Search results for: gas holdup fluctuations
126 Biopotential of Introduced False Indigo and Albizia’s Weevils in Host Plant Control and Duration of Its Development Stages in Southern Regions of Panonian Basin
Authors: Renata Gagić-Serdar, Miroslava Markovic, Ljubinko Rakonjac, Aleksandar Lučić
Abstract:
The paper present the results of the entomological experimental studies of the biological, ecological, and (bionomic) insect performances, such as seasonal adaptation of introduced monophagous false indigo and albizias weevil’s Acanthoscelides pallidipennis Motschulsky. and Bruchidius terrenus (Sharp), Coleoptera: Chrysomelidae: Bruchinae, to phenological phases of aggressive invasive host plant Amorpha fruticosa L. and Albizia julibrissin (Fabales: Fabaceae) on the territory of Republic of Serbia with special attention on assessing and monitoring of new formed and detected inter species relations between autochthons parasite wasps from fauna (Hymenoptera: Chalcidoidea) and herbaceous seed weevil beetle. During 15 years (2006-2021), on approximately 30 localities, data analyses were done for observed experimental host plants from samples with statistical significance. Status of genera from families Hymenoptera: Chalcidoidea.: Pteromalidae and Eulophidae, after intensive investigations, has been trophicly identified. Recorded seed pest species of A. fruticosa or A. julibrissin (Fabales: Fabaceae) was introduced in Serbia and planted as ornamental trees, they also were put undergo different kinds of laboratory and field research tests during this period in a goal of collecting data about lasting each of develop stage of their seed beetles. Field generations in different stages were also monitored by continuous infested seed collecting and its disection. Established host plant-seed predator linkage was observed in correlation with different environment parameters, especially water level fluctuations in bank corridor formation stands and riparian cultures.Keywords: amorpha, albizia, chalcidoid wasp, invasiveness, weevils
Procedia PDF Downloads 95125 A Moving Target: Causative Factors for Geographic Variation in a Handed Flower
Authors: Celeste De Kock, Bruce Anderson, Corneile Minnaar
Abstract:
Geographic variation in the floral morphology of a flower species has often been assumed to result from co-variation in the availability of regionally-specific functional pollinator types, giving rise to plant ecotypes that are adapted to the morphology of the main pollinator types in that area. Wachendorfia paniculata is a geographically variable enantiostylous (handed) flower with preliminary observations suggesting that differences in pollinator community composition might be driving differences in the degree of herkogamy (spatial separation of the stigma and anthers on the same flower) across its geographic range. This study aimed to determine if pollinator-related variables such as visitation rate and pollinator type could explain differences in floral morphology seen in different populations. To assess pollinator community compositions, pollinator visitation rates, and the degree of herkogamy and flower size, flowers from 13 populations were observed and measured across the Western Cape, South Africa. Multiple regression analyses indicated that pollinator-related variables had no significant effect on the degree of herkogamy between sites. However, the degree of herkogamy was strongly negatively associated with the time of measurement. It remains possible that pollinators have had an effect on the development of herkogamy throughout the evolutionary timeline of different W. paniculata populations, but not necessarily to the fine-scale degree, as was predicted for this study. Annual fluctuations in pollinator community composition, paired with recent disturbances such as urbanization and the overabundance of artificially introduced honeybee hives, might also result in the signal of pollinator adaptation getting lost. Surprisingly, differences in herkogamy between populations could largely be explained by the time of day at which flowers were measured, suggesting a significant narrowing of the distance between reproductive parts throughout the day. We propose that this floral movement could possibly be an adaptation to ensure pollination if pollinator visitation to a flower was not sufficient earlier in the day, and will be explored in subsequent studies.Keywords: enantiostyly, floral movement, geographic variation, ecotypes
Procedia PDF Downloads 280124 Thermal Regulation of Channel Flows Using Phase Change Material
Authors: Kira Toxopeus, Kamran Siddiqui
Abstract:
Channel flows are common in a wide range of engineering applications. In some types of channel flows, particularly the ones involving chemical or biological processes, the control of the flow temperature is crucial to maintain the optimal conditions for the chemical reaction or to control the growth of biological species. This often becomes an issue when the flow experiences temperature fluctuations due to external conditions. While active heating and cooling could regulate the channel temperature, it may not be feasible logistically or economically and is also regarded as a non-sustainable option. Thermal energy storage utilizing phase change material (PCM) could provide the required thermal regulation sustainably by storing the excess heat from the channel and releasing it back as required, thus regulating the channel temperature within a range in the proximity of the PCM melting temperature. However, in designing such systems, the configuration of the PCM storage within the channel is critical as it could influence the channel flow dynamics, which would, in turn, affect the heat exchange between the channel fluid and the PCM. The present research is focused on the investigation of the flow dynamical behavior in the channel during heat transfer from the channel flow to the PCM thermal energy storage. Offset vertical columns in a narrow channel were used that contained the PCM. Two different column shapes, square and circular, were considered. Water was used as the channel fluid that entered the channel at a temperature higher than that of the PCM melting temperature. Hence, as the water was passing through the channel, the heat was being transferred from the water to the PCM, causing the PCM to store the heat through a phase transition from solid to liquid. Particle image velocimetry (PIV) was used to measure the two-dimensional velocity field of the channel flow as it flows between the PCM columns. Thermocouples were also attached to the PCM columns to measure the PCM temperature at three different heights. Three different water flow rates (0.5, 0.75 and 1.2 liters/min) were considered. At each flow rate, experiments were conducted at three different inlet water temperatures (28ᵒC, 33ᵒC and 38ᵒC). The results show that the flow rate and the inlet temperature influenced the flow behavior inside the channel.Keywords: channel flow, phase change material, thermal energy storage, thermal regulation
Procedia PDF Downloads 141123 Simulation of Turbulent Flow in Channel Using Generalized Hydrodynamic Equations
Authors: Alex Fedoseyev
Abstract:
This study explores Generalized Hydrodynamic Equations (GHE) for the simulation of turbulent flows. The GHE was derived from the Generalized Boltzmann Equation (GBE) by Alexeev (1994). GBE was obtained by first principles from the chain of Bogolubov kinetic equations and considered particles of finite dimensions, Alexeev (1994). The GHE has new terms, temporal and spatial fluctuations compared to the Navier-Stokes equations (NSE). These new terms have a timescale multiplier τ, and the GHE becomes the NSE when τ is zero. The nondimensional τ is a product of the Reynolds number and the squared length scale ratio, τ=Re*(l/L)², where l is the apparent Kolmogorov length scale, and L is a hydrodynamic length scale. The turbulence phenomenon is not well understood and is not described by NSE. An additional one or two equations are required for the turbulence model, which may have to be tuned for specific problems. We show that, in the case of the GHE, no additional turbulence model is needed, and the turbulent velocity profile is obtained from the GHE. The 2D turbulent channel and circular pipe flows were investigated using a numerical solution of the GHE for several cases. The solutions are compared with the experimental data in the circular pipes and 2D channels by Nicuradse (1932, Prandtl Lab), Hussain and Reynolds (1975), Wei and Willmarth (1989), Van Doorne (2007), theory by Wosnik, Castillo and George (2000), and the relevant experiments on Superpipe setup at Princeton, data by Zagarola (1996) and Zagarola and Smits (1998), the Reynolds number is from Re=7200 to Re=960000. The numerical solution data compared well with the experimental data, as well as with the approximate analytical solution for turbulent flow in channel Fedoseyev (2023). The obtained results confirm that the Alexeev generalized hydrodynamic theory (GHE) is in good agreement with the experiments for turbulent flows. The proposed approach is limited to 2D and 3D axisymmetric channel geometries. Further work will extend this approach by including channels with square and rectangular cross-sections.Keywords: comparison with experimental data. generalized hydrodynamic equations, numerical solution, turbulent boundary layer, turbulent flow in channel
Procedia PDF Downloads 66122 Association of the Time in Targeted Blood Glucose Range of 3.9–10 Mmol/L with the Mortality of Critically Ill Patients with or without Diabetes
Authors: Guo Yu, Haoming Ma, Peiru Zhou
Abstract:
BACKGROUND: In addition to hyperglycemia, hypoglycemia, and glycemic variability, a decrease in the time in the targeted blood glucose range (TIR) may be associated with an increased risk of death for critically ill patients. However, the relationship between the TIR and mortality may be influenced by the presence of diabetes and glycemic variability. METHODS: A total of 998 diabetic and non-diabetic patients with severe diseases in the ICU were selected for this retrospective analysis. The TIR is defined as the percentage of time spent in the target blood glucose range of 3.9–10.0 mmol/L within 24 hours. The relationship between TIR and in-hospital in diabetic and non-diabetic patients was analyzed. The effect of glycemic variability was also analyzed. RESULTS: The binary logistic regression model showed that there was a significant association between the TIR as a continuous variable and the in-hospital death of severely ill non-diabetic patients (OR=0.991, P=0.015). As a classification variable, TIR≥70% was significantly associated with in-hospital death (OR=0.581, P=0.003). Specifically, TIR≥70% was a protective factor for the in-hospital death of severely ill non-diabetic patients. The TIR of severely ill diabetic patients was not significantly associated with in-hospital death; however, glycemic variability was significantly and independently associated with in-hospital death (OR=1.042, P=0.027). Binary logistic regression analysis of comprehensive indices showed that for non-diabetic patients, the C3 index (low TIR & high CV) was a risk factor for increased mortality (OR=1.642, P<0.001). In addition, for diabetic patients, the C3 index was an independent risk factor for death (OR=1.994, P=0.008), and the C4 index (low TIR & low CV) was independently associated with increased survival. CONCLUSIONS: The TIR of non-diabetic patients during ICU hospitalization was associated with in-hospital death even after adjusting for disease severity and glycemic variability. There was no significant association between the TIR and mortality of diabetic patients. However, for both diabetic and non-diabetic critically ill patients, the combined effect of high TIR and low CV was significantly associated with ICU mortality. Diabetic patients seem to have higher blood glucose fluctuations and can tolerate a large TIR range. Both diabetic and non-diabetic critically ill patients should maintain blood glucose levels within the target range to reduce mortality.Keywords: severe disease, diabetes, blood glucose control, time in targeted blood glucose range, glycemic variability, mortality
Procedia PDF Downloads 222121 Treatment of Non-Small Cell Lung Cancer (NSCLC) With Activating Mutations Considering ctDNA Fluctuations
Authors: Moiseenko F. V., Volkov N. M., Zhabina A. S., Stepanova E. O., Kirillov A. V., Myslik A. V., Artemieva E. V., Agranov I. R., Oganesyan A. P., Egorenkov V. V., Abduloeva N. H., Aleksakhina S. Yu., Ivantsov A. O., Kuligina E. S., Imyanitov E. N., Moiseyenko V. M.
Abstract:
Analysis of ctDNA in patients with NSCLC is an emerging biomarker. Multiple research efforts of quantitative or at least qualitative analysis before and during the first periods of treatment with TKI showed the prognostic value of ctDNA clearance. Still, these important results are not incorporated in clinical standards. We evaluated the role of ctDNA in EGFR-mutated NSCLC receiving first-line TKI. Firstly, we analyzed sequential plasma samples from 30 patients that were collected before intake of the first tablet (at baseline) and at 6, 12, 24, 36, and 48 hours after the “starting point.” EGFR-M+ allele was measured by ddPCR. Afterward, we included sequential qualitative analysis of ctDNA with cobas® EGFR Mutation Test v2 from 99 NSCLC patients before the first dose, after 2 and 4 months of treatment, and on progression. Early response analysis showed the decline of EGFR-M+ level in plasma within the first 48 hours of treatment in 11 subjects. All these patients showed objective tumor response. 10 patients showed either elevation of EGFR-M+ plasma concentration (n = 5) or stable content of circulating EGFR-M+ after the start of the therapy (n = 5); only 3 of these patients achieved an objective response (p = 0.026) when compared to the former group). The rapid decline of plasma EGFR-M+ DNA concentration also predicted for longer PFS (13.7 vs. 11.4 months, p = 0.030). Long-term ctDNA monitoring showed clinically significant heterogeneity of EGFR-mutated NSCLC treated with 1st line TKIs in terms of progression-free and overall survival. Patients without detectable ctDNA at baseline (N = 32) possess the best prognosis on the duration of treatment (PFS: 24.07 [16.8-31.3] and OS: 56.2 [21.8-90.7] months). Those who achieve clearance after two months of TKI (N = 42) have indistinguishably good PFS (19.0 [13.7 – 24.2]). Individuals who retain ctDNA after 2 months (N = 25) have the worst prognosis (PFS: 10.3 [7.0 – 13.5], p = 0.000). 9/25 patients did not develop ctDNA clearance at 4 months with no statistical difference in PFS from those without clearance at 2 months. Prognostic heterogeneity of EGFR-mutated NSCLC should be taken into consideration in planning further clinical trials and optimizing the outcomes of patients.Keywords: NSCLC, EGFR, targeted therapy, ctDNA, prognosis
Procedia PDF Downloads 55120 Seasonal Variability of the Price and Quality of Fresh Red Porgy Fish Sold in the Local Market of Igoumenitsa, NW Greece
Authors: C. Nathanailides, P. Logothetis, G. Kanlis S. Anastasiou, L. Kokokiris, P. Mpeza
Abstract:
Farmed Red porgy (Pagrus pagrus) is one of the “new candidate fish species” for the diversification of Mediterranean aquaculture which is predomintly based on the cultivation of the European sea bass, (Dicenfrarchus labrax), and the gilthead sea bream, (Sparus aurata). The quality of farmed red porgy (Pagrus pagrus) was investigated with samples obtained from the local fish market in the region of Igoumenitsa, NW Greece. Sample of the fish (ungutted and with scales) were purchased from three local fish mongers and transported to the laboratory within few minutes in foamed polystyrene boxes in ice. The average weight of whole fish ranged between 271-289g. A sample of the fish flesh taken from the upper epaxial region was transferred aseptically to a stomacher bag containing sterile Buffered Peptone Water solution (0.1%) and homogenized. After serial dilutions in 0.1% peptone water, the homogenates were spread on the surface of agar plates. Total viable counts (TVC) were determined using plate count agar after incubation at 30 oC for 3 days. The quality attributes monitored during the present work included bacterial load (total mesophilic) and the pH of the flesh. There was a marginal increase in the price of fresh red porgy sold during the summer time, with prices ranging, over a period of four seasons, from 5.85 to 7.5 per kilo. The results of the microbiological analysis indicate that with the exception of summer samples (which exhibited 5.23 (±0.13) log cfu/g), the bacterial load remained well below the legal limits and was around 3.1 log cfu/g. The pH values varied between 6.54 and 6.69. The results indicate a possible influence of season on the bacterial load of fish sold in the market. Nevertheless, the parameters investigated in the present work indicate that the bacteria load was well below the legal limit and that fish were sold within few days after harvesting. The peak of bacterial load in the summer samples may be a result of a post-harvesting contamination of the farmed fish and temperature fluctuations during handling and transportation.Keywords: fish quality, marketing, aquaculture, Pagrus pagrus
Procedia PDF Downloads 683119 Design of a Simple Smart Greenhouse for Optimized Pak choi Cultivation in Rural Tropical Areas
Authors: Dedie Tooy, Rio Kolibu, Rio Putra, Herry Frits Pinatik, Daniel P. M. Ludong
Abstract:
This study presents the design and development of a smart greenhouse prototype tailored to optimize Pak choi (Brassica chinensis L.) cultivation in tropical rural climates. Pak choi, a high-demand leafy vegetable in Indonesia, often experiences suboptimal growth due to elevated temperatures and humidity. The objective of this research is to design and develop an intelligent greenhouse to optimize pak choi cultivation in tropical rural climates. The design of a smart greenhouse provides a controlled environment to stabilize these conditions, but managing fluctuating temperature, humidity, and light in tropical regions remains challenging. This system regulates critical environmental factors, including temperature, humidity, irrigation system, and light, creating optimal conditions for Pak Choi. The prototype's effectiveness was evaluated by monitoring growth indicators such as leaf weight, freshness, and moisture content, alongside the consistency of the internal climate compared to external conditions. Results indicate that the smart greenhouse supports superior crop growth, enhances yield quality, and reduces environmental resource consumption. The irrigation control system test was carried out for 40 days. Researchers observed the results of the automatic system working according to the sensor value readings. The results of the temperature control system test work: when the air temperature in the greenhouse is more than 33 degrees, the condensation pump will turn on, and when the temperature is below 32 degrees, the pump will automatically turn itself off. The cycle repeats continuously. The results achieved pak coy can live up to 40 days. As part of our ongoing research, we are actively considering integrating double-layered roofs to improve insulation and reduce external temperature fluctuations, which could further enhance the effectiveness of the smart greenhouse.Keywords: smart greenhouse, horticulture, rural tropical climate, sustainable agriculture
Procedia PDF Downloads 14118 Towards a Reinvented Cash Management Function: Mobilising Innovative Advances for Enhanced Performance and Optimised Cost Management: Insights from Large Moroccan Companies in the Casablanca-Settat Region
Authors: Badrane Nohayla, Bamousse Zineb
Abstract:
Financial crises, exchange rate volatility, fluctuations in commodity prices, increased competitive pressures, and environmental issues are all threats that businesses face. In light of these diverse challenges, proactive, agile, and innovative cash management becomes an indispensable financial shield, allowing companies to thrive despite the adverse conditions of the global environment. In the same spirit, uncertainty, turbulence, volatility, and competitiveness continue to disrupt economic environments, compelling companies to swiftly master innovative breakthroughs that provide added value. In such a context, innovation emerges as a catalytic vector for performance, aiming to reduce costs, strengthen growth, and ultimately ensure the sustainability of Moroccan companies in the national arena. Moreover, innovation in treasury management promises to be one of the key pillars of financial stability, enabling companies to navigate the tumultuous waters of a globalized environment. Therefore, the objective of this study is to better understand the impact of innovative treasury management on cost optimization and, by extension, performance improvement. To elucidate this relationship, we conducted an exploratory qualitative study with 20 large Moroccan companies operating in the Casablanca-Settat region. The results highlight that innovation at the heart of treasury management is a guarantee of sustainability against the risks of failure and stands as a true pivot of the performance of Moroccan companies, an important parameter of their financial balance and a catalytic vector of their growth in the national economic landscape. In this regard, the present study aims to explore the extent to which innovation at the core of the treasury function serves as an indispensable tool for boosting performance while optimising costs in large Moroccan companies.Keywords: innovative cash management, artificial intelligence, financial performance, risk management, cost savings
Procedia PDF Downloads 30117 Physiological Assessment for Straightforward Symptom Identification (PASSify): An Oral Diagnostic Device for Infants
Authors: Kathryn Rooney, Kaitlyn Eddy, Evan Landers, Weihui Li
Abstract:
The international mortality rate for neonates and infants has been declining at a disproportionally low rate when compared to the overall decline in child mortality in recent decades. A significant portion of infant deaths could be prevented with the implementation of low-cost and easy to use physiological monitoring devices, by enabling early identification of symptoms before they progress into life-threatening illnesses. The oral diagnostic device discussed in this paper serves to continuously monitor the key vital signs of body temperature, respiratory rate, heart rate, and oxygen saturation. The device mimics an infant pacifier, designed to be easily tolerated by infants as well as orthodontically inert. The fundamental measurements are gathered via thermistors and a pulse oximeter, each encapsulated in medical-grade silicone and wired internally to a microcontroller chip. The chip then translates the raw measurements into physiological values via an internal algorithm, before outputting the data to a liquid crystal display screen and an Android application. Additionally, a biological sample collection chamber is incorporated into the internal portion of the device. The movement within the oral chamber created by sucking on the pacifier-like device pushes saliva through a small check valve in the distal end, where it is accumulated and stored. The collection chamber can be easily removed, making the sample readily available to be tested for various diseases and analytes. With the vital sign monitoring and sample collection offered by this device, abnormal fluctuations in physiological parameters can be identified and appropriate medical care can be sought. This device enables preventative diagnosis for infants who may otherwise have gone undiagnosed, due to the inaccessibility of healthcare that plagues vast numbers of underprivileged populations.Keywords: neonate mortality, infant mortality, low-cost diagnostics, vital signs, saliva testing, preventative care
Procedia PDF Downloads 153116 Managing Sunflower Price Risk from a South African Oil Crushing Company’s Perspective
Authors: Daniel Mokatsanyane, Johnny Jansen Van Rensburg
Abstract:
The integral role oil-crushing companies play in sunflower oil production is often overlooked to offer high-quality oil to refineries and end consumers. Sunflower oil crushing companies in South Africa are exposed to price fluctuations resulting from the local and international markets. Hedging instruments enable these companies to hedge themselves against unexpected prices spikes and to ensure sustained profitability. A crushing company is a necessary middleman, and as such, these companies have exposure to the purchasing and selling sides of sunflower. Sunflower oil crushing companies purchase sunflower seeds from farmers or agricultural companies that provide storage facilities. The purchasing price is determined by the supply and demand of sunflower seed, both national and international. When the price of sunflower seeds in South Africa is high but still below import parity, then the crush margins realised by these companies are reduced or even negative at times. There are three main products made by sunflower oil crushing companies, oil, meal, and shells. Profits are realised from selling three products, namely, sunflower oil, meal and shells. However, when selling sunflower oil to refineries, sunflower oil crushing companies needs to hedge themselves against a reduction in vegetable oil prices. Hedging oil prices is often done via futures and is subject to specific volume commitments before a hedge position can be taken in. Furthermore, South African oil-crushing companies hedge sunflower oil with international, Over-the-counter contracts as South Africa is a price taker of sunflower oil and not a price maker. As such, South Africa provides a fraction of the world’s sunflower oil supply and, therefore, has minimal influence on price changes. The advantage of hedging using futures ensures that the sunflower crushing company will know the profits they will realise, but the downside is that they can no longer benefit from a price increase. Alternative hedging instruments like options might pose a solution to the opportunity cost does not go missing and that profit margins are locked in at the best possible prices for the oil crushing company. This paper aims to investigate the possibility of employing options alongside futures to simulate different scenarios to determine if options can bridge the opportunity cost gap.Keywords: derivatives, hedging, price risk, sunflower, sunflower oil, South Africa
Procedia PDF Downloads 165115 Modelling Volatility Spillovers and Cross Hedging among Major Agricultural Commodity Futures
Authors: Roengchai Tansuchat, Woraphon Yamaka, Paravee Maneejuk
Abstract:
From the past recent, the global financial crisis, economic instability, and large fluctuation in agricultural commodity price have led to increased concerns about the volatility transmission among them. The problem is further exacerbated by commodities volatility caused by other commodity price fluctuations, hence the decision on hedging strategy has become both costly and useless. Thus, this paper is conducted to analysis the volatility spillover effect among major agriculture including corn, soybeans, wheat and rice, to help the commodity suppliers hedge their portfolios, and manage the risk and co-volatility of them. We provide a switching regime approach to analyzing the issue of volatility spillovers in different economic conditions, namely upturn and downturn economic. In particular, we investigate relationships and volatility transmissions between these commodities in different economic conditions. We purposed a Copula-based multivariate Markov Switching GARCH model with two regimes that depend on an economic conditions and perform simulation study to check the accuracy of our proposed model. In this study, the correlation term in the cross-hedge ratio is obtained from six copula families – two elliptical copulas (Gaussian and Student-t) and four Archimedean copulas (Clayton, Gumbel, Frank, and Joe). We use one-step maximum likelihood estimation techniques to estimate our models and compare the performance of these copula using Akaike information criterion (AIC) and Bayesian information criteria (BIC). In the application study of agriculture commodities, the weekly data used are conducted from 4 January 2005 to 1 September 2016, covering 612 observations. The empirical results indicate that the volatility spillover effects among cereal futures are different, as response of different economic condition. In addition, the results of hedge effectiveness will also suggest the optimal cross hedge strategies in different economic condition especially upturn and downturn economic.Keywords: agricultural commodity futures, cereal, cross-hedge, spillover effect, switching regime approach
Procedia PDF Downloads 202114 Effect of Different Factors on Temperature Profile and Performance of an Air Bubbling Fluidized Bed Gasifier for Rice Husk Gasification
Authors: Dharminder Singh, Sanjeev Yadav, Pravakar Mohanty
Abstract:
In this work, study of temperature profile in a pilot scale air bubbling fluidized bed (ABFB) gasifier for rice husk gasification was carried out. Effects of different factors such as multiple cyclones, gas cooling system, ventilate gas pipe length, and catalyst on temperature profile was examined. ABFB gasifier used in this study had two sections, one is bed section and the other is freeboard section. River sand was used as bed material with air as gasification agent, and conventional charcoal as start-up heating medium in this gasifier. Temperature of different point in both sections of ABFB gasifier was recorded at different ER value and ER value was changed by changing the feed rate of biomass (rice husk) and by keeping the air flow rate constant for long durational of gasifier operation. ABFB with double cyclone with gas coolant system and with short length ventilate gas pipe was found out to be optimal gasifier design to give temperature profile required for high gasification performance in long duration operation. This optimal design was tested with different ER values and it was found that ER of 0.33 was most favourable for long duration operation (8 hr continuous operation), giving highest carbon conversion efficiency. At optimal ER of 0.33, bed temperature was found to be stable at 700 °C, above bed temperature was found to be at 628.63 °C, bottom of freeboard temperature was found to be at 600 °C, top of freeboard temperature was found to be at 517.5 °C, gas temperature was found to be at 195 °C, and flame temperature was found to be 676 °C. Temperature at all the points showed fluctuations of 10 – 20 °C. Effect of catalyst i.e. dolomite (20% with sand bed) was also examined on temperature profile, and it was found that at optimal ER of 0.33, the bed temperature got increased to 795 °C, above bed temperature got decreased to 523 °C, bottom of freeboard temperature got decreased to 548 °C, top of freeboard got decreased to 475 °C, gas temperature got decreased to 220 °C, and flame temperature got increased to 703 °C. Increase in bed temperature leads to higher flame temperature due to presence of more hydrocarbons generated from more tar cracking at higher temperature. It was also found that the use of dolomite with sand bed eliminated the agglomeration in the reactor at such high bed temperature (795 °C).Keywords: air bubbling fluidized bed gasifier, bed temperature, charcoal heating, dolomite, flame temperature, rice husk
Procedia PDF Downloads 279113 Phenology and Size in the Social Sweat Bee, Halictus ligatus, in an Urban Environment
Authors: Rachel A. Brant, Grace E. Kenny, Paige A. Muñiz, Gerardo R. Camilo
Abstract:
The social sweat bee, Halictus ligatus, has been documented to alter its phenology as a response to changes in temporal dynamics of resources. Furthermore, H. ligatus exhibits polyethism in natural environments as a consequence of the variation in resources. Yet, we do not know if or how H. ligatus responds to these variations in urban environments. As urban environments become much more widespread, and human population is expected to reach nine billion by 2050, it is crucial to distinguish how resources are allocated by bees in cities. We hypothesize that in urban regions, where floral availability varies with human activity, H. ligatus will exhibit polyethism in order to match the extremely localized spatial variability of resources. We predict that in an urban setting, where resources vary both spatially and temporally, the phenology of H. ligatus will alter in response to these fluctuations. This study was conducted in Saint Louis, Missouri, at fifteen sites each varying in size and management type (community garden, urban farm, prairie restoration). Bees were collected by hand netting from 2013-2016. Results suggest that the largest individuals, mostly gynes, occurred in lower income neighborhood community gardens in May and August. We used a model averaging procedure, based on information theoretical methods, to determine a best model for predicting bee size. Our results suggest that month and locality within the city are the best predictors of bee size. Halictus ligatus was observed to comply with the predictions of polyethism from 2013 to 2015. However, in 2016 there was an almost complete absence of the smallest worker castes. This is a significant deviation from what is expected under polyethism. This could be attributed to shifts in planting decisions, shifts in plant-pollinator matches, or local climatic conditions. Further research is needed to determine if this divergence from polyethism is a new strategy for the social sweat bee as climate continues to alter or a response to human dominated landscapes.Keywords: polyethism, urban environment, phenology, social sweat bee
Procedia PDF Downloads 221112 Surface Water Flow of Urban Areas and Sustainable Urban Planning
Authors: Sheetal Sharma
Abstract:
Urban planning is associated with land transformation from natural areas to modified and developed ones which leads to modification of natural environment. The basic knowledge of relationship between both should be ascertained before proceeding for the development of natural areas. Changes on land surface due to build up pavements, roads and similar land cover, affect surface water flow. There is a gap between urban planning and basic knowledge of hydrological processes which should be known to the planners. The paper aims to identify these variations in surface flow due to urbanization for a temporal scale of 40 years using Storm Water Management Mode (SWMM) and again correlating these findings with the urban planning guidelines in study area along with geological background to find out the suitable combinations of land cover, soil and guidelines. For the purpose of identifying the changes in surface flows, 19 catchments were identified with different geology and growth in 40 years facing different ground water levels fluctuations. The increasing built up, varying surface runoff are studied using Arc GIS and SWMM modeling, regression analysis for runoff. Resulting runoff for various land covers and soil groups with varying built up conditions were observed. The modeling procedures also included observations for varying precipitation and constant built up in all catchments. All these observations were combined for individual catchment and single regression curve was obtained for runoff. Thus, it was observed that alluvial with suitable land cover was better for infiltration and least generation of runoff but excess built up could not be sustained on alluvial soil. Similarly, basalt had least recharge and most runoff demanding maximum vegetation over it. Sandstone resulted in good recharging if planned with more open spaces and natural soils with intermittent vegetation. Hence, these observations made a keystone base for planners while planning various land uses on different soils. This paper contributes and provides a solution to basic knowledge gap, which urban planners face during development of natural surfaces.Keywords: runoff, built up, roughness, recharge, temporal changes
Procedia PDF Downloads 278111 Field Study of Chlorinated Aliphatic Hydrocarbons Degradation in Contaminated Groundwater via Micron Zero-Valent Iron Coupled with Biostimulation
Authors: Naijin Wu, Peizhong Li, Haijian Wang, Wenxia Wei, Yun Song
Abstract:
Chlorinated aliphatic hydrocarbons (CAHs) pollution poses a severe threat to human health and is persistent in groundwater. Although chemical reduction or bioremediation is effective, it is still hard to achieve their complete and rapid dechlorination. Recently, the combination of zero-valent iron and biostimulation has been considered to be one of the most promising strategies, but field studies of this technology are scarce. In a typical site contaminated by various types of CAHs, basic physicochemical parameters of groundwater, CAHs and their product concentrations, and microbial abundance and diversity were monitored after a remediation slurry containing both micron zero-valent iron (mZVI) and biostimulation components were directly injected into the aquifer. Results showed that groundwater could form and keep low oxidation-reduction potential (ORP), a neutral pH, and anoxic conditions after different degrees of fluctuations, which was benefit for the reductive dechlorination of CAHs. The injection also caused an obvious increase in the total organic carbon (TOC) concentration and sulfate reduction. After 253 days post-injection, the mean concentration of total chlorinated ethylene (CEE) from two monitoring wells decreased from 304 μg/L to 8 μg/L, and total chlorinated ethane (CEA) decreased from 548 μg/L to 108 μg/L. Occurrence of chloroethane (CA) suggested that hydrogenolysis dechlorination was one of the main degradation pathways for CEA, and also hints that biological dechlorination was activated. A significant increase of ethylene at day 67 post-injection indicated that dechlorination was complete. Additionally, the total bacterial counts increased by 2-3 orders of magnitude after 253 days post-injection. And the microbial species richness decreased and gradually changed to anaerobic/fermentative bacteria. The relative abundance of potential degradation bacteria increased corresponding to the degradation of CAHs. This work demonstrates that mZVI and biostimulation can be combined to achieve the efficient removal of various CAHs from contaminated groundwater sources.Keywords: chlorinated aliphatic hydrocarbons, groundwater, field study, zero-valent iron, biostimulation
Procedia PDF Downloads 168110 A System Dynamics Approach for Assessing Policy Impacts on Closed-Loop Supply Chain Efficiency: A Case Study on Electric Vehicle Batteries
Authors: Guannan Ren, Thomas Mazzuchi, Shahram Sarkani
Abstract:
Electric vehicle battery recycling has emerged as a critical process in the transition toward sustainable transportation. As the demand for electric vehicles continues to rise, so does the need to address the end-of-life management of their batteries. Electric vehicle battery recycling benefits resource recovery and supply chain stability by reclaiming valuable metals like lithium, cobalt, nickel, and graphite. The reclaimed materials can then be reintroduced into the battery manufacturing process, reducing the reliance on raw material extraction and the environmental impacts of waste. Current battery recycling rates are insufficient to meet the growing demands for raw materials. While significant progress has been made in electric vehicle battery recycling, many areas can still improve. Standardization of battery designs, increased collection and recycling infrastructures, and improved efficiency in recycling processes are essential for scaling up recycling efforts and maximizing material recovery. This work delves into key factors, such as regulatory frameworks, economic incentives, and technological processes, that influence the cost-effectiveness and efficiency of battery recycling systems. A system dynamics model that considers variables such as battery production rates, demand and price fluctuations, recycling infrastructure capacity, and the effectiveness of recycling processes is created to study how these variables are interconnected, forming feedback loops that affect the overall supply chain efficiency. Such a model can also help simulate the effects of stricter regulations on battery disposal, incentives for recycling, or investments in research and development for battery designs and advanced recycling technologies. By using the developed model, policymakers, industry stakeholders, and researchers may gain insights into the effects of applying different policies or process updates on electric vehicle battery recycling rates.Keywords: environmental engineering, modeling and simulation, circular economy, sustainability, transportation science, policy
Procedia PDF Downloads 93109 Effects of Rising Cost of Building Materials in Nigeria: A Case Study of Adamawa State
Authors: Ibrahim Yerima Gwalem, Jamila Ahmed Buhari
Abstract:
In recent years, there has been an alarming rate of increase in the costs of building materials in Nigeria, and this ugly phenomenon threatens the contributions of the construction industry in national development. The purpose of this study was to assess the effects of the rising cost of building materials in Adamawa State Nigeria. Four research questions in line with the purpose of the study were raised to guide the study. Two null hypotheses were formulated and tested at 0.05 level of significance. The study adopted a survey research design. The population of the study comprises registered contractors, registered builders, selected merchants, and consultants in Adamawa state. Data were collected using researcher designed instrument tagged effects of the rising cost of building materials questionnaire (ERCBMQ). The instrument was subjected to face and content validation by two experts, one from Modibbo Adama University of Technology Yola and the other from Federal Polytechnic Mubi. The reliability of the instrument was determined by the Cronbach Alpha method and yielded a reliability index of 0.85 high enough to ascertain the reliability. Data collected from a field survey of 2019 was analyzed using mean and percentage. The means of the prices were used in the calculations of price indices and rates of inflation on building materials. Findings revealed that factors responsible for the rising cost of building materials are the exchange rate of the Nigeria Naira with a mean rating (MR) = 4.4; cost of fuel and power supply, MR = 4.3; and changes in government policies and legislation, MR = 4.2, while fluctuations in the construction cost with MR = 2.8; reduced volume of construction output, MR = 2.52; and risk of project abandonment, MRA = 2.51, were the three effects. The study concluded that adverse effects could result in a downward effect on the contributions of the construction industries on the gross domestic product (GDP) in the nation’s economy. Among the recommendations proffered include that the government should formulate a policy that will play down the agitations on the use of imported building materials by encouraging research in the production of local building materials.Keywords: effects, rising, cost, building, materials
Procedia PDF Downloads 140108 Effect of Hypoxia on the Antimicrobial Activity of Corvina Drum (Cilus Gilberti) Epidermal Mucus
Authors: Belinda Vega, Claudio Alvarez, Héctor Flores, Marcia Oliva, Katherine Alveal, Teresa Toro, María José Tapia, Fanny Guzmán
Abstract:
With the increase in global temperatures and the decrease of oxygen (O2) concentration in the oceans, fish cultures are exposed to frequent fluctuations in dissolved O2 (DO) concentration that can cause chronic stress in the animals, altering the normal functioning of their immune system and making them vulnerable to infections, consequently increasing morbidity and mortality in the farms with economic losses. The mucosal organs (skin -and mucus-, gills, gut, and nasal mucosa) are the first line of defense of the fish against pathogens. Therefore, the objective of this study is to evaluate the effect of hypoxia on the antimicrobial activity of epidermal mucus from corvina drum (Cilus Gilberti), a native marine species with the potential for the diversification of aquaculture in Chile. To achieve this, the epidermal mucus of juveniles (~220g) kept under normoxia (7 mg/L DO) and hypoxia (2 mg/L DO) environmental conditions was collected after 6 weeks, as well as after 6 days of intraperitoneal inoculation with lipopolysaccharide from Vibrio anguillarum to induce an immune response in the fish. Total protein extracts of the mucus were used for bactericidal activity and lysozyme and peroxidase activity assays. Although the mucus from both experimental groups showed inhibitory effects on the bacterial growth of Vibrio anguillarum and Vibrio ordalli, this effect was more long-lasting in the normoxia group. We also observed a notable reduction in the presence of lysozyme in the mucus from fish exposed to hypoxia, with no differences in peroxidase content. Future proteomic studies of corvina mucus associated with the environmental conditions studied in this work will allow the isolation and identification of peptides with antimicrobial activity, those responsible for the results obtained. This will help establish strategies aimed at minimizing the impacts of hypoxia on the defense responses of corvina drum against potential pathogens. Funding: FONDECYT 3200440 and FONDECYT 1210056Keywords: Cilus gilberti, mucus, antimicrobial activity, HYPOXIA
Procedia PDF Downloads 76107 Cryopreservation of Ring-Necked Pheasant (Phasianus colchicus) Semen for Establishing Cryobank
Authors: Rida Pervaiz, Bushra Allah Rakha, Muhammad Sajjad Ansari, Shamim Akhter, Kainat Waseem, Sumiyyah Zuha, Tooba Javed
Abstract:
Ring-necked pheasant (Phasianus colchicus) belongs to order Galliformes and family Phasianidae. It has been recognized as the most hunted bird due to its attractive colorful appearance and meat. Loss of habitat and hunting pressure has caused population fluctuations in the native range. Under these circumstances, this species can be conserved by employing ex-situ in vitro conservation techniques. Captive breeding, in combination with semen cryobanking is the most appropriate option to conserve/propagate this species without deteriorating the genetic diversity. Cryopreservation protocols of adequate efficiency are necessary to establish semen cryobanking for a species. Therefore, present study was designed to devise an efficient extender for cryopreservation of ring-necked pheasant semen. For this purpose, a range of extenders (Beltsville Poultry, red fowl, Lake, EK, Tselutin Poultry and Chicken semen extenders) were evaluated for cryopreservation of ring-necked pheasant semen. Semen collected from 10 cocks, diluted in the Beltsville Poultry (BPSE), Red Fowl (RFE), Lake (LE), EK (EKE), Tselutin Poultry (TPE) and Chicken Semen (CSE) extenders and cryopreserved. Glycerol (10%) was added to semen at 4°C, equilibrated for 10 min, filled in 0.5 mL French straws, kept over liquid nitrogen vapors for 10 min, cryopreserved in LN2 and stored. Sperm motility (%), viability (%), live/dead ratio (%), plasma membrane (%) and DNA Integrity (%) were evaluated at post-dilution, post-cooling, post-equilibration and post-thawing stage of cryopreservation. Sperm motility (83.8 ± 3.1; 81.3 ± 3.8; 73.8 ± 2.4; 62.5 ± 1.4), viability (79.0 ± 1.7; 75.5 ± 1.6; 69.5 ± 2.3; 65.5 ± 2.4), live/dead ratio (80.5 ± 5.7; 77.3 ± 4.9; 76.0 ± 2.7; 68.3 ± 2.3), plasma membrane (74.5 ± 2.9; 73.8 ± 3.4; 71.3 ± 2.3; 75.0 ± 3.4) and DNA integrity (78.3 ± 1.7; 73.0 ± 1.2; 68.0 ± 2.0; 63.0 ± 2.5) at all four stages of cryopreservation were recorded higher (P < 0.05) in red fowl extender compared to all experimental extenders. It is concluded that red fowl extender is the best extender for cryopreservation of ring-necked pheasant semen and can be used in establishing cryobank for ex situ conservation.Keywords: ring-necked pheasant; extenders; cryopreservation; semen quality; DNA integrity
Procedia PDF Downloads 140106 Experimental Investigation of Nano-Enhanced-PCM-Based Heat Sinks for Passive Thermal Management of Small Satellites
Authors: Billy Moore, Izaiah Smith, Dominic Mckinney, Andrew Cisco, Mehdi Kabir
Abstract:
Phase-change materials (PCMs) are considered one of the most promising substances to be engaged passively in thermal management and storage systems for spacecraft, where it is critical to diminish the overall mass of the onboard thermal storage system while minimizing temperature fluctuations upon drastic changes in the environmental temperature within the orbit stage. This makes the development of effective thermal management systems more challenging since there is no atmosphere in outer space to take advantage of natural and forced convective heat transfer. PCM can store or release a tremendous amount of thermal energy within a small volume in the form of latent heat of fusion in the phase-change processes of melting and solidification from solid to liquid or, conversely, during which temperature remains almost constant. However, the existing PCMs pose very low thermal conductivity, leading to an undesirable increase in total thermal resistance and, consequently, a slow thermal response time. This often turns into a system bottleneck from the thermal performance perspective. To address the above-mentioned drawback, the present study aims to design and develop various heat sinks featured by nano-structured graphitic foams (i.e., carbon foam), expanded graphite (EG), and open-cell copper foam (OCCF) infiltrated with a conventional paraffin wax PCM with a melting temperature of around 35 °C. This study focuses on the use of passive thermal management techniques to develop efficient heat sinks to maintain the electronics circuits’ and battery module’s temperature within the thermal safety limit for small spacecraft and satellites such as the Pumpkin and OPTIMUS battery modules designed for CubeSats with a cross-sectional area of approximately 4˝×4˝. Thermal response times for various heat sinks are assessed in a vacuum chamber to simulate space conditions.Keywords: heat sink, porous foams, phase-change material (PCM), spacecraft thermal management
Procedia PDF Downloads 18105 Numerical Study of the Breakdown of Surface Divergence Based Models for Interfacial Gas Transfer Velocity at Large Contamination Levels
Authors: Yasemin Akar, Jan G. Wissink, Herlina Herlina
Abstract:
The effect of various levels of contamination on the interfacial air–water gas transfer velocity is studied by Direct Numerical Simulation (DNS). The interfacial gas transfer is driven by isotropic turbulence, introduced at the bottom of the computational domain, diffusing upwards. The isotropic turbulence is generated in a separate, concurrently running the large-eddy simulation (LES). The flow fields in the main DNS and the LES are solved using fourth-order discretisations of convection and diffusion. To solve the transport of dissolved gases in water, a fifth-order-accurate WENO scheme is used for scalar convection combined with a fourth-order central discretisation for scalar diffusion. The damping effect of the surfactant contamination on the near surface (horizontal) velocities in the DNS is modelled using horizontal gradients of the surfactant concentration. An important parameter in this model, which corresponds to the level of contamination, is ReMa⁄We, where Re is the Reynolds number, Ma is the Marangoni number, and We is the Weber number. It was previously found that even small levels of contamination (ReMa⁄We small) lead to a significant drop in the interfacial gas transfer velocity KL. It is known that KL depends on both the Schmidt number Sc (ratio of the kinematic viscosity and the gas diffusivity in water) and the surface divergence β, i.e. K_L∝√(β⁄Sc). Previously it has been shown that this relation works well for surfaces with low to moderate contamination. However, it will break down for β close to zero. To study the validity of this dependence in the presence of surface contamination, simulations were carried out for ReMa⁄We=0,0.12,0.6,1.2,6,30 and Sc = 2, 4, 8, 16, 32. First, it will be shown that the scaling of KL with Sc remains valid also for larger ReMa⁄We. This is an important result that indicates that - for various levels of contamination - the numerical results obtained at low Schmidt numbers are also valid for significantly higher and more realistic Sc. Subsequently, it will be shown that - with increasing levels of ReMa⁄We - the dependency of KL on β begins to break down as the increased damping of near surface fluctuations results in an increased damping of β. Especially for large levels of contamination, this damping is so severe that KL is found to be underestimated significantly.Keywords: contamination, gas transfer, surfactants, turbulence
Procedia PDF Downloads 300104 Open Fields' Dosimetric Verification for a Commercially-Used 3D Treatment Planning System
Authors: Nashaat A. Deiab, Aida Radwan, Mohamed Elnagdy, Mohamed S. Yahiya, Rasha Moustafa
Abstract:
This study is to evaluate and investigate the dosimetric performance of our institution's 3D treatment planning system, Elekta PrecisePLAN, for open 6MV fields including square, rectangular, variation in SSD, centrally blocked, missing tissue, square MLC and MLC shaped fields guided by the recommended QA tests prescribed in AAPM TG53, NCS report 15 test packages, IAEA TRS 430 and ESTRO booklet no.7. The study was performed for Elekta Precise linear accelerator designed for clinical range of 4, 6 and 15 MV photon beams with asymmetric jaws and fully integrated multileaf collimator that enables high conformance to target with sharp field edges. Seven different tests were done applied on solid water equivalent phantom along with 2D array dose detection system, the calculated doses using 3D treatment planning system PrecisePLAN, compared with measured doses to make sure that the dose calculations are accurate for open fields including square, rectangular, variation in SSD, centrally blocked, missing tissue, square MLC and MLC shaped fields. The QA results showed dosimetric accuracy of the TPS for open fields within the specified tolerance limits. However large square (25cm x 25cm) and rectangular fields (20cm x 5cm) some points were out of tolerance in penumbra region (11.38 % and 10.9 %, respectively). For the test of SSD variation, the large field resulted from SSD 125 cm for 10cm x 10cm filed the results recorded an error of 0.2% at the central axis and 1.01% in penumbra. The results yielded differences within the accepted tolerance level as recommended. Large fields showed variations in penumbra. These differences between dose values predicted by the TPS and the measured values at the same point may result from limitations of the dose calculation, uncertainties in the measurement procedure, or fluctuations in the output of the accelerator.Keywords: quality assurance, dose calculation, 3D treatment planning system, photon beam
Procedia PDF Downloads 517103 The Concentration of Selected Cosmogenic and Anthropogenic Radionuclides in the Ground Layer of the Atmosphere (Polar and Mid-Latitudes Regions)
Authors: A. Burakowska, M. Piotrowski, M. Kubicki, H. Trzaskowska, R. Sosnowiec, B. Myslek-Laurikainen
Abstract:
The most important source of atmospheric radioactivity are radionuclides generated as a result of the impact of primary and secondary cosmic radiation, with the nuclei of nitrogen oxygen and carbon in the upper troposphere and lower stratosphere. This creates about thirty radioisotopes of more than twenty elements. For organisms, the four of them are most important: ³H, ⁷Be, ²²Na, ¹⁴C. The natural radionuclides, which are present in Earth crust, also settle on dust and particles of water vapor. By this means, the derivatives of uranium and thorium, and long-life 40K get into the air. ¹³⁷Cs is the most widespread isotope, that is implemented by humans into the environment. To determine the concentration of radionuclides in the atmosphere, high volume air samplers were used, where the aerosol collection took place on a special filter fabric (Petrianov filter tissue FPP-15-1.5). In 2002 the high volume air sampler AZA-1000 was installed at the Polish Polar Observatory of the Polish Academy of Science in Hornsund, Spitsbergen (77°00’N, 15°33’E), designed to operate in all weather conditions of the cold polar region. Since 1991 (with short breaks) the ASS-500 air sampler has been working, which is located in Swider at the Kalinowski Geophysical Observatory of Geophysics Institute of the Polish Academy of Science (52°07’N, 21°15’E). The following results of radionuclides concentrations were obtained from both stations using gamma spectroscopy analysis: ⁷Be, ¹³⁷Cs, ¹³⁴Cs, ²¹⁰Pb, ⁴⁰K. For gamma spectroscopy analysis HPGe (High Purity Germanium) detector were used. These data were compared with each other. The preliminary results gave evidence that radioactivity measured in aerosols is not proportional to the amount of dust for both studied regions. Furthermore, the results indicate annual variability (seasonal fluctuations) as well as a decrease in the average activity of ⁷Be with increasing latitude. The content of ⁷Be in surface air also indicates the relationship with solar activity cycles.Keywords: aerosols, air filters, atmospheric beryllium, environmental radionuclides, gamma spectroscopy, mid-latitude regions radionuclides, polar regions radionuclides, solar cycles
Procedia PDF Downloads 143102 Environmental Conditions Simulation Device for Evaluating Fungal Growth on Wooden Surfaces
Authors: Riccardo Cacciotti, Jiri Frankl, Benjamin Wolf, Michael Machacek
Abstract:
Moisture fluctuations govern the occurrence of fungi-related problems in buildings, which may impose significant health risks for users and even lead to structural failures. Several numerical engineering models attempt to capture the complexity of mold growth on building materials. From real life observations, in cases with suppressed daily variations of boundary conditions, e.g. in crawlspaces, mold growth model predictions well correspond with the observed mold growth. On the other hand, in cases with substantial diurnal variations of boundary conditions, e.g. in the ventilated cavity of a cold flat roof, mold growth predicted by the models is significantly overestimated. This study, founded by the Grant Agency of the Czech Republic (GAČR 20-12941S), aims at gaining a better understanding of mold growth behavior on solid wood, under varying boundary conditions. In particular, the experimental investigation focuses on the response of mold to changing conditions in the boundary layer and its influence on heat and moisture transfer across the surface. The main results include the design and construction at the facilities of ITAM (Prague, Czech Republic) of an innovative device allowing for the simulation of changing environmental conditions in buildings. It consists of a square section closed circuit with rough dimensions 200 × 180 cm and cross section roughly 30 × 30 cm. The circuit is thermally insulated and equipped with an electric fan to control air flow inside the tunnel, a heat and humidity exchange unit to control the internal RH and variations in temperature. Several measuring points, including an anemometer, temperature and humidity sensor, a loading cell in the test section for recording mass changes, are provided to monitor the variations of parameters during the experiments. The research is ongoing and it is expected to provide the final results of the experimental investigation at the end of 2022.Keywords: moisture, mold growth, testing, wood
Procedia PDF Downloads 133101 SynKit: A Event-Driven and Scalable Microservices-Based Kitting System
Authors: Bruno Nascimento, Cristina Wanzeller, Jorge Silva, João A. Dias, André Barbosa, José Ribeiro
Abstract:
The increasing complexity of logistics operations stems from evolving business needs, such as the shift from mass production to mass customization, which demands greater efficiency and flexibility. In response, Industry 4.0 and 5.0 technologies provide improved solutions to enhance operational agility and better meet market demands. The management of kitting zones, combined with the use of Autonomous Mobile Robots, faces challenges related to coordination, resource optimization, and rapid response to customer demand fluctuations. Additionally, implementing lean manufacturing practices in this context must be carefully orchestrated by intelligent systems and human operators to maximize efficiency without sacrificing the agility required in an advanced production environment. This paper proposes and implements a microservices-based architecture integrating principles from Industry 4.0 and 5.0 with lean manufacturing practices. The architecture enhances communication and coordination between autonomous vehicles and kitting management systems, allowing more efficient resource utilization and increased scalability. The proposed architecture focuses on the modularity and flexibility of operations, enabling seamless flexibility to change demands and the efficient allocation of resources in realtime. Conducting this approach is expected to significantly improve logistics operations’ efficiency and scalability by reducing waste and optimizing resource use while improving responsiveness to demand changes. The implementation of this architecture provides a robust foundation for the continuous evolution of kitting management and process optimization. It is designed to adapt to dynamic environments marked by rapid shifts in production demands and real-time decision-making. It also ensures seamless integration with automated systems, aligning with Industry 4.0 and 5.0 needs while reinforcing Lean Manufacturing principles.Keywords: microservices, event-driven, kitting, AMR, lean manufacturing, industry 4.0, industry 5.0
Procedia PDF Downloads 28100 Comparison of Power Generation Status of Photovoltaic Systems under Different Weather Conditions
Authors: Zhaojun Wang, Zongdi Sun, Qinqin Cui, Xingwan Ren
Abstract:
Based on multivariate statistical analysis theory, this paper uses the principal component analysis method, Mahalanobis distance analysis method and fitting method to establish the photovoltaic health model to evaluate the health of photovoltaic panels. First of all, according to weather conditions, the photovoltaic panel variable data are classified into five categories: sunny, cloudy, rainy, foggy, overcast. The health of photovoltaic panels in these five types of weather is studied. Secondly, a scatterplot of the relationship between the amount of electricity produced by each kind of weather and other variables was plotted. It was found that the amount of electricity generated by photovoltaic panels has a significant nonlinear relationship with time. The fitting method was used to fit the relationship between the amount of weather generated and the time, and the nonlinear equation was obtained. Then, using the principal component analysis method to analyze the independent variables under five kinds of weather conditions, according to the Kaiser-Meyer-Olkin test, it was found that three types of weather such as overcast, foggy, and sunny meet the conditions for factor analysis, while cloudy and rainy weather do not satisfy the conditions for factor analysis. Therefore, through the principal component analysis method, the main components of overcast weather are temperature, AQI, and pm2.5. The main component of foggy weather is temperature, and the main components of sunny weather are temperature, AQI, and pm2.5. Cloudy and rainy weather require analysis of all of their variables, namely temperature, AQI, pm2.5, solar radiation intensity and time. Finally, taking the variable values in sunny weather as observed values, taking the main components of cloudy, foggy, overcast and rainy weather as sample data, the Mahalanobis distances between observed value and these sample values are obtained. A comparative analysis was carried out to compare the degree of deviation of the Mahalanobis distance to determine the health of the photovoltaic panels under different weather conditions. It was found that the weather conditions in which the Mahalanobis distance fluctuations ranged from small to large were: foggy, cloudy, overcast and rainy.Keywords: fitting, principal component analysis, Mahalanobis distance, SPSS, MATLAB
Procedia PDF Downloads 14899 Microfacies Analysis and Paleoenvironmental Trends of the Paleocene Farrud and Mabruk Reservoirs, Concession 11, West Sirte Basin, Libya
Authors: Nisreen Agha
Abstract:
Investigation of representative core samples under the petrological microscope reveals common petrographic and mineralogical characteristics with distinct faunal assemblages, allowing establishing of the microfacies associations and deducing the paleoenvironmental trends of the Paleocene Farrud and Mabruk rock units. Recognition of the early and post-diagenetic processes, particularly dolomitization and micritization, as well as dissolution and precipitation of spary drusy calcite as a new morphism process affecting the reservoir rocks, is established. The microfacies trends detected from the investigation of 46 core samples from Farrud member (Lower Paleocene) representing six wells; QQQ1-11, GG1-11, LLL1-11, RRR1-11, RRR40-11, and RRR45-11 indicate that the deposition was started within the realm of shallow supratidal and intertidal subenvironments followed by deeper environments of the shelf bays with maximum sea level during inner shelf environment where fossiliferous bioclastic packstone dominated. The microfacies associations determined in 8 core samples from two wells LLL1and RRR40 representing Mabruk Member (Upper Paleocene), indicate paleoenvironmental trends marked by sea level fluctuations accompanied with a relatively marine shelf bay conditions intervened with short-lived shallow intertidal and supratidal warm coastal sedimentation. As a result, dolostone, evaporitic dismicrites, and gypsiferous dolostone of supratidal characters were deposited. They reflect rapid oscillation of the sea level marked by drop land-ward shift of the sea shore deposition prevailed by supratidal gypsiferous dolostone and numerous ferruginous materials as clouds straining many parts of dolomite and surrounded the micritized fossils. This situation ends the deposition of the Farrud Member in most of the studied wells. On the other hand, the facies in the northern part of the Concession -11 field indicates deposition in a deeper marine setting than in the southern facies.Keywords: Farrud and Mabruk members, paleocene, microfacies associations, diagenesis, sea level oscillation, depositional environments
Procedia PDF Downloads 7898 Carrying Capacity Estimation for Small Hydro Plant Located in Torrential Rivers
Authors: Elena Carcano, James Ball, Betty Tiko
Abstract:
Carrying capacity refers to the maximum population that a given level of resources can sustain over a specific period. In undisturbed environments, the maximum population is determined by the availability and distribution of resources, as well as the competition for their utilization. This information is typically obtained through long-term data collection. In regulated environments, where resources are artificially modified, populations must adapt to changing conditions, which can lead to additional challenges due to fluctuations in resource availability over time and throughout development. An example of this is observed in hydropower plants, which alter water flow and impact fish migration patterns and behaviors. To assess how fish species can adapt to these changes, specialized surveys are conducted, which provide valuable information on fish populations, sample sizes, and density before and after flow modifications. In such situations, it is highly recommended to conduct hydrological and biological monitoring to gain insight into how flow reductions affect species adaptability and to prevent unfavorable exploitation conditions. This analysis involves several planned steps that help design appropriate hydropower production while simultaneously addressing environmental needs. Consequently, the study aims to strike a balance between technical assessment, biological requirements, and societal expectations. Beginning with a small hydro project that requires restoration, this analysis focuses on the lower tail of the Flow Duration Curve (FDC), where both hydrological and environmental goals can be met. The proposed approach involves determining the threshold condition that is tolerable for the most vulnerable species sampled (Telestes Muticellus) by identifying a low flow value from the long-term FDC. The results establish a practical connection between hydrological and environmental information and simplify the process by establishing a single reference flow value that represents the minimum environmental flow that should be maintained.Keywords: carrying capacity, fish bypass ladder, long-term streamflow duration curve, eta-beta method, environmental flow
Procedia PDF Downloads 4297 The Impact of Geopolitical Risks and the Oil Price Fluctuations on the Kuwaiti Financial Market
Authors: Layal Mansour
Abstract:
The aim of this paper is to identify whether oil price volatility or geopolitical risks can predict future financial stress periods or economic recessions in Kuwait. We construct the first Financial Stress Index for Kuwait (FSIK) that includes informative vulnerable indicators of the main financial sectors: the banking sector, the equities market, and the foreign exchange market. The study covers the period from 2000 to 2020, so it includes the two recent most devastating world economic crises with oil price fluctuation: the Covid-19 pandemic crisis and Ukraine-Russia War. All data are taken by the central bank of Kuwait, the World Bank, IMF, DataStream, and from Federal Reserve System St Louis. The variables are computed as the percentage growth rate, then standardized and aggregated into one index using the variance equal weights method, the most frequently used in the literature. The graphical FSIK analysis provides detailed information (by dates) to policymakers on how internal financial stability depends on internal policy and events such as government elections or resignation. It also shows how monetary authorities or internal policymakers’ decisions to relieve personal loans or increase/decrease the public budget trigger internal financial instability. The empirical analysis under vector autoregression (VAR) models shows the dynamic causal relationship between the oil price fluctuation and the Kuwaiti economy, which relies heavily on the oil price. Similarly, using vector autoregression (VAR) models to assess the impact of the global geopolitical risks on Kuwaiti financial stability, results reveal whether Kuwait is confronted with or sheltered from geopolitical risks. The Financial Stress Index serves as a guide for macroprudential regulators in order to understand the weakness of the overall Kuwaiti financial market and economy regardless of the Kuwaiti dinar strength and exchange rate stability. It helps policymakers predict future stress periods and, thus, address alternative cushions to confront future possible financial threats.Keywords: Kuwait, financial stress index, causality test, VAR, oil price, geopolitical risks
Procedia PDF Downloads 83