Search results for: cell wall biosynthesis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4827

Search results for: cell wall biosynthesis

1407 Heat Loss Control in Stave Cooled Blast Furnace by Optimizing Gas Flow Pattern through Burden Distribution

Authors: Basant Kumar Singh, S. Subhachandhar, Vineet Ranjan Tripathi, Amit Kumar Singh, Uttam Singh, Santosh Kumar Lal

Abstract:

Productivity of Blast Furnace is largely impacted by fuel efficiency and controlling heat loss is one of the enabling parameters for achieving lower fuel rate. 'I' Blast Furnace is the latest and largest Blast Furnace of Tata Steel Jamshedpur with working volume of 3230 m³ and with rated capacity of 3.055 million tons per annum. Optimizing heat losses in Belly and Bosh zone remained major challenge for blast furnace operators after its commissioning. 'I' Blast has installed Cast Iron & Copper Staves cooling members where copper staves are installed in Belly, Bosh & Lower Stack whereas cast iron staves are installed in upper stack area. Stave cooled Blast Furnaces are prone to higher heat losses in Belly and Bosh region with an increase in coal injection rate as Bosh gas volume increases. Under these conditions, managing gas flow pattern through proper burden distribution, casting techniques & by maintaining desired raw material qualities are of utmost importance for sustaining high injection rates. This study details, the burden distribution control by Ore & Coke ratio adjustment at wall and center of Blast Furnace as the coal injection rates increased from 140 kg/thm to 210 kg/thm. Control of blowing parameters, casting philosophy, specification for raw materials & devising operational practice for controlling heat losses is also elaborated with the model that is used to visualize heat loss pattern in different zones of Blast Furnace.

Keywords: blast furnace, staves, gas flow pattern, belly/bosh heat losses, ore/coke ratio, blowing parameters, casting, operation practice

Procedia PDF Downloads 339
1406 Evaluation of Antimicrobial Efficacy of Nanofluid Containing Carbon Nanotubes Functionalized with Antibiotic on Urinary Tract Infection

Authors: Erfan Rahimi, Hadi Bahari Far, Mojgan Shikhpour

Abstract:

Background: Urinary tract infection is one of the most common nosocomial infections, especially among women. E. coli is one of the main causes of urinary tract infections and one of the most common antibiotics to fight this bacterium is ampicillin. As conventional antibiotics led to bacterial antibiotic resistance, modification of the pure drugs can address this issue. The aim of this study was to prepare nanofluids containing carbon nanotubes conjugated with ampicillin to improve drug performance and reduce antibiotic resistance. Methods: Multi-walled carbon nanotubes (MWCNTs) were activated with thionyl chloride by reflux system and nanofluids containing antibiotics were prepared by ultrasonic method. The properties of the prepared nano-drug were investigated by general element analysis, infrared spectroscopy, Raman spectroscopy, scanning electron microscopy and transmission electron microscopy. After the treatment of the desired strain with nanofluid, microbial studies were performed to evaluate the antibacterial effects and molecular studies were carried out to measure the expression of the resistance gene AcrAB. Result: We have shown that the antimicrobial effect of ampicillin-functionalized MWCNTs at low concentrations performed better than that of the conventional drug in both resistant and ATCC strains. Also, a decrease in antibiotic resistance of bacteria treated with ampicillin-functionalized MWCNTs compared to the pure drug was observed. Also, ampicillin-functionalized MWCNTs downregulated the expression of AcrAB in treated bacteria. Conclusion: Because carbon nanotubes are capable of destroying the bacterial wall, which provides antibiotic resistance features in bacteria, their usage in the form of nanofluids can make lower dosages (about three times less) than that of the pure drug more effective. Additionally, the expression of the bacterial resistance gene AcrAB decreased, thereby reducing antibiotic resistance and improving drug performance against bacteria.

Keywords: urinary tract infection, antibiotic resistance, carbon nanotube, nanofluid

Procedia PDF Downloads 130
1405 Influence of Electrode Assembly on Catalytic Activation and Deactivation of a PT Film Immobilized H+ Conducting Solid Electrolyte in Electrocatalytic Reduction Reactions

Authors: M. A. Hasnat, M. Amirul Islam, M. A. Rashed, Jamil. Safwan, M. Mahabubul Alam

Abstract:

Symmetric (Cu–Pt|Nafion|Pt–Cu) and asymmetric(Pt|Nafion|Pt–Cu) assemblies were fabricated to study the nitrate reduction processes at the cathode. The electrocatalytic nitrate reduction reactions were performed in these assemblies in order to investigate the prerequisite for the enhanced catalytic activity, electrochemical cell durability as well as preferable product selectivity resulting from the reduction of nitrate at the cathode. It has been observed for the symmetric assembly that Cu particles were oxidized on the anode surface under an applied potential and the resulting copper ions migrated to the cathode surface through the Nafion membrane, which deposited as copper oxide on the cathode surface. The formation of this copper oxide covering layer on the Pt–Cu cathode surface is attributed as the reason for the deactivation of the cathode that governed the reduced nitrate reduction along with increasing nitrite selectivity. These problems were addressed and resolved with the asymmetric design of the electrocatalytic reactor, where enhanced hydrogen evolution activates the surface by eroding the CuO over layer as well as speeding up the slow rate determining hydrogenation reactions.

Keywords: membrane, nitrate, electrocatalysis, voltammetry, electrolysis

Procedia PDF Downloads 253
1404 Urban Resilience and Planning in the Perspective of Community

Authors: Xu Tao, Yilun Xu, Dingwei Xiang, Yaofei Sun

Abstract:

Urban community is constitute the entire city and its management ‘cell’, let ‘cells’ with growth and self-regeneration capacity and persistence, to allow the city with infinite vigor and vitality of the source; with toughness community mankind's adaptation to the basic unit of social risk, toughness of the city from the community to create a point of building is urban toughness of top-down construction mode of supplement, is of positive significance on the toughness of the urban construction. Based on the basic concept of resilience, this paper reviews the research on the four main areas of the study of urban resilience (i.e., the engineering toughness, ecological resilience, economic resilience, and social resilience, etc.). Studies and comments and summarizes the basic characteristic and main content of the four kind of toughness. Based on, from the city - community level and community level for building community resilience, including the level of urban community and create a Unicom, inclusiveness and openness of the community; community-level lifted from the four angles of the engineering community toughness, ecological toughness, resilience, social resilience, mainly including enhanced the toughness of the infrastructure, green infrastructure of toughness, resilience, social network and social relations, building with a sense of belonging, inclusive, multicultural community. Finally, summarize and prospect the resilience of the community.

Keywords: resilience, community resilience, urban resilience, construction strategies

Procedia PDF Downloads 230
1403 Effect of Aging Time on CeO2 Nanoparticle Size Distribution Synthesized via Sol-Gel Method

Authors: Navid Zanganeh, Hafez Balavi, Farbod Sharif, Mahla Zabet, Marzieh Bakhtiary Noodeh

Abstract:

Cerium oxide (CeO2) also known as cerium dioxide or ceria is a pale yellow-white powder with various applications in the industry from wood coating to cosmetics, filtration, fuel cell electrolytes, gas sensors, hybrid solar cells and catalysts. In this research, attempts were made to synthesize and characterization of CeO2 nano-particles via sol-gel method. In addition, the effect of aging time on the size of particles was investigated. For this purpose, the aging times adjusted 48, 56, 64, and 72 min. The obtained particles were characterized by x-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), transmitted electron microscopy (TEM), and Brunauer–Emmett–Teller (BET). As a result, XRD patterns confirmed the formation of CeO2 nanoparticles. SEM and TEM images illustrated the nano-particles with cluster shape, spherical and a nano-size range which was in agreement with XRD results. The finest particles (7.3 nm) was obtained at the optimum condition which was aging time of 48 min, calcination temperature at 400 ⁰C, and cerium concentration of 0.004 mol. Average specific surface area of the particles at optimum condition was measured by BET analysis and recorded as 47.57 m2/g.

Keywords: aging time, CeO2 nanoparticles, size distribution, sol-gel

Procedia PDF Downloads 440
1402 Vitamin D Deficiency is Associated with Increases IgE Receptors in Children with Asthma

Authors: A. Vijayendra Chary, R. Hemalatha

Abstract:

Background: Vitamin D is a potent modulator of the immune system and is involved in regulating cell proliferation and differentiation. Vitamin D deficiency has been linked to increased severity of asthma in children. Asthma has dramatically increased in past decades, particular in developing countries and affects up to 20% of the population. IgE and its receptors, CD23 (FcεRII) and CD 21, play an essential role in all allergic conditions. Methods: A case control study was conducted on asthma and age and sex matched control children. 25 hydroxyvitamin D3 was quantified by HPLC; CD23; and CD21 expression on B cells were performed by flow cytometry. Total Histamine, total IGE and IL-5 and IFN-γ cytokines were determined by ELISA in blood samples of bronchial asthma (n=45) and control children (n=45). Results: The mean ± SE of vitamin D was significantly (p<0.05) low in asthma children (13.6±0.54 ng/mL) than in controls (17.4 ± 0.37 ng/mL). The mean (%) ± SE of CD23 and CD21 expression on B cells were significantly (p<0.01) high in asthma (1.02±0.09; 1.67± 0.13), when compared to controls (0.24±0.01; 0.94±0.03) respectively. The mean± SE of Serum IgE and blood histamine levels in asthma children (354.52 ± 17.33 IU/mL; 53.27 ± 2.54 nM/mL) were increased (P<0.05) when compared to controls (183.12±17.62 IU/mL 39.34±4.16 nM/mL) respectively and IFN-γ (Th1 cytokine) was lower (P<0.01) (16.37±1.27 pg/mL) than in controls (43.34±6.21 pg/mL). Conclusion: Our study provides evidence that low vitamin D levels are associated with increased IgE receptors CD23 and CD21 on B cells. In addition, there was preferential activation of Th2 (IL-5) and suppression of Th1 (IFN-γ) cytokines in children with asthma.

Keywords: bronchial asthma, CD23, IgE, vitamin D

Procedia PDF Downloads 458
1401 An Investigation of a Three-Dimensional Constitutive Model of Gas Diffusion Layers in Polymer Electrolyte Membrane Fuel Cells

Authors: Yanqin Chen, Chao Jiang, Chongdu Cho

Abstract:

This research presents the three-dimensional mechanical characteristics of a commercial gas diffusion layer by experiment and simulation results. Although the mechanical performance of gas diffusion layers has attracted much attention, its reliability and accuracy are still a major challenge. With the help of simulation analysis methods, it is beneficial to the gas diffusion layer’s extensive commercial development and the overall stress analysis of proton electrolyte membrane fuel cells during its pre-production design period. Therefore, in this paper, a three-dimensional constitutive model of a commercial gas diffusion layer, including its material stiffness matrix parameters, is developed and coded, in the user-defined material model of a commercial finite element method software for simulation. Then, the model is validated by comparing experimental results as well as simulation outcomes. As a result, both the experimental data and simulation results show a good agreement with each other, with high accuracy.

Keywords: gas diffusion layer, proton electrolyte membrane fuel cell, stiffness matrix, three-dimensional mechanical characteristics, user-defined material model

Procedia PDF Downloads 146
1400 Hybrid Materials on the Basis of Magnetite and Magnetite-Gold Nanoparticles for Biomedical Application

Authors: Mariia V. Efremova, Iana O. Tcareva, Anastasia D. Blokhina, Ivan S. Grebennikov, Anastasia S. Garanina, Maxim A. Abakumov, Yury I. Golovin, Alexander G. Savchenko, Alexander G. Majouga, Natalya L. Klyachko

Abstract:

During last decades magnetite nanoparticles (NPs) attract a deep interest of scientists due to their potential application in therapy and diagnostics. However, magnetite nanoparticles are toxic and non-stable in physiological conditions. To solve these problems, we decided to create two types of hybrid systems based on magnetite and gold which is inert and biocompatible: gold as a shell material (first type) and gold as separate NPs interfacially bond to magnetite NPs (second type). The synthesis of the first type hybrid nanoparticles was carried out as follows: Magnetite nanoparticles with an average diameter of 9±2 nm were obtained by co-precipitation of iron (II, III) chlorides then they were covered with gold shell by iterative reduction of hydrogen tetrachloroaurate with hydroxylamine hydrochloride. According to the TEM, ICP MS and EDX data, final nanoparticles had an average diameter of 31±4 nm and contained iron even after hydrochloric acid treatment. However, iron signals (K-line, 7,1 keV) were not localized so we can’t speak about one single magnetic core. Described nanoparticles covered with mercapto-PEG acid were non-toxic for human prostate cancer PC-3/ LNCaP cell lines (more than 90% survived cells as compared to control) and had high R2-relaxivity rates (>190 mМ-1s-1) that exceed the transverse relaxation rate of commercial MRI-contrasting agents. These nanoparticles were also used for chymotrypsin enzyme immobilization. The effect of alternating magnetic field on catalytic properties of chymotrypsin immobilized on magnetite nanoparticles, notably the slowdown of catalyzed reaction at the level of 35-40 % was found. The synthesis of the second type hybrid nanoparticles also involved two steps. Firstly, spherical gold nanoparticles with an average diameter of 9±2 nm were synthesized by the reduction of hydrogen tetrachloroaurate with oleylamine; secondly, they were used as seeds during magnetite synthesis by thermal decomposition of iron pentacarbonyl in octadecene. As a result, so-called dumbbell-like structures were obtained where magnetite (cubes with 25±6 nm diagonal) and gold nanoparticles were connected together pairwise. By HRTEM method (first time for this type of structure) an epitaxial growth of magnetite nanoparticles on gold surface with co-orientation of (111) planes was discovered. These nanoparticles were transferred into water by means of block-copolymer Pluronic F127 then loaded with anti-cancer drug doxorubicin and also PSMA-vector specific for LNCaP cell line. Obtained nanoparticles were found to have moderate toxicity for human prostate cancer cells and got into the intracellular space after 45 minutes of incubation (according to fluorescence microscopy data). These materials are also perspective from MRI point of view (R2-relaxivity rates >70 mМ-1s-1). Thereby, in this work magnetite-gold hybrid nanoparticles, which have a strong potential for biomedical application, particularly in targeted drug delivery and magnetic resonance imaging, were synthesized and characterized. That paves the way to the development of special medicine types – theranostics. The authors knowledge financial support from Ministry of Education and Science of the Russian Federation (14.607.21.0132, RFMEFI60715X0132). This work was also supported by Grant of Ministry of Education and Science of the Russian Federation К1-2014-022, Grant of Russian Scientific Foundation 14-13-00731 and MSU development program 5.13.

Keywords: drug delivery, magnetite-gold, MRI contrast agents, nanoparticles, toxicity

Procedia PDF Downloads 360
1399 Simple and Scalable Thermal-Assisted Bar-Coating Process for Perovskite Solar Cell Fabrication in Open Atmosphere

Authors: Gizachew Belay Adugna

Abstract:

Perovskite solar cells (PSCs) shows rapid development as an emerging photovoltaic material; however, the fast device degradation due to the organic nature, mainly hole transporting material (HTM) and lack of robust and reliable upscaling process for photovoltaic module hindered its commercialization. Herein, HTM molecules with/without fluorine-substituted cyclopenta[2,1-b;3,4-b’]dithiophene derivatives (HYC-oF, HYC-mF, and HYC-H) were developed for PSCs application. The fluorinated HTM molecules exhibited better hole mobility and overall charge extraction in the devices mainly due to strong molecular interaction and packing in the film. Thus, the highest power conversion efficiency (PCE) of 19.64% with improved long stability was achieved for PSCs based on HYC-oF HTM. Moreover, the fluorinated HYC-oF demonstrated excellent film processability in a larger-area substrate (10 cm×10 cm) prepared sequentially with the absorption perovskite underlayer via a scalable bar coating process in ambient air and owned a higher PCE of 18.49% compared to the conventional spiro-OMeTAD (17.51%). The result demonstrates a facile development of HTM towards stable and efficient PSCs for future industrial-scale PV modules.

Keywords: perovskite solar cells, upscaling film coating, power conversion efficiency, solution processing

Procedia PDF Downloads 55
1398 Preliminary Results on a Study of Antimicrobial Susceptibility Testing of Bacillus anthracis Strains Isolated during Anthrax Outbreaks in Italy from 2001 to 2017

Authors: Viviana Manzulli, Luigina Serrecchia, Adelia Donatiello, Valeria Rondinone, Sabine Zange, Alina Tscherne, Antonio Parisi, Antonio Fasanella

Abstract:

Anthrax is a zoonotic disease that affects a wide range of animal species (primarily ruminant herbivores), and can be transmitted to humans through consumption or handling of contaminated animal products. The etiological agent B.anthracis is able to survive in unfavorable environmental conditions by forming endospore which remain viable in the soil for many decades. Furthermore, B.anthracis is considered as one of the most feared agents to be potentially misused as a biological weapon and the importance of the disease and its treatment in humans has been underscored before the bioterrorism events in the United States in 2001. Due to the often fatal outcome of human cases, antimicrobial susceptibility testing plays especially in the management of anthrax infections an important role. In Italy, animal anthrax is endemic (predominantly found in the southern regions and on islands) and is characterized by sporadic outbreaks occurring mainly during summer. Between 2012 and 2017 single human cases of cutaneous anthrax occurred. In this study, 90 diverse strains of B.anthracis, isolated in Italy from 2001 to 2017, were screened to their susceptibility to sixteen clinically relevant antimicrobial agents by using the broth microdilution method. B.anthracis strains selected for this study belong to the strain collection stored at the Anthrax Reference Institute of Italy located inside the Istituto Zooprofilattico Sperimentale of Puglia and Basilicata. The strains were isolated at different time points and places from various matrices (human, animal and environmental). All strains are a representative of over fifty distinct MLVA 31 genotypes. The following antibiotics were used for testing: gentamicin, ceftriaxone, streptomycin, penicillin G, clindamycin, chloramphenicol, vancomycin, linezolid, cefotaxime, tetracycline, erythromycin, rifampin, amoxicillin, ciprofloxacin, doxycycline and trimethoprim. A standard concentration of each antibiotic was prepared in a specific diluent, which were then twofold serial diluted. Therefore, each wells contained: bacterial suspension of 1–5x104 CFU/mL in Mueller-Hinton Broth (MHB), the antibiotic to be tested at known concentration and resazurin, an indicator of cell growth. After incubation overnight at 37°C, the wells were screened for color changes caused by the resazurin: a change from purple to pink/colorless indicated cell growth. The lowest concentration of antibiotic that prevented growth represented the minimal inhibitory concentration (MIC). This study suggests that B.anthracis remains susceptible in vitro to many antibiotics, in addition to doxycycline (MICs ≤ 0,03 µg/ml), ciprofloxacin (MICs ≤ 0,03 µg/ml) and penicillin G (MICs ≤ 0,06 µg/ml), recommend by CDC for the treatment of human cases and for prophylactic use after exposure to the spores. In fact, the good activity of gentamicin (MICs ≤ 0,25 µg/ml), streptomycin (MICs ≤ 1 µg/ml), clindamycin (MICs ≤ 0,125 µg/ml), chloramphenicol(MICs ≤ 4 µg/ml), vancomycin (MICs ≤ 2 µg/ml), linezolid (MICs ≤ 2 µg/ml), tetracycline (MICs ≤ 0,125 µg/ml), erythromycin (MICs ≤ 0,25 µg/ml), rifampin (MICs ≤ 0,25 µg/ml), amoxicillin (MICs ≤ 0,06 µg/ml), towards all tested B.anthracis strains demonstrates an appropriate alternative choice for prophylaxis and/or treatment. All tested B.anthracis strains showed intermediate susceptibility to the cephalosporins (MICs ≥ 16 µg/ml) and resistance to trimethoprim (MICs ≥ 128 µg/ml).

Keywords: Bacillus anthracis, antibiotic susceptibility, treatment, minimum inhibitory concentration

Procedia PDF Downloads 195
1397 Activation of AMPK-TSC axis is involved in cryptotanshinone inhibition of mTOR signaling in cancer cells

Authors: Wenxing Chen, Guangying Chen, Yin Lu, Shile Huang

Abstract:

Cryptotanshinone (CPT), a fat-soluble tanshinone from Salvia miltiorrhiza Bunge, has been demonstrated to inhibit mTOR pathway, resulting in inhibition of cancer cell proliferation. However, the molecular mechanism how CPT acts on mTOR is unknown. Here, cancer cells expressing rapamycin-resistant mutant mTOR are also sensitive to CPT, while phosphorylation of AMPK and TSC2 was activated, suggesting that CPT inhibition of mTOR maybe due to activating upstream of mTOR, AMPK, but not directly binding to and inhibiting mTOR. Further results indicated that Compound C, inhibitor of AMPK, could partially reversed CPT inhibition effect on cancer cells, and dominant-negative AMPK in cancer cells conferred resistance to CPT inhibition of 4EBP1 and phosphorylation of S6K1, as well as sh-AMPK. Furthermore, compared with MEF cells with AMPK positive, MEF cells with AMPK knock out are less sensitive to CPT by the findings that 4E-BP1 and phosphorylation of S6K1 express comparatively much. Furthermore, downexpression of TSC2 slightly recovered expression of 4EBP1 and phosphorylation of S6K1, while co-immunoprecipitation of TSC2 did not affect expression of TSC1 by CPT. Collectively, the above-mentioned results suggest that CPT inhibited mTOR pathway mostly was due to activation of AMPK-TSC2 pathway rather than specific inhibition of mTOR and then induction of subsequent lethal cellular effect.

Keywords: cryptotanshinone, AMPK, TSC2, mTOR, cancer cells

Procedia PDF Downloads 474
1396 Nanotechnology in Construction as a Building Security

Authors: Hanan Fayez Hussein

Abstract:

‘Due to increasing environmental challenges and security problems in the world such as global warming, storms, and terrorism’, humans have discovered new technologies and new materials in order to program daily life. As providing physical and psychological security is one of the primary functions of architecture, so in order to provide security, building must prevents unauthorized entry and harm to occupant and reduce the threat of attack by making building less attractive targets by new technologies such as; Nanotechnology, which has emerged as a major science and technology focus of the 21st century and will be the next industrial revolution. Nanotechnology is control of the properties of matter, and it deals with structures of the size 100 nanometers or smaller in at least one dimension and has wide application in various fields. The construction and architecture sectors were among the first to be identified as a promising application area for nanotechnology. The advantages of using nanomaterials in construction are enormous, and promises heighten building security by utilizing the strength of building materials to make our buildings more secure and get smart home. Access barriers such as wall and windows could incorporate stronger materials benefiting from nano-reinforcement utilizing nanotubes and nano composites to act as protective cover. Carbon nanotubes, as one of nanotechnology application, can be designed up to 250 times stronger than steel. Nano-enabled devices and materials offer both enhanced and, in some cases, completely new defence systems. In the addition, the small amount of carbon nanoparticles to the construction materials such as; cement, concrete, wood, glass, gypson, and steel can make these materials act as defence elements. This paper highlights the fact that nanotechnology can impact the future global security and how building’s envelop can act as a defensive cover for the building and can be resistance to any threats can attack it. Then focus on its effect on construction materials such as; Concrete can obtain by nanoadditives excellent mechanical, chemical, and physical properties with less material, which can acts as a precautionary shield to the building.

Keywords: nanomaterial, global warming, building security, smart homes

Procedia PDF Downloads 64
1395 Acrylamide-Induced Acute Nephrotoxicity in Rats

Authors: Keivan Jamshidi, Afshin Zahedi

Abstract:

Acrylamide (ACR) has been shown to cause neurotoxic effects in humans and neurotoxic, genotoxic, reproductive, and carcinogenic effects in laboratory animals. To investigate the nephrotoxic effect of Acrylamide (ACR), 50 adult male rats (Wistar, approximately 250 g) housed in polycarbonate boxes as 5 per each, and randomly assigned in 5 groups including 4 exposure groups as A, B, C, and D groups of rats (10 rats per exposure group., total) and were exposed to 0.5, 5, 50, 100 mg/kg ACR per day×11days i.p. respectively. The remaining 10 rats were housed in group (E) as control group. Control rats received daily i.p. injections of 0.9% saline (3ml/kg). On day 12, four rats, were randomly selected, perfused , dissected and proper samples were collected from their kidneys. Results of histopathological studies based on H&E technique did show no morphologic changes in kidneys of rats belong to groups A, B and E, while moderate to severe morphologic changes including glomerular hypercellularity, global pattern of proliferative glomerulonephritis, occupation of capsular space, tubular cell swelling and hyaline cast formation, were observed in different stained sections obtained from the kidneys of rats belong to group, C, and D. This finding, beside neurotoxic, reproductive and carcinogenic effects, seems to indicate for the first time another important aspect of toxic effect of ACR, i.e., acute nephrotoxicity.

Keywords: acrylamide, nephrotoxicity, glomerulonephritis, rats

Procedia PDF Downloads 603
1394 Proposing an Architecture for Drug Response Prediction by Integrating Multiomics Data and Utilizing Graph Transformers

Authors: Nishank Raisinghani

Abstract:

Efficiently predicting drug response remains a challenge in the realm of drug discovery. To address this issue, we propose four model architectures that combine graphical representation with varying positions of multiheaded self-attention mechanisms. By leveraging two types of multi-omics data, transcriptomics and genomics, we create a comprehensive representation of target cells and enable drug response prediction in precision medicine. A majority of our architectures utilize multiple transformer models, one with a graph attention mechanism and the other with a multiheaded self-attention mechanism, to generate latent representations of both drug and omics data, respectively. Our model architectures apply an attention mechanism to both drug and multiomics data, with the goal of procuring more comprehensive latent representations. The latent representations are then concatenated and input into a fully connected network to predict the IC-50 score, a measure of cell drug response. We experiment with all four of these architectures and extract results from all of them. Our study greatly contributes to the future of drug discovery and precision medicine by looking to optimize the time and accuracy of drug response prediction.

Keywords: drug discovery, transformers, graph neural networks, multiomics

Procedia PDF Downloads 128
1393 The Survey of Sea Cucumber Fisheries in QESHM Island Coasts: Persian Gulf

Authors: Majid Afkhami, Maryam Ehsanpour, Rastin Afkhami

Abstract:

Sea cucumbers are aquatic animals with a wide variety useful for human health. Sea cucumbers are from the aquatic creatures that have many important and useful properties known for human health. Increasing demand for beche-de-mer along with steady price increases have led to worldwide intensification of sea cucumber harvesting. The rearing of sea cucumber with shrimp controls the environmental pollution results from extra enriched nutritious built on the pond bottom. These animals eat detritus and with devouring of organic materials on the surface, not only do they make the environment clean, but also they cause the fast growth of shrimp and themselves. Holothuria scabra is a main species for producing of Beche-de-mer and more exploited in tropical region of the world. The wall of body is used in the process of beche-de-mer production that forms the 56% of the whole body. Holothuria scabra (sandfish) is an aspidochirote holothurian widely distributed in coastal regions throughout the Indo-Pacific region. H. scabra is often found on inner reef flats and near estuaries, half buried in the silt sand during the day and emerging at night to feed. In this study upon to information from local fishermen's in Qeshm island, we Providing some data about fishing methods, processing and distribution in the Qeshm island coastline. Comparative study of fishing status with another part of the world determined that the status of sea cucumber stocks in Qeshm Island is suitable. For preventing of over exploited of sandy sea cucumber capture prohibition should be continue. In this study, 7 explotide sites are recognized, the target size for fishermen's was more than 20 cm and sandy cucumber was the target species in Qeshm Island. In this area the fishing operation was only done by scuba diving and has been done only by men's. Although in another countries women's have an important role in sea cucumber fishing operation. In the coast around Qeshm island it is found in Hmoon, Tolla, kovei, Ramchah, Messen, and Hengam. The maximum length and weight was recorded 35 cm and 1080 gr, respectively.

Keywords: sea cucumber, Holothuria scabra, fishing status, Qeshm Island

Procedia PDF Downloads 433
1392 Development and Characterization of Bio-Tribological, Nano- Multilayer Coatings for Medical Tools Application

Authors: L. Major, J. M. Lackner, M. Dyner, B. Major

Abstract:

Development of new generation bio- tribological, multilayer coatings, opens an avenue for fabrication of future high- tech functional surfaces. In the presented work, nano- composite, Cr/CrN+[Cr/ a-C:H implanted by metallic nanocrystals] multilayer coatings have been developed for surface protection of medical tools. Thin films were fabricated by a hybrid Pulsed Laser Deposition technique. Complex microstructure analysis of nano- multilayer coatings, subjected to mechanical and biological tests, were performed by means of transmission electron microscopy (TEM). Microstructure characterization revealed the layered arrangement of Cr23C6 nanoparticles in multilayer structure. Influence of deposition conditions on bio- tribological properties of the coatings were studied. The bio-tests were used as a screening tool for the analyzed nano- multilayer coatings before they could be deposited on medical tools. Bio- medical tests were done using fibroblasts. The mechanical properties of the coatings were investigated by means of a ball-on-disc mechanical test. The microhardness was done using Berkovich indenter. The scratch adhesion test was done using Rockwell indenter. From the bio- tribological point of view, the optimal properties had the C106_1 material.

Keywords: bio- tribological coatings, cell- material interaction, hybrid PLD, tribology

Procedia PDF Downloads 358
1391 Across-Breed Genetic Evaluation of New Zealand Dairy Goats

Authors: Nicolas Lopez-Villalobos, Dorian J. Garrick, Hugh T. Blair

Abstract:

Many dairy goat farmers of New Zealand milk herds of mixed breed does. Simultaneous evaluation of sires and does across breed is required to select the best animals for breeding on a common basis. Across-breed estimated breeding values (EBV) and estimated producing values for 208-day lactation yields of milk (MY), fat (FY), protein (PY) and somatic cell score (SCS; LOG2(SCC) of Saanen, Nubian, Alpine, Toggenburg and crossbred dairy goats from 75 herds were estimated using a test day model. Evaluations were based on 248,734 herd-test records representing 125,374 lactations from 65,514 does sired by 930 sires over 9 generations. Averages of MY, FY and PY were 642 kg, 21.6 kg and 19.8 kg, respectively. Average SCC and SCS were 936,518 cells/ml milk and 9.12. Pure-bred Saanen does out-produced other breeds in MY, FY and PY. Average EBV for MY, FY and PY compared to a Saanen base were Nubian -98 kg, 0.1 kg and -1.2 kg; Alpine -64 kg, -1.0 kg and -1.7 kg; and Toggenburg -42 kg, -1.0 kg and -0.5 kg. First-cross heterosis estimates were 29 kg MY, 1.1 kg FY and 1.2 kg PY. Average EBV for SCS compared to a Saanen base were Nubian 0.041, Alpine -0.083 and Toggenburg 0.094. Heterosis for SCS was 0.03. Breeding values are combined with respective economic values to calculate an economic index used for ranking sires and does to reflect farm profit.

Keywords: breed effects, dairy goats, milk traits, test-day model

Procedia PDF Downloads 310
1390 Modeling of Nanocomposite Films Made of Cloisite 30b- Metal Nanoparticle in Packaging of Soy Burger

Authors: Faranak Beigmohammadi, Seyed Hadi Peighambardoust, Seyed Jamaledin Peighambardoust

Abstract:

This study undertakes to investigate the ability of different kinds of nanocomposite films made of cloisite-30B with different percentages of silver and copper oxide nanoparticles incorporated into a low-density polyethylene (LDPE) polymeric matrix by a melt mixing method in order to inhibit the growth of microorganism in soy burger. The number of surviving cell of the total count was decreased by 3.61 log and mold and yeast diminished by 2.01 log after 8 weeks storage at 18 ± 0.5°C below zero, whilst pure LDPE did not has any antimicrobial effect. A composition of 1.3 % cloisite 30B-Ag and 2.7 % cloisite 30B-CuO for total count and 0 % cloisite 30B-Ag and 4 % cloisite 30B-CuO for yeast & mold gave optimum points in combined design test in Design Expert 7.1.5. Suitable microbial models were suggested for retarding above microorganisms growth in soy burger. To validation of optimum point, the difference between the optimum point of nanocomposite film and its repeat was not significant (p<0.05) by one-way ANOVA analysis using SPSS 17.0 software, while the difference was significant for pure film. Migration of metallic nanoparticles into a food stimulant was within the accepted safe level.

Keywords: modeling, nanocomposite film, packaging, soy burger

Procedia PDF Downloads 280
1389 Development and Evaluation of Novel Diagnostic Methods for Infectious Rhinotracheitis of Cattle

Authors: Wenxiao Liu, Kun Zhang, Yongqing Li

Abstract:

Bovine herpesvirus 1, a member of the genus Variellovirus of the subfamily Alphaherpesvirinae, has caused severe economic cost to the bovine industry. In this study, BoHV-1 glycerol protein gD was expressed in insect cells, and the purified gD was immunized in the Balb/C mice to generate monoclonal antibodies. Based on hybridoma cell fusion techniques, 20 monoclonal antibodies against Bovine herpesvirus 1 have been obtained. Further, mAb 3F8 with neutralizing activity and gD were applied to develop a blocking enzyme-linked immunosorbent assay (Elisa) for detecting neutralizing antibodies against BoHV-1, which shows a significant correlation between the blocking Elisa and VNT. The sensitivity and specificity of the test were estimated to be 94.59% and 93.42%, respectively. Furthermore, antibody pairing tests revealed that mAb 1B6 conjugated to fluorescence microspheres was used as the capture antibody, and mAb 3F9 was used as the detectable antibody to establish the immunochromatographic assay (ICS). The ICS was conducted to detect BoHV-1 in bovine samples with high sensitivity, specificity, and good stability. Clinical sample testing revealed that the results of ICS and real-time PCR have a coincidence rate of 95.42%. Our research confirmed that the ICS is a rapid and reliable method for the diagnosis of BoHV-1. In conclusion, our results lay a solid foundation for the prevention and control of BoHV-1 infection.

Keywords: bovine disease, BoHV-1, ELISA, ICS assay

Procedia PDF Downloads 53
1388 Development of a Robot Assisted Centrifugal Casting Machine for Manufacturing Multi-Layer Journal Bearing and High-Tech Machine Components

Authors: Mohammad Syed Ali Molla, Mohammed Azim, Mohammad Esharuzzaman

Abstract:

Centrifugal-casting machine is used in manufacturing special machine components like multi-layer journal bearing used in all internal combustion engine, steam, gas turbine and air craft turboengine where isotropic properties and high precisions are desired. Moreover, this machine can be used in manufacturing thin wall hightech machine components like cylinder liners and piston rings of IC engine and other machine parts like sleeves, and bushes. Heavy-duty machine component like railway wheel can also be prepared by centrifugal casting. A lot of technological developments are required in casting process for production of good casted machine body and machine parts. Usually defects like blowholes, surface roughness, chilled surface etc. are found in sand casted machine parts. But these can be removed by centrifugal casting machine using rotating metallic die. Moreover, die rotation, its temperature control, and good pouring practice can contribute to the quality of casting because of the fact that the soundness of a casting in large part depends upon how the metal enters into the mold or dies and solidifies. Poor pouring practice leads to variety of casting defects such as temperature loss, low quality casting, excessive turbulence, over pouring etc. Besides these, handling of molten metal is very unsecured and dangerous for the workers. In order to get rid of all these problems, the need of an automatic pouring device arises. In this research work, a robot assisted pouring device and a centrifugal casting machine are designed, developed constructed and tested experimentally which are found to work satisfactorily. The robot assisted pouring device is further modified and developed for using it in actual metal casting process. Lot of settings and tests are required to control the system and ultimately it can be used in automation of centrifugal casting machine to produce high-tech machine parts with desired precision.

Keywords: bearing, centrifugal casting, cylinder liners, robot

Procedia PDF Downloads 398
1387 Effect of Gel Concentration on Physical Properties of an Electrochromic Device

Authors: Sharan K. Indrakar, Aakash B. Prasad, Arash Takshi, Sesha Srinivasan, Elias K. Stefanakos

Abstract:

In this work, we present an exclusive study on the effect of the feeding ratio of polyaniline-based redox-active gel layer on electrical and optical properties of innovative electrochromic devices (ECs). An electrochromic device consisting of polyaniline (PANI) has a redox-active gel electrolyte placed between two conducting transparent fluorine-doped tin oxide glass substrates. The redox-active composite gel is a mixture of different concentrations of aniline (monomer), a water-soluble polymer poly (vinyl alcohol), hydrochloric acid, and an oxidant. The EC device shows the color change from dark green to transparent for the applied potential between -0.5 V to +2.0 V. The coloration and decoloration of the ECs were tested for electrochemical behavior using techniques such as cyclic voltammetry (CV), chronoamperometry (CA), and electrochemical impedance spectroscopy (EIS). The optical transparency of the EC devices was examined at two different biasing voltage conditions under UV-visible spectroscopic technique; the result showed 65% transmittance at 564 nm and zero transmittance when the cell was biased at 0.0 V and 2.0 V, the synthesized mol fraction gel was analyzed for surface morphology and structural properties by scanning electron microscopy and Fourier transformer spectroscopy.

Keywords: electrochromic, gel electrolyte, polyaniline, conducting polymer

Procedia PDF Downloads 121
1386 Synthesis of Biostabilized Gold Nanoparticles Using Garcinia indica Extract and Its Antimicrobial and Anticancer Properties

Authors: Rebecca Thombre, Aishwarya Borate

Abstract:

Chemical synthesis of nanoparticles produces toxic by-products, as a result of which eco-friendly methods of synthesis are gaining importance. The synthesis of nanoparticles using plant derived extracts is economical, safe and eco-friendly. Biostabilized gold nanoparticles were synthesized using extracts of Garcinia indica. The gold nanoparticles were characterized using UV-Vis spectrophotometry and demonstrated a peak at 527 nm. The presence of plant derived peptides and phytoconstituents was confirmed using the FTIR spectra. TEM analysis revealed formation of gold nanopyramids and nanorods. The SAED analysis confirmed the crystalline nature of nanoparticles. The gold nanoparticles demonstrated antibacterial and antifungal activity against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Aspergillus niger and Pichia pastoris. The cytotoxic activity of gold nanoparticles was studied using HEK, Hela and L929 cancerous cell lines and the apoptosis of cancerous cells were observed using propidium iodide staining. Thus, a simple and eco-friendly method for synthesis of biostabilized gold nanoparticles using fruit extracts of Garcinia indica was developed and the nanoparticles had potent antibacterial, antifungal and anticancer properties.

Keywords: cytotoxic, gold nanoparticles, green synthesis, Garcinia indica, anticancer

Procedia PDF Downloads 912
1385 The Integration of Geographical Information Systems and Capacitated Vehicle Routing Problem with Simulated Demand for Humanitarian Logistics in Tsunami-Prone Area: A Case Study of Phuket, Thailand

Authors: Kiatkulchai Jitt-Aer, Graham Wall, Dylan Jones

Abstract:

As a result of the Indian Ocean tsunami in 2004, logistics applied to disaster relief operations has received great attention in the humanitarian sector. As learned from such disaster, preparing and responding to the aspect of delivering essential items from distribution centres to affected locations are of the importance for relief operations as the nature of disasters is uncertain especially in suffering figures, which are normally proportional to quantity of supplies. Thus, this study proposes a spatial decision support system (SDSS) for humanitarian logistics by integrating Geographical Information Systems (GIS) and the capacitated vehicle routing problem (CVRP). The GIS is utilised for acquiring demands simulated from the tsunami flooding model of the affected area in the first stage, and visualising the simulation solutions in the last stage. While CVRP in this study encompasses designing the relief routes of a set of homogeneous vehicles from a relief centre to a set of geographically distributed evacuation points in which their demands are estimated by using both simulation and randomisation techniques. The CVRP is modeled as a multi-objective optimization problem where both total travelling distance and total transport resources used are minimized, while demand-cost efficiency of each route is maximized in order to determine route priority. As the model is a NP-hard combinatorial optimization problem, the Clarke and Wright Saving heuristics is proposed to solve the problem for the near-optimal solutions. The real-case instances in the coastal area of Phuket, Thailand are studied to perform the SDSS that allows a decision maker to visually analyse the simulation scenarios through different decision factors.

Keywords: demand simulation, humanitarian logistics, geographical information systems, relief operations, capacitated vehicle routing problem

Procedia PDF Downloads 234
1384 Efficacy Enhancement of Hydrophobic Antibiotics Employing Rhamnolipid as Biosurfactant

Authors: Abdurrahim A. Elouzi, Abdurrauf M. Gusbi, Ali M. Elgerbi

Abstract:

Antibiotic resistance has become a global public-health problem, thus it is imperative that new antibiotics continue to be developed. Major problems are being experienced in human medicine from antibiotic resistant bacteria. Moreover, no new chemical class of antibiotics has been introduced into medicine in the past two decades. The aim of the current study presents experimental results that evaluate the capability of bio surfactant rhamnolipid on enhancing the efficacy of hydrophobic antibiotics. Serial dilutions of azithromycin and clarithromycin were prepared. A bacterial suspension (approximately 5 X 105 CFU) from an overnight culture in MSM was inoculated into 20 ml sterile test tube each containing a serial 10-fold dilution of the test antibiotic(s) in broth with or without 200 mgL-1 rhamnolipid. The tubes were incubated for 24 h with vigorous shaking at 37°C. Antimicrobial activity in multiple antibiotic-resistant gram-negative bacteria pathogens and gram-positive bacteria were assessed using optical density technique. The results clearly demonstrated that the presence of rhamnolipid significantly improved the efficiency of both antibiotics. We hypothesized that the addition of rhamnolipid at low concentration, causes release of LPS which results in an increase in cell surface hydrophobicity. This allows increased association of cells with hydrophobic antibiotics resulting in increased cytotoxicity rates.

Keywords: hydrophobic antibiotics, biosurfactant, rhamnolipid, azithromycin, clarithromycin

Procedia PDF Downloads 500
1383 Numerical Modelling of Hydrodynamic Drag and Supercavitation Parameters for Supercavitating Torpedoes

Authors: Sezer Kefeli, Sertaç Arslan

Abstract:

In this paper, supercavitationphenomena, and parameters are explained, and hydrodynamic design approaches are investigated for supercavitating torpedoes. In addition, drag force calculation methods ofsupercavitatingvehicles are obtained. Basically, conventional heavyweight torpedoes reach up to ~50 knots by classic hydrodynamic techniques, on the other hand super cavitating torpedoes may reach up to ~200 knots, theoretically. However, in order to reachhigh speeds, hydrodynamic viscous forces have to be reduced or eliminated completely. This necessity is revived the supercavitation phenomena that is implemented to conventional torpedoes. Supercavitation is a type of cavitation, after all, it is more stable and continuous than other cavitation types. The general principle of supercavitation is to separate the underwater vehicle from water phase by surrounding the vehicle with cavitation bubbles. This situation allows the torpedo to operate at high speeds through the water being fully developed cavitation. Conventional torpedoes are entitled as supercavitating torpedoes when the torpedo moves in a cavity envelope due to cavitator in the nose section and solid fuel rocket engine in the rear section. There are two types of supercavitation phase, these are natural and artificial cavitation phases. In this study, natural cavitation is investigated on the disk cavitators based on numerical methods. Once the supercavitation characteristics and drag reduction of natural cavitationare studied on CFD platform, results are verified with the empirical equations. As supercavitation parameters cavitation number (), pressure distribution along axial axes, drag coefficient (C_?) and drag force (D), cavity wall velocity (U_?) and dimensionless cavity shape parameters, which are cavity length (L_?/d_?), cavity diameter(d_ₘ/d_?) and cavity fineness ratio (〖L_?/d〗_ₘ) are investigated and compared with empirical results. This paper has the characteristics of feasibility study to carry out numerical solutions of the supercavitation phenomena comparing with empirical equations.

Keywords: CFD, cavity envelope, high speed underwater vehicles, supercavitating flows, supercavitation, drag reduction, supercavitation parameters

Procedia PDF Downloads 154
1382 Risk Analysis of Flood Physical Vulnerability in Residential Areas of Mathare Nairobi, Kenya

Authors: James Kinyua Gitonga, Toshio Fujimi

Abstract:

Vulnerability assessment and analysis is essential to solving the degree of damage and loss as a result of natural disasters. Urban flooding causes a major economic loss and casualties, at Mathare residential area in Nairobi, Kenya. High population caused by rural-urban migration, Unemployment, and unplanned urban development are among factors that increase flood vulnerability in Mathare area. This study aims to analyse flood risk physical vulnerabilities in Mathare based on scientific data, research data that includes the Rainfall data, River Mathare discharge rate data, Water runoff data, field survey data and questionnaire survey through sampling of the study area have been used to develop the risk curves. Three structural types of building were identified in the study area, vulnerability and risk curves were made for these three structural types by plotting the relationship between flood depth and damage for each structural type. The results indicate that the structural type with mud wall and mud floor is the most vulnerable building to flooding while the structural type with stone walls and concrete floor is least vulnerable. The vulnerability of building contents is mainly determined by the number of floors, where households with two floors are least vulnerable, and households with a one floor are most vulnerable. Therefore more than 80% of the residential buildings including the property in the building are highly vulnerable to floods consequently exposed to high risk. When estimating the potential casualties/injuries we discovered that the structural types of houses were major determinants where the mud/adobe structural type had casualties of 83.7% while the Masonry structural type had casualties of 10.71% of the people living in these houses. This research concludes that flood awareness, warnings and observing the building codes will enable reduce damage to the structural types of building, deaths and reduce damage to the building contents.

Keywords: flood loss, Mathare Nairobi, risk curve analysis, vulnerability

Procedia PDF Downloads 223
1381 Mimicking of Various ECM Tangible Cues for the Manipulation of Hepatocellular Behaviours

Authors: S. A. Abdellatef, A. Taniguchi, Namiki, Tsukuba, Ibaraki

Abstract:

The alterations in the physicochemical characteristics of bio-materials are renowned for their impact in cellular behaviors. Surface chemistry and substratum topography are separately considered as mutable characteristics with deep impact on the overall cell behaviors. In our recent work, we examined the manipulation of the physical cues on hepatic cellular behaviors. We have proven that the geometrical or dimensional characteristics of nano features are essential for the optimum hepatocellular functions. While here, the collective impact of both physical and chemical cues on hepatocellular behaviors was investigated. On which RGD peptide was immobilized on a TiO2 nano pattern that imitates the hierarchically extend collagen nano fibrillar structures. The hepatocytes morphological and functional changes induced by simultaneously combining the diversified cues were investigated. TiO2 substrates that integrate nano topography with the adhesive peptide motif (RGD) had showed an increase in the hepatocellular functionality to the maximum extent. While a significant enhancement in expression of these liver specific markers on RGD coated surfaces were observed compared to uncoated substrates regardless of topography. Consequently in depth understanding of the relationship between various kind of cues and hepatocytes behaviors would be a paving step in the application of tissue engineering and bio reactor technology.

Keywords: biomaterial, tiO2, hepG2, RGD

Procedia PDF Downloads 383
1380 Decreased Autophagy Contributes to Senescence Induction in HS68 Cells

Authors: Byeal-I Han, Michael Lee

Abstract:

Ageing is associated with an increased risk of diseases such as cancer, and neurodegenerative disorders. Increased autophagy delays ageing and extends longevity. In this study, we investigated the role of autophagy in longevity using human foreskin fibroblast HS68 cells, in which a senescence-like growth arrest can be induced. In particular, cellular senescence is manifested by the irreversible cell cycle arrest, and may contribute to the ageing of organisms. The senescence state was measured with staining for senescence-associated β-galactosidase (SA-β-gal) activity that represents a sensitive and reliable marker to quantify senescent cells. We detected a significantly increased percentage (%) of SA-β-gal positive cells in HS68 cultures at passage 40 (63%) when compared with younger ones at passage 15 (0.5%). As expected, HS68 cells at passage 40 exhibited much lower proliferation rate than cells at passage 15. The basal levels of LC3 were measured by immunoblotting showing a comparison of LC3-I and LC3-II levels at 3 age-points in serially passaged HS68 cells. LC3-II/LC3-I ratio at different passage levels relative to β-actin levels of each band confirmed that cells at passage 34 showed lower conversion of non-autophagic LC3-I to autophagic LC3-II than the cells at passage 16. Furthermore, Cyto-ID autophagy assay also revealed that late passage cells showed lower autophagy than the early passage cells. Together, our findings suggest that senescence induction might be associated with decreased autophagy.

Keywords: ageing, autophagy, senescence, HS68

Procedia PDF Downloads 240
1379 3D Modeling of Flow and Sediment Transport in Tanks with the Influence of Cavity

Authors: A. Terfous, Y. Liu, A. Ghenaim, P. A. Garambois

Abstract:

With increasing urbanization worldwide, it is crucial to sustainably manage sediment flows in urban networks and especially in stormwater detention basins. One key aspect is to propose optimized designs for detention tanks in order to best reduce flood peak flows and in the meantime settle particles. It is, therefore, necessary to understand complex flows patterns and sediment deposition conditions in stormwater detention basins. The aim of this paper is to study flow structure and particle deposition pattern for a given tank geometry in view to control and maximize sediment deposition. Both numerical simulation and experimental works were done to investigate the flow and sediment distribution in a storm tank with a cavity. As it can be indicated, the settle distribution of the particle in a rectangular tank is mainly determined by the flow patterns and the bed shear stress. The flow patterns in a rectangular tank differ with different geometry, entrance flow rate and the water depth. With the changing of flow patterns, the bed shear stress will change respectively, which also play an influence on the particle settling. The accumulation of the particle in the bed changes the conditions at the bottom, which is ignored in the investigations, however it worth much more attention, the influence of the accumulation of the particle on the sedimentation should be important. The approach presented here is based on the resolution of the Reynolds averaged Navier-Stokes equations to account for turbulent effects and also a passive particle transport model. An analysis of particle deposition conditions is presented in this paper in terms of flow velocities and turbulence patterns. Then sediment deposition zones are presented thanks to the modeling with particle tracking method. It is shown that two recirculation zones seem to significantly influence sediment deposition. Due to the possible overestimation of particle trap efficiency with standard wall functions and stick conditions, further investigations seem required for basal boundary conditions based on turbulent kinetic energy and shear stress. These observations are confirmed by experimental investigations processed in the laboratory.

Keywords: storm sewers, sediment deposition, numerical simulation, experimental investigation

Procedia PDF Downloads 302
1378 The Sociology of the Facebook: An Exploratory Study

Authors: Liana Melissa E. de la Rosa, Jayson P. Ada

Abstract:

This exploratory study was conducted to determine the sociology of the Facebook. Specifically, it aimed to know the socio-demographic profile of the respondents in terms of age, sex, year level and monthly allowance; find out the common usage of Facebook to the respondents; identify the features of Facebook that are commonly used by the respondents; understand the benefits and risks of using the Facebook; determine how frequent the respondents use the Facebook; and find out if there is a significant relationship between socio-demographic profile of the respondents and their Facebook usage. This study used the exploratory research design and correlational design employing research survey questionnaire as its main data gathering instrument. Students of the University of Eastern Philippines were selected as the respondents of this study through quota sampling. Ten (10) students were randomly selected from each college of the university. Based on the findings of this study, the following conclusion were drawn: The majority of the respondents are aged 18 and 21 old, female, are third year students, and have monthly allowance of P 2,000 above. On the respondents’ usage of Facebook, the majority of use the Facebook on a daily basis for one to two (1-2) hours everyday. And most users used Facebook by renting a computer in an internet cafe. On the use of Facebook, most users have created their profiles mainly to connect with people and gain new friends. The most commonly used features of Facebook, are: photos application, like button, wall, notification, friend, chat, network, groups and “like” pages status updates, messages and inbox and events. While the other Facebook features that are seldom used by the respondents are games, news feed, user name, video sharing and notes. And the least used Facebook features are questions, poke feature, credits and the market place. The respondents stated that the major benefit that the Facebook has given to its users is its ability to keep in touch with family members or friends while the main risk identified is that the users can become addicted to the Internet. On the tests of relationships between the respondents’ use of Facebook and the four (4) socio-demographic profile variables: age, sex, year level, and month allowance, were found to be not significantly related to the respondents’ use of the Facebook. While the variable found to be significantly related was gender.

Keywords: Facebook, sociology, social networking, exploratory study

Procedia PDF Downloads 268