Search results for: Gemfibrozil
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2

Search results for: Gemfibrozil

2 Comparative Therapeutic Effect of Acalypha indica Linn. Extract and Gemfibrozil on High Fructose and Cholesterol Diet Induced Pancreas Steatosis in Sprague-Dawley Mice

Authors: Adrian Reynaldo Sudirman, Siti Farida, Aisyah Aminy Maulidina, Caren Andika Surbakti

Abstract:

Sedentary lifestyle and imbalance consumption pattern has made metabolic syndrome as the global time bomb phenomenon in the world. The increasing tendency of people in consuming high amount of fructose and cholesterol food has worsened this issue in the society. Pancreas steatosis become one of the most comorbid when early diagnosis and prompt treatment has not been applied on hyperglycemic and hyperlipidemic condition in metabolic syndrome patient. Gemfibrozil become the drug of choice to prevent this issue, yet the efficacy of this regiment was still questionable. Acalypha indica Linn. is the herb that has protective effect on hyperlipidemic and hyperglycemic condition. This study was aimed to compare therapeutic effect of gemfibrozil (G) and Acalypha indica Linn. (AI) on high fructose and cholesterol diet-induced pancreas steatosis in Sprague-Dawley mice. The post induction mice were divided into four groups: control, gemfibrozil, AI extract, and G+AI combination regiment. Each group received four weeks intervention. The result of statistical analysis using the One-Way ANOVA test and Tukey Post Hoc test showed significant decrease in pancreatic steatosis between the control group and administered Acalypha indica group (p = 0.004, 95% CI: 0.170-0.959) and the group administered with a combination of Gemfibrozil-Acalypha indica (p = 0.023, 95% CI: 0.537-0.813). The protective effect of Acalypha indica Linn. shows that this plant has the potential as therapeutic option in overcoming the condition of pancreas steatosis in metabolic syndrome.

Keywords: Acalypha Indica Linn., Cholesterol, Fructose, Gemfibrozil, Pancreas Steatosis

Procedia PDF Downloads 287
1 Possible Modulation of FAS and PTP-1B Signaling in Ameliorative Potential of Bombax ceiba against High Fat Diet Induced Obesity

Authors: Paras Gupta, Rohit Goyal, Yamini Chauhan, Pyare Lal Sharma

Abstract:

Background: Bombax ceiba Linn., commonly called as Semal, is used in various gastro-intestinal disturbances. It contains lupeol which inhibits PTP-1B, adipogenesis, TG synthesis and accumulation of lipids in adipocytes and adipokines whereas the flavonoids isolated from B. ceiba has FAS inhibitory activity. The present study was aimed to investigate ameliorative potential of Bombax ceiba to experimental obesity in Wistar rats, and its possible mechanism of action. Methods: Male Wistar albino rats weighing 180–220 g were employed in present study. Experimental obesity was induced by feeding high fat diet for 10 weeks. Methanolic extract of B. ceiba extract 100, 200 and 400 mg/kg and Gemfibrozil 50 mg/kg as standard drug were given orally from 7th to 10th week. Results: Induction with HFD for 10 weeks caused significant (p < 0.05) increase in % body wt, BMI, LEE indices; serum glucose, triglyceride, LDL, VLDL, cholesterol, free fatty acid, ALT, AST; tissue TBARS, nitrate/nitrite levels; different fat pads and relative liver weight; and significant decrease in food intake (g and kcal), serum HDL and tissue glutathione levels in HFD control rats. Treatment with B. ceiba extract and Gemfibrozil significantly attenuated these HFD induced changes, as compared to HFD control. The effect of B. ceiba 200 and 400 mg/kg was more pronounced in comparison to Gemfibrozil. Conclusion: On the basis of results obtained, it may be concluded that the methanolic extract of stem bark of Bombax ceiba has significant ameliorative potential against HFD induced obesity in rats, possibly through modulation of FAS and PTP-1B signaling due to the presence of flavonoids and lupeol.

Keywords: obesity, Bombax ceiba, free fatty acid, protein tyrosine phosphatase-1B, fatty acid synthase

Procedia PDF Downloads 374