fashion and provides scope towards the expansion of ethical fashion consumption .Keywords: inclusions, temperature gradient, HPHT synthetic fibers, polyamide fibers, fiber volume, compressive strength. gold nano clusters, copper ions, wool keratin, fluorescence
Procedia PDF Downloads 48917 A Comparative Study on the Phenolics Composition and Antioxidant Properties of Water Yam Landraces in Kerala, India
Authors: Anumol Jose, Sajana Nazar, M. R. Vishnu, M. Anilkumar
Abstract:
Water yam is an underutilized tropical tuber crop and a rich source of polyphenol compounds and acylated anthocyanins. There is an inverse relationship between the risk of chronic human diseases and the consumption of polyphenolic rich diet. Dioscorea alata is a plant species with several undocumented landraces. In this study, several landraces of water yam with distinct morphological features were collected from all over kerala. Distinct variation in morphological feature among landraces was tuber colour and only those landraces which expressed consistent morphological characters for constitutively two growing seasons were included in the study. Plants were categorized according to the L*a*b* colour attributes of tuber extracts. There were five categories, red, pink, orange, yellow and white. Total phenol, flavanoid and anthocyanin content of the tuber extracts were measured spectroscopically and correlated with antioxidant properties determined by 2,2-diphenyl-1-picryl-hydrazyl-hydrate free radical method and ferric reducing antioxidant power assay. Landraces showed statistically significant difference in all the parameters studied and strong correlation were observed between total phenol and antioxidant activity. Out of the five categories orange coloured tubers showed relatively high phenol and flavanoid content.Colour variations of tuber extracts correlated with anthocyanin quantity and polymeric nature of anthocyanins. This study helps to identify and categorize landraces of D.alata with potential health benefits and commercial applications. Distinct colour characteristics of tuber could be useful in the field of natural colorants. This study also aimed to document and preserve landraces of water yams for further study and research in this area.Keywords: the antioxidant property, anthocyanins, polyphenols, water yam
Procedia PDF Downloads 132916 Impact of Bio Preparations on Agro-Chemical Indexes and Fruit Mineral Composition of Mandarin (Citrus Reticulata) Orchard
Authors: Nunu Nakashidze, Shota Lominadze, Darejan Jashi
Abstract:
Citrus culture used to be one of the leading fields of sub-tropical agriculture in Georgia and especially in Adjara region, but the citrus production has been significantly decreased in recent years due to deterioration of quality index of fruit and reduction of sale markets. The fact severely affected both the economy of Republic and population. Intensive technologies of citrus fruit production are widely implemented in the world practices, which include the following: variety of species, consumption of fertilizers and chemicals, proper use of fruit production and etc. However working on technologies which ensure getting of high quality and plentiful product is very much important if taking into consideration modern, global ecological problems. Using of bio-preparations for plant nourishment is considered as one of the activities. The present work discusses liquid organic fertilizer 'Biorag' produced in Georgia and influence of its growth stimulation (Gakhokidze N1, N2, N3) on agrochemical index of soils and mineral composition of fruit of Citrus Unshiu orchards cultivated in the sub-tropical zone of Black Sea in Adjara region. It was ascertained that liquid organic fertilizers used in the orchard of citrus 'Unshiu' and influence of growth stimulators on the quality index of fruit are not clearly shown in comparison with control one. A small priority is noticed in case of growth stimulators. In conditions of red soils, liquid organic fertilizers and growth stimulators added in the nutrition of the citrus more or less influence the dry material of fruit and the composition of ash and nutrition elements. Agro-chemical index of the soil, except exchange acidity, is somehow enlarged which is one of the positive results in this case.Keywords: growth stimulator, liquid fertilizer, plant, fruit, soil
Procedia PDF Downloads 283915 Development of Vacuum Planar Membrane Dehumidifier for Air-Conditioning
Authors: Chun-Han Li, Tien-Fu Yang, Chen-Yu Chen, Wei-Mon Yan
Abstract:
The conventional dehumidification method in air-conditioning system mostly utilizes a cooling coil to remove the moisture in the air via cooling the supply air down below its dew point temperature. During the process, it needs to reheat the supply air to meet the set indoor condition that consumes a considerable amount of energy and affect the coefficient of performance of the system. If the processes of dehumidification and cooling are separated and operated respectively, the indoor conditions will be more efficiently controlled. Therefore, decoupling the dehumidification and cooling processes in heating, ventilation and air conditioning system is one of the key technologies as membrane dehumidification processes for the next generation. The membrane dehumidification method has the advantages of low cost, low energy consumption, etc. It utilizes the pore size and hydrophilicity of the membrane to transfer water vapor by mass transfer effect. The moisture in the supply air is removed by the potential energy and driving force across the membrane. The process can save the latent load used to condense water, which makes more efficient energy use because it does not involve heat transfer effect. In this work, the performance measurements including the permeability and selectivity of water vapor and air with the composite and commercial membranes were conducted. According to measured data, we can choose the suitable dehumidification membrane for designing the flow channel length and components of the planar dehumidifier. The vacuum membrane dehumidification system was set up to examine the effects of temperature, humidity, vacuum pressure, flow rate, the coefficient of performance and other parameters on the dehumidification efficiency. The results showed that the commercial Nafion membrane has better water vapor permeability and selectivity. They are suitable for filtration with water vapor and air. Meanwhile, Nafion membrane has promising potential in the dehumidification process.Keywords: vacuum membrane dehumidification, planar membrane dehumidifier, water vapour and air permeability, air conditioning
Procedia PDF Downloads 147914 Transit-Oriented Development as a Tool for Building Social Capital
Authors: Suneet Jagdev
Abstract:
Rapid urbanization has resulted in informal settlements on the periphery of nearly all big cities in the developing world due to lack of affordable housing options in the city. Residents of these communities have to travel long distances to get to work or search for jobs in these cities, and women, children and elderly people are excluded from urban opportunities. Affordable and safe public transport facilities can help them expand their possibilities. The aim of this research is to identify social capital as another important element of livable cities that can be protected and nurtured through transit-oriented development, as a tool to provide real resources that can help these transit-oriented communities become self-sustainable. Social capital has been referred to the collective value of all social networks and the inclinations that arise from these networks to do things for each other. It is one of the key component responsible to build and maintain democracy. Public spaces, pedestrian amenities and social equity are the other essential part of Transit Oriented Development models that will be analyzed in this research. The data has been collected through the analysis of several case studies, the urban design strategies implemented and their impact on the perception and on the community´s experience, and, finally, how these focused on the social capital. Case studies have been evaluated on several metrics, namely ecological, financial, energy consumption, etc. A questionnaire and other tools were designed to collect data to analyze the research objective and reflect the dimension of social capital. The results of the questionnaire indicated that almost all the participants have a positive attitude towards this dimensions of building a social capital with the aid of transit-oriented development. Statistical data of the identified key motivators against against demographic characteristics have been generated based on the case studies used for the paper. The findings suggested that there is a direct relation between urbanization, transit-oriented developments, and social capital.Keywords: better opportunities, low-income settlements, social capital, social inclusion, transit oriented development
Procedia PDF Downloads 331913 Vitamin C Supplementation Modulates Zinc Levels and Antioxidant Values in Blood and Tissues of Diabetic Rats Fed Zinc-Deficient Diet
Authors: W. Fatmi, F. Kriba, Z. Kechrid
Abstract:
The aim of this study was to investigate the effect of vitamin C on blood biochemical parameters, tissue zinc, and antioxidants enzymes in diabetic rats fed a zinc-deficient diet. For that purpose, Alloxan-induced diabetic rats were divided into four groups. The first group was fed a zinc-sufficient diet while the second group was fed a zinc-deficient diet. The third and fourth groups received zinc-sufficient or zinc-deficient diets plus oral vitamin C (1mg/l) for 27 days. Body weight and food intake were recorded regularly during 27 days. On day 28, animals were killed and glucose, total lipids, triglycerides, protein, urea, serum zinc , tissues zinc concentrations, liver glycogen, GSH, TBARS concentrations and serum GOT, GPT, ALP and LDH, liver GSH-Px, GST and Catalase activities were determined. Body weight gain and food intake of zinc deficient diabetic animals at the end of experimental period was significantly lower than that of zinc adequate diabetic animals. Dietary zinc intake significantly increased glucose, lipids, triglycerides, urea, and liver TBARS levels of zinc deficient diabetic rats. In contrast, serum zinc, tissues zinc, protein, liver glycogen and GSH levels were decreased. The consumption of zinc deficient diet led also to an increase in serum GOT, GPT and liver GST accompanied with a decrease in serum ALP, LDH and liver GSH-Px, CAT activities. Meanwhile, vitamin C treatment was ameliorated all the previous parameters approximately to their normal levels. Vitamin C supplementation presumably acting as an antioxidant, and it probably led to an improvement of insulin activity, which significantly reduced the severity of zinc deficiency in diabetes.Keywords: antioxidant, experimental diabetes, liver enzymes, vitamin c, zinc deficiency
Procedia PDF Downloads 365