Search results for: trend of production
5898 Oil Water Treatment by Nutshell and Dates Pits
Authors: Abdalrahman D. Alsulaili, Sheikha Y. Aljeraiwi, Athba N. Almanaie, Raghad Y. Alhajeri, Mariam Z. Almijren
Abstract:
The water accompanying oil in the oil production process is increasing and due to its increasing rates a problem with handling it occurred. Current solutions like discharging into the environment, dumping water in evaporation pits, usage in the industry and reinjection in oil reservoirs to enhance oil production are used worldwide. The water injection method has been introduced to the oil industry with a process that either immediately injects water to the reservoir or goes to the filtration process before injection all depending on the porosity of the soil. Reinjection of unfiltered effluent water with high Total Suspended Solid (TSS) and Oil in Water (O/W) into soils with low porosity cause a blockage of pores, whereas soils with high porosity do not need high water quality. Our study mainly talks about the filtration and adsorption of the water using organic media as the adsorbent. An adsorbent is a substance that has the ability to physically hold another substance in its surface. Studies were done on nutshell and date pits with different surface areas and flow rates by using a 10inch filter connected with three tanks to perform as one system for the filtration process. Our approach in the filtration process using different types of medias went as follow: starting first with crushed nutshell, second with ground nutshell, and third using carbonized date pits with medium flow rate then high flow rate to compare different results. The result came out nearly as expected from our study where both O/W and TSS were reduced from our oily water sample by using this organic material. The effect of specific area was noticed when using nutshell as the filter media, where the crushed nutshell gave us better results than ground nutshell. The effect of flow rate was noticed when using carbonized date pits as the filter media whereas the treated water became more acceptable when the flow rate was on the medium level.Keywords: date pits, nutshell, oil water, TSS
Procedia PDF Downloads 1565897 Addressing the Silent Killer: The Shift in Local Governance to Combat Air Pollution
Authors: Jayati Das
Abstract:
Kolkata, one of the fastest-growing metropolises in India, has been suffering from air pollution for many decades. Mismanagement of government and an increase in automobiles have been fuelling this problem. The study aims to portray the quality of air along with the influence of traffic flow and vehicular growth and the effects on human health. It further shows the correlation between the emission of pollution during weekdays and weekends with the help of a scatter diagram and trend line. An assessment of Kolkata air quality is done where the listed pollutants’ (RPM, SPM, NO2, and SO2) annual average concentrations are classified into four different categories. Our observed association between childhood Acute Respiratory disorder and early life exposure to traffic-related air pollutants is biologically plausible. The period of in utero and the first year of life is critical in the development of the immune and respiratory systems and potentially harmful effects of toxic pollutants during this period might result in the long-lasting impaired capacity to fight infections and increased risk of allergic manifestations. Up-to-date knowledge about the seasonal and spatial variation of asthma and studying the air quality of the area is done through Geographical Information System (GIS). Steps are taken by the government to control air pollution by alternative public transport like the metro and compulsory certification of period-driven vehicles which test for Carbon mono oxide.Keywords: air pollution, asthma, GIS, hotspots, governance
Procedia PDF Downloads 675896 Industrial Kaolinite Resource Deposits Study in Grahamstown Area, Eastern Cape, South Africa
Authors: Adeola Ibukunoluwa Samuel, Afsoon Kazerouni
Abstract:
Industrial mineral kaolin has many favourable properties such as colour, shape, softness, non-abrasiveness, natural whiteness, as well as chemical stability. It occurs extensively in North of Bedford road Grahamstown, South Africa. The relationship between both the physical and chemical properties as lead to its application in the production of certain industrial products which are used by the public; this includes the prospect of production of paper, ceramics, rubber, paint, and plastics. Despite its interesting economic potentials, kaolinite clay mineral remains undermined, and this is threatening its sustainability in the mineral industry. This research study focuses on a detailed evaluation of the kaolinite mineral and possible ways to increase its lifespan in the industry. The methods employed for this study includes petrographic microscopy analysis, X-ray powder diffraction analysis (XRD), and proper field reconnaissance survey. Results emanating from this research include updated geological information on Grahamstown. Also, mineral transformation phases such as quartz, kaolinite, calcite and muscovite were identified in the clay samples. Petrographic analysis of the samples showed that the study area has been subjected to intense tectonic deformation and cement replacement. Also, different dissolution patterns were identified on the Grahamstown kaolinitic clay deposits. Hence incorporating analytical studies and data interpretations, possible ways such as the establishment of processing refinery near mining plants, which will, in turn, provide employment for the locals and land reclamation is suggested. In addition, possible future sustainable industrial applications of the clay minerals seem to be possible if additives, cellulosic wastes are used to alter the clay mineral.Keywords: kaolinite, industrial use, sustainability, Grahamstown, clay minerals
Procedia PDF Downloads 1885895 Feasibility and Obstacles of Air Quality Attainment in Hong Kong from 2019 to 2025
Authors: Xuguo Zhang, Jimmy Fung, Kenneth Leung, Alexis Lau
Abstract:
Fine particulate matter concentrations have been decreasing in the past few years while the ozone concentrations are posing an increasing trend in the Greater Bay Area (GBA) of China. A series of control policies have been released to mitigate the country-wide air pollution, however, how to effectively evaluate the exercised control measures and efficiently reveal potential projected mitigation pathways are still limited. By refining an enhanced air-quality-modeling system, this study provides an account of the air quality assessments from 2019 to 2025 to appraise the air quality results and improvement under designed scenarios for assessing the optimum scope for tightening the Air Quality Objectives (AQOs). The results show that it is doable to tighten the 24-hour AQO for SO2 from the World Health Objective air quality guidelines Interim Targets Level-1 (IT-1) (125μg/m3) to IT-2 level (50μg/m3) with the current number of exceedance allowed (three) remains unchanged. It is also possible to tighten the annual AQO for PM2.5 from IT-1 (35 μg/m3) to IT 2 (25 μg/m3), and its 24-hr AQO from IT-1 (75 μg/m3) to IT 2 (50 μg/m3) with the number of exceedances allowed increased from current nine to 35. Regional cooperation under the development of the GBA cooperation are still needed to be focused and strengthen due to the cross-boundary transport characteristics of the air pollution.Keywords: air quality attainment, Hong Kong, mitigation policy, chemical transport modeling, sensitivity analysis
Procedia PDF Downloads 835894 Investigation of Municipal Solid Waste Incineration Filter Cake as Minor Additional Constituent in Cement Production
Authors: Veronica Caprai, Katrin Schollbach, Miruna V. A. Florea, H. J. H. Brouwers
Abstract:
Nowadays MSWI (Municipal Solid Waste Incineration) bottom ash (BA) produced by Waste-to-Energy (WtE) plants represents the majority of the solid residues derived from MSW incineration. Once processed, the BA is often landfilled resulting in possible environmental problems, additional costs for the plant and increasing occupation of public land. In order to limit this phenomenon, European countries such as the Netherlands aid the utilization of MSWI BA in the construction field, by providing standards about the leaching of contaminants into the environment (Dutch Soil Quality Decree). Commonly, BA has a particle size below 32 mm and a heterogeneous chemical composition, depending on its source. By washing coarser BA, an MSWI sludge is obtained. It is characterized by a high content of heavy metals, chlorides, and sulfates as well as a reduced particle size (below 0.25 mm). To lower its environmental impact, MSWI sludge is filtered or centrifuged for removing easily soluble contaminants, such as chlorides. However, the presence of heavy metals is not easily reduced, compromising its possible application. For lowering the leaching of those contaminants, the use of MSWI residues in combination with cement represents a precious option, due to the known retention of those ions into the hydrated cement matrix. Among the applications, the European standard for common cement EN 197-1:1992 allows the incorporation of up to 5% by mass of a minor additional constituent (MAC), such as fly ash or blast furnace slag but also an unspecified filler into cement. To the best of the author's knowledge, although it is widely available, it has the appropriate particle size and a chemical composition similar to cement, FC has not been investigated as possible MAC in cement production. Therefore, this paper will address the suitability of MSWI FC as MAC for CEM I 52.5 R, within a 5% maximum replacement by mass. After physical and chemical characterization of the raw materials, the crystal phases of the pastes are determined by XRD for 3 replacement levels (1%, 3%, and 5%) at different ages. Thereafter, the impact of FC on mechanical and environmental performances of cement is assessed according to EN 196-1 and the Dutch Soil Quality Decree, respectively. The investigation of the reaction products evidences the formation of layered double hydroxides (LDH), in the early stage of the reaction. Mechanically the presence of FC results in a reduction of 28 days compressive strength by 8% for a replacement of 5% wt., compared with the pure CEM I 52.5 R without any MAC. In contrast, the flexural strength is not affected by the presence of FC. Environmentally, the Dutch legislation for the leaching of contaminants for unshaped (granular) material is satisfied. Based on the collected results, FC represents a suitable candidate as MAC in cement production.Keywords: environmental impact evaluation, Minor additional constituent, MSWI residues, X-ray diffraction crystallography
Procedia PDF Downloads 1785893 Indoor and Outdoor Forest Farming for Year-Round Food and Medicine Production, Carbon Sequestration, Soil-Building, and Climate Change Mitigation
Authors: Jerome Osentowski
Abstract:
The objective at Central Rocky Mountain Permaculture Institute has been to put in practice a sustainable way of life while growing food, medicine, and providing education. This has been done by applying methods of farming such as agroforestry, forest farming, and perennial polycultures. These methods have been found to be regenerative to the environment through carbon sequestration, soil-building, climate change mitigation, and the provision of food security. After 30 years of implementing carbon farming methods, the results are agro-diversity, self-sustaining systems, and a consistent provision of food and medicine. These results are exhibited through polyculture plantings in an outdoor forest garden spanning roughly an acre containing about 200 varieties of fruits, nuts, nitrogen-fixing trees, and medicinal herbs, and two indoor forest garden greenhouses (one Mediterranean and one Tropical) containing about 50 varieties of tropical fruits, beans, herbaceous plants and more. While the climate zone outside the greenhouse is 6, the tropical forest garden greenhouse retains an indoor climate zone of 11 with near-net-zero energy consumption through the use of a climate battery, allowing the greenhouse to serve as a year-round food producer. The effort to source food from the forest gardens is minimal compared to annual crop production. The findings at Central Rocky Mountain Permaculture Institute conclude that agroecological methods are not only beneficial but necessary in order to revive and regenerate the environment and food security.Keywords: agroecology, agroforestry, carbon farming, carbon sequestration, climate battery, food security, forest farming, forest garden, greenhouse, near-net-zero, perennial polycultures
Procedia PDF Downloads 4425892 CTHTC: A Convolution-Backed Transformer Architecture for Temporal Knowledge Graph Embedding with Periodicity Recognition
Authors: Xinyuan Chen, Mohd Nizam Husen, Zhongmei Zhou, Gongde Guo, Wei Gao
Abstract:
Temporal Knowledge Graph Completion (TKGC) has attracted increasing attention for its enormous value; however, existing models lack capabilities to capture both local interactions and global dependencies simultaneously with evolutionary dynamics, while the latest achievements in convolutions and Transformers haven't been employed in this area. What’s more, periodic patterns in TKGs haven’t been fully explored either. To this end, a multi-stage hybrid architecture with convolution-backed Transformers is introduced in TKGC tasks for the first time combining the Hawkes process to model evolving event sequences in a continuous-time domain. In addition, the seasonal-trend decomposition is adopted to identify periodic patterns. Experiments on six public datasets are conducted to verify model effectiveness against state-of-the-art (SOTA) methods. An extensive ablation study is carried out accordingly to evaluate architecture variants as well as the contributions of independent components in addition, paving the way for further potential exploitation. Besides complexity analysis, input sensitivity and safety challenges are also thoroughly discussed for comprehensiveness with novel methods.Keywords: temporal knowledge graph completion, convolution, transformer, Hawkes process, periodicity
Procedia PDF Downloads 785891 Come Play with Me: An Exploration of Rough-and-Tumble Play Interactions in Australian Families
Authors: Erin Louise Robinson, Emily Elsa Freeman
Abstract:
Rough-and-tumble play (RTP) is a physical and competitive type of play that parents engage in with their children. While past research has reported RTP to be the preferred play type for western fathers, the frequency of these interactions in Australian families have not been explored. With parental perceptions of play importance playing a major role in the frequency of activity engagement, the present study investigated how perceptions and parent gender impact on RTP play frequency. By utilising child gender in our approach, we also examined the historical trend of boys receiving more physical play interactions with their parents. Three hundred and seventy-nine respondents completed the study with their 0–10-year-old children. The results indicated that, in line with past research, parents engaged more frequently in RTP with their sons than their daughters. While, both mothers and fathers participated in RTP with their children, fathers perceived RTP to be of greater important to their child’s development than mothers did. Moreover, supporting previous findings, this more positive perception of the play was related to greater frequency of RTP in these father-child dyads. Although RTP literature remains heavily focussed on fathers, the fact that mothers are engaging in these interactions as well, establishes the need to explore maternal influences in future research.Keywords: parenting, play, child development, family, Australia
Procedia PDF Downloads 1975890 Wood Decay Fungal Strains Useful for Bio-Composite Material Production
Authors: C. Girometta, S. Babbini, R. M. Baiguera, D. S. Branciforti, M. Cartabia, D. Dondi, M. Pellegrini, A. M. Picco, E. Savino
Abstract:
Interest on wood decay fungi (WDF) has been increasing in the last year's thanks to the potentiality of this kind of fungi; research on new WDF strains has increased as well thus pointing out the key role of the culture collections. One of the most recent biotechnological application of WDF is the development of novel materials from natural or recycled resources. Based on different combinations of fungal species, substrate, and processing treatment involved (e.g. heat pressing), it is possible to achieve a wide variety of materials with different features useful for many industrial applications: from packaging to thermal and acoustic insulation. In comparison with the conventional ones, these materials represent a 100% natural and compostable alternative involving low amounts of energy in the production process. The purpose of the present work was to isolate and select WDF strains able to colonize and degrade different plant wastes thus producing a fungal biomass shapeable to achieve bio-composite materials. Strains were selected within the mycological culture collection of Pavia University (MicUNIPV, over 300 strains of WDF). The selected strains have been investigated with regards their ability to colonize and degrade plant residues from the local major cultivations (e.g. poplar, alfalfa, maize, rice, and wheat) and produce the fungal biomass. The degradation of the substrate was assessed by Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Chemical characterization confirmed that TGA and FTIR are complementary techniques able to provide quality-quantitative information on compositional and structural variation that occurs during the transformation from the substrate to the bio-composite material. This pilot study provides a fundamental step to tune further applications in fungus-residues composite biomaterials.Keywords: bio-composite material, lignocellulosic residues, sustainable materials, wood decay fungi
Procedia PDF Downloads 1415889 Comparative Rumen Degradable and Rumen Undegradable Fractions in Untreated, Formaldehyde and Heat Treated Vegetable Protein Sources of Pakistan
Authors: Illahi Bakhsh Marghazani, Nasrullah, Masood Ul Haq Kakar, Abdul Hameed Baloch, Ahmad Nawaz Khoso, Behram Chacher
Abstract:
Protein sources are the major part of ration fed to dairy buffaloes in Pakistan however, the limited availability and lack of judicious use of protein resources are further aggravating the conditions to enhance milk and meat production. In order to gain maximum production from limited protein source availability, it is necessary to balance feed for rumen degradable and rumen undegradable protein fractions. This study planned to know the rumen degradable and rumen undegradable fractions in all vegetable protein sources with (formaldehyde and heat treatment) and without treatments. Samples of soybean meal, corn gluten meal 60%, maize gluten feed, guar meal, sunflower meal, rapeseed meal, rapeseed cake, canola meal, cottonseed cake, cottonseed meal, coconut cake, coconut meal, palm kernel cake, almond cake and sesame cake were collected from ten different geographical locations of Pakistan. These samples were also subjected to formaldehyde (1% /100g CP of test feed) and heat treatments (1 hr at 15 lb psi/100 g CP of test feed). In situ technique was used to know the ruminal degradability characteristics. Data obtained were fitted to Orskove equation. Results showed that both treatments significantly (P < 0.05) decreased ruminal degradability in all vegetable protein sources than untreated vegetable protein sources, however, of both treatments, heat treatment was more effective than formaldehyde treatment in decreasing ruminal degradability in most of the studied vegetable protein sources.Keywords: formaldehyde and heat treatments, in situ technique, rumen degradable and rumen undegradable fractions, vegetable protein sources
Procedia PDF Downloads 3345888 A Digital Representation of a Microstructure and Determining Its Mechanical Behavior
Authors: Burak Bal
Abstract:
Mechanical characterization tests might come with a remarkable cost of time and money for both companies and academics. The inquiry to transform laboratory experiments to the computational media is getting a trend; accordingly, the literature supplies many analytical ways to explain the mechanics of deformation. In our work, we focused on the crystal plasticity finite element modeling (CPFEM) analysis on various materials in various crystal structures to predict the stress-strain curve without tensile tests. For FEM analysis, which we used in this study was ABAQUS, a standard user-defined material subroutine (UMAT) was prepared. The geometry of a specimen was created via DREAM 3D software with the inputs of Euler angles taken by Electron Back-Scattered Diffraction (EBSD) technique as orientation, or misorientation angles. The synthetic crystal created with DREAM 3D is also meshed in a way the grains inside the crystal meshed separately, and the computer can realize interaction of inter, and intra grain structures. The mechanical deformation parameters obtained from the literature put into the Fortran based UMAT code to describe how material will response to the load applied from specific direction. The mechanical response of a synthetic crystal created with DREAM 3D agrees well with the material response in the literature.Keywords: crystal plasticity finite element modeling, ABAQUS, Dream.3D, microstructure
Procedia PDF Downloads 1545887 Oxidative Stability of an Iranian Ghee (Butter Fat) Versus Soybean Oil During Storage at Different Temperatures
Authors: Kooshan Nayebzadeh, Maryam Enteshari
Abstract:
In this study, the oxidative stability of soybean oil under different storage temperatures (4 and 25 ˚C) and during 6-month shelf-life was investigated by various analytical methods and headspace-liquid phase microextraction (HS-LPME) coupled to gas chromatography-mass spectrometry (GC-MS). Oxidation changes were monitored by analytical parameters consisted of acid value (AV), peroxide value (PV), p-Anisidine value (p-AV), thiobarbituric acid value (TBA), fatty acids profile, iodine value (IV) and oxidative stability index (OSI). In addition, concentrations of hexanal and heptanal as secondary volatile oxidation compounds were determined by HS-LPME/GC-MS technique. Rate of oxidation in soybean oil which stored at 25 ˚C was so higher. The AV, p-AV, and TBA were gradually increased during 6 months, while the amount of unsaturated fatty acids, IV, and OSI decreased. Other parameters included concentrations of both hexanal and heptanal, and PV exhibited increasing trend during primitive months of storage; then, at the end of third and fourth months a sudden decrement was understood for the concentrations of hexanal and heptanal and the amount of PV, simultaneously. The latter parameters increased again until the end of shelf-time. As a result, the temperature and time were effective factors in oxidative stability of soybean oil. Also intensive correlations were found for soybean oil at 4 ˚C between AV and TBA (r2=0.96), PV and p-AV (r2=0.9), IV and TBA (-r2=0.9), and for soybean oil stored at 4 ˚C between p-AV and TBA (r2=0.99).Keywords: headspace-liquid phase microextraction, oxidation, shelf-life, soybean oil
Procedia PDF Downloads 3985886 Application of Response Surface Methodology to Optimize the Thermal Conductivity Enhancement of a Hybrid Nanofluid
Authors: Aminreza Noghrehabadi, Mohammad Behbahani, Ali Pourabbasi
Abstract:
In this experimental work, unlike conventional methods that mix two nanoparticles together, silver nanoparticles have been synthesized on the surface of graphene. In this research, the effect of adding modified graphene nanocomposite-silver nanoparticles to the base fluid (distilled water) was studied. Different transmission electron microscopy (TEM) and field emission scanning electron microscope (FESEM) techniques have been used to examine the surfaces and atomic structure of nanoparticles. An ultrasonic device has been used to disperse the nanocomposite in distilled water. Also, the thermal conductivity coefficient was measured by the transient hot wire method using the KD2-pro device. In addition, the thermal conductivity coefficient was measured in the temperature range of 30°C to 50°C, concentration of 10 ppm to 1000 ppm, and ultrasonic time of 2 minutes to 15 minutes. The results showed that with the increase of all three parameters of temperature, concentration and ultrasonic time, the percentage of increase in thermal conductivity will go up until reaching the optimal point, and after passing the optimal point, the percentage of increase in thermal conductivity will have a downward trend. To calculate the thermal conductivity of this nanofluid, a very accurate experimental equation has been obtained using Design Expert software.Keywords: thermal conductivity, nanofluids, enhancement, silver nano particle, optimal point
Procedia PDF Downloads 885885 Modeling of Gas Migration in High-Pressure–High-Temperature Fields
Authors: Deane Roehl, Roberto Quevedo
Abstract:
Gas migration from pressurized formations is a problem reported in the oil and gas industry. This means increased risks for drilling, production, well integrity, and hydrocarbon escape. Different processes can contribute to the development of pressurized formations, particularly in High-Pressure–High-Temperature (HPHT) gas fields. Over geological time-scales, the different formations of those fields have maintained and/or developed abnormal pressures owing to low permeability and the presence of an impermeable seal. However, if this seal is broken, large volumes of gas could migrate into other less pressurized formations. Three main mechanisms for gas migration have been identified in the literature –molecular diffusion, continuous-phase flow, and continuous-phase flow coupled with mechanical effects. In relation to the latter, gas migration can occur as a consequence of the mechanical effects triggered by reservoir depletion. The compaction of the reservoir can redistribute the in-situ stresses sufficiently to induce deformations that may increase the permeability of rocks and lead to fracture processes or reactivate nearby faults. The understanding of gas flow through discontinuities is still under development. However, some models based on porosity changes and fracture aperture have been developed in order to obtain enhanced permeabilities in numerical simulations. In this work, a simple relationship to integrate fluid flow through rock matrix and discontinuities has been implemented in a fully thermo-hydro-mechanical simulator developed in-house. Numerical simulations of hydrocarbon production in an HPHT field were carried out. Results suggest that rock permeability can be considerably affected by the deformation of the field, creating preferential flow paths for the transport of large volumes of gas.Keywords: gas migration, pressurized formations, fractured rocks, numerical modeling
Procedia PDF Downloads 1485884 The Multifunctional Medical Centers’ Architectural Shaping
Authors: Griaznova Svetlana, Umedov Mekhroz
Abstract:
The current healthcare facilities trend is the creation of multidisciplinary large-scale centers to provide the maximum possible services in one place, minimizing the number of possible instances in the path of patient treatment. The multifunctional medical centers are mainly designed in urban infrastructure for good accessibility. However, many functions and connections define the building shape, often make it inharmonious, that greatly destroys the city's appearance. The purpose of the research is to scientifically substantiate the factors influencing the shaping, the formation of architectural solutions principles, the formation of recommendations and principles for the multifunctional medical centers' design. The result of the research is the elaboration of architectural and planning solutions principles and the determination of factors affecting the multifunctional healthcare facilities shaping. Research method: Study and generalization of international experience in scientific research, literature, standards, teaching aids, and design materials on the topic of research. An integrated approach to the study of existing international experience of multidisciplinary medical centers. Elaboration of graphical analysis and diagrams based on the system analysis of the processed information. Identification of methods and principles of functional zoning of nuclear medicine centers.Keywords: health care, multifunctionality, form, medical center, hospital, PET, CT scan
Procedia PDF Downloads 1045883 Life Cycle Assessment of Rare Earth Metals Production: Hotspot Analysis of Didymium Electrolysis Process
Authors: Sandra H. Fukurozaki, Andre L. N. Silva, Joao B. F. Neto, Fernando J. G. Landgraf
Abstract:
Nowadays, the rare earth (RE) metals play an important role in emerging technologies that are crucial for the decarbonisation of the energy sector. Their unique properties have led to increasing clean energy applications, such as wind turbine generators, and hybrid and electric vehicles. Despite the substantial media coverage that has recently surrounded the mining and processing of rare earth metals, very little quantitative information is available concerning their subsequent life stages, especially related to the metallic production of didymium (Nd-Pr) in fluoride molten salt system. Here we investigate a gate to gate scale life cycle assessment (LCA) of the didymium electrolysis based on three different scenarios of operational conditions. The product system is modeled with SimaPro Analyst 8.0.2 software, and IMPACT 2002+ was applied as an impact assessment tool. In order to develop a life cycle inventories built in software databases, patents, and other published sources together with energy/mass balance were utilized. Analysis indicates that from the 14 midpoint impact categories evaluated, the global warming potential (GWP) is the main contributors to the total environmental burden, ranging from 2.7E2 to 3.2E2 kg CO2eq/kg Nd-Pr. At the damage step assessment, the results suggest that slight changes in materials flows associated with enhancement of current efficiency (between 2.5% and 5%), could lead a reduction up to 12% and 15% of human health and climate change damage, respectively. Additionally, this paper highlights the knowledge gaps and future research efforts needing to understand the environmental impacts of Nd-Pr electrolysis process from the life cycle perspective.Keywords: didymium electrolysis, environmental impacts, life cycle assessment, rare earth metals
Procedia PDF Downloads 1875882 Agronomic Manipulation in Cultivation Practices of Scented Rice: For Sustainable Crop Production
Authors: Damini Thawait, S. K. Dwivedi, Amit K. Patel, Samaptika Kar
Abstract:
The experiment was carried out at Raipur during season of 2012 to find out the optimum planting patterns for scented rice cultivation. The treatment (T2) planting of two to three seedlings hill-1 transplanted in the spacing of 25 cm from plant to plant and 25 cm from row to row recorded significantly good grain quality i.e. higher head rice recovery (41.41) along with higher gain length (8.05).Keywords: rice, scented, quality, yield
Procedia PDF Downloads 4195881 Fields of Power, Visual Culture, and the Artistic Practice of Two 'Unseen' Women of Central Brazil
Authors: Carolina Brandão Piva
Abstract:
In our visual culture, images play a newly significant role in the basis of a complex dialogue between imagination, creativity, and social practice. Insofar as imagination has broken out of the 'special expressive space of art' to become a part of the quotidian mental work of ordinary people, it is pertinent to recognize that visual representation can no longer be assumed as if in a domain detached from everyday life or exclusively 'centered' within the limited frame of 'art history.' The approach of Visual Culture as a field of study is, in this sense, indispensable to comprehend that not only 'the image,' but also 'the imagined' and 'the imaginary' are produced in the plurality of social interactions; crucial enough, this assertion directs us to something new in contemporary cultural processes, namely both imagination and image production constitute a social practice. This paper starts off with this approach and seeks to examine the artistic practice of two women from the State of Goiás, Brazil, who are ordinary citizens with their daily activities and narratives but also dedicated to visuality production. With no formal training from art schools, branded or otherwise, Maria Aparecida de Souza Pires deploys 'waste disposal' of daily life—from car tires to old work clothes—as a trampoline for art; also adept at sourcing raw materials collected from her surroundings, she manipulates raw hewn wood, tree trunks, plant life, and various other pieces she collects from nature giving them new meaning and possibility. Hilda Freire works with sculptures in clay using different scales and styles; her art focuses on representations of women and pays homage to unprivileged groups such as the practitioners of African-Brazilian religions, blue-collar workers, poor live-in housekeepers, and so forth. Although they have never been acknowledged by any mainstream art institution in Brazil, whose 'criterion of value' still favors formally trained artists, Maria Aparecida de Souza Pires, and Hilda Freire have produced visualities that instigate 'new ways of seeing,' meriting cultural significance in many ways. Their artworks neither descend from a 'traditional' medium nor depend on 'canonical viewing settings' of visual representation; rather, they consist in producing relationships with the world which do not result in 'seeing more,' but 'at least differently.' From this perspective, the paper finally demonstrates that grouping this kind of artistic production under the label of 'mere craft' has much more to do with who is privileged within the fields of power in art system, who we see and who we do not see, and whose imagination of what is fed by which visual images in Brazilian contemporary society.Keywords: visual culture, artistic practice, women's art in the Brazilian State of Goiás, Maria Aparecida de Souza Pires, Hilda Freire
Procedia PDF Downloads 1525880 Location3: A Location Scouting Platform for the Support of Film and Multimedia Industries
Authors: Dimitrios Tzilopoulos, Panagiotis Symeonidis, Michael Loufakis, Dimosthenis Ioannidis, Dimitrios Tzovaras
Abstract:
The domestic film industry in Greece has traditionally relied heavily on state support. While film productions are crucial for the country's economy, it has not fully capitalized on attracting and promoting foreign productions. The lack of motivation, organized state support for attraction and licensing, and the absence of location scouting have hindered its potential. Although recent legislative changes have addressed the first two of these issues, the development of a comprehensive location database and a search engine that would effectively support location scouting at the pre-production location scouting is still in its early stages. In addition to the expected benefits of the film, television, marketing, and multimedia industries, a location-scouting service platform has the potential to yield significant financial gains locally and nationally. By promoting featured places like cultural and archaeological sites, natural monuments, and attraction points for visitors, it plays a vital role in both cultural promotion and facilitating tourism development. This study introduces LOCATION3, an internet platform revolutionizing film production location management. It interconnects location providers, film crews, and multimedia stakeholders, offering a comprehensive environment for seamless collaboration. The platform's central geodatabase (PostgreSQL) stores each location’s attributes, while web technologies like HTML, JavaScript, CSS, React.js, and Redux power the user-friendly interface. Advanced functionalities, utilizing deep learning models, developed in Python, are integrated via Node.js. Visual data presentation is achieved using the JS Leaflet library, delivering an interactive map experience. LOCATION3 sets a new standard, offering a range of essential features to enhance the management of film production locations. Firstly, it empowers users to effortlessly upload audiovisual material enriched with geospatial and temporal data, such as location coordinates, photographs, videos, 360-degree panoramas, and 3D location models. With the help of cutting-edge deep learning algorithms, the application automatically tags these materials, while users can also manually tag them. Moreover, the application allows users to record locations directly through its user-friendly mobile application. Users can then embark on seamless location searches, employing spatial or descriptive criteria. This intelligent search functionality considers a combination of relevant tags, dominant colors, architectural characteristics, emotional associations, and unique location traits. One of the application's standout features is the ability to explore locations by their visual similarity to other materials, facilitated by a reverse image search. Also, the interactive map serves as both a dynamic display for locations and a versatile filter, adapting to the user's preferences and effortlessly enhancing location searches. To further streamline the process, the application facilitates the creation of location lightboxes, enabling users to efficiently organize and share their content via email. Going above and beyond location management, the platform also provides invaluable liaison, matchmaking, and online marketplace services. This powerful functionality bridges the gap between visual and three-dimensional geospatial material providers, local agencies, film companies, production companies, etc. so that those interested in a specific location can access additional material beyond what is stored on the platform, as well as access production services supporting the functioning and completion of productions in a location (equipment provision, transportation, catering, accommodation, etc.).Keywords: deep learning models, film industry, geospatial data management, location scouting
Procedia PDF Downloads 715879 Exploring Determinants of Farmers` Perceptions of Domestic Compost Production in Urban Agriculture
Authors: Chethika Gunasiri Wadumestrige Dona, Geetha Mohan, Kensuke Fukushi
Abstract:
Solid waste in urban areas, especially from organic materials like garden waste, food, and degradable sources, can create health and environmental problems if not managed properly. Urban agriculture has emerged as a potential solution in developing countries to mitigate these issues. It offers the possibility of low-carbon economies and knowledge and innovation dissemination. Domestic composting is a significant aspect of urban agriculture, and its success relies on the attitudes of those who practice it. This study examines the perspectives of 402 urban farmers in the Colombo District, Sri Lanka, regarding domestic compost production. It aims to identify the factors that influence these perspectives. The research found that urban farmers are willing to participate in domestic composting because they believe that it facilitates effective recycling of organic waste within their households. The study used an ordinal regression model to determine the factors that shape farmers' perspectives. Age, family size, and crop preferences are significant determinants of the adoption of domestic composting practices among urban farmers in the Colombo District. These findings highlight the importance of understanding and addressing farmers' attitudes in designing effective waste management strategies. In addition, the study also emphasizes the need for tailored interventions that align with farmers' beliefs and preferences to enhance the adoption and implementation of domestic composting practices in urban areas. The insights gained from this study contribute to the academic discourse and offer practical guidance for policymakers and urban planners seeking to promote sustainable waste management practices and support the adoption of urban agriculture in the broader context of urban development.Keywords: urban agriculture, domestic composting, farmers` perspectives, sustainable urban development
Procedia PDF Downloads 375878 The Gastroprotective Potential of Clematis Flammula Leaf Extracts
Authors: Dina Atmani-Kilani, Farah Yous, Djebbar Atmani
Abstract:
The etiology of peptic ulcer is closely related to stress, excessive consumption of nonsteroidal anti-inflammatory drugs, or ethanol. Clematis flammula (Ranunculaceae) is a medicinal plant widely used by rural populations to treat inflammatory disorders. This study was designed to assess the gastroprotective potential of C. flammula extracts. Gastric ulcer was induced by stress, indomethacin, HCl / ethanol, and absolute ethanol on NMRI-type mice. The antioxidant potency of the ethanolic extract of Clematis flammula (EECF) was evaluated on catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx) activities. Glutathione (GSH) and malonaldehyde (MDA) levels were also quantified. The anti-inflammatory potential was evaluated through the effect of EECF on myeloperoxidase activity (MPO) and vascular permeability. Complementary tests concerning the quantification of mucus levels, gastric motility, inhibition of ATPase H+/K+activity, as well as a histopathological study were also undertaken to explore the mechanism of action of the EECF. The EECF exhibited a significant (p <0.001) and optimal (100 mg/kg) gastroprotective effect by elevating SOD, CAT, and GSH levels, thereby minimizing the production of MDA and lowering the activity of MPO and vascular permeability. EECF also increased the rate of mucus production, decreased gastric motility, and completely suppressed the H+/K+ ATPase activity. Histopathological study confirmed the effectiveness of the extract in the prevention of peptic ulcer. The results obtained in this study demonstrated the gastro-protective effect of EECF via acidic antioxidant, anti-inflammatory, cytoprotective and anti-secretory mechanisms, which may justify its use as a substitute in peptic ulcer treatment.Keywords: clematis flammula, superoxide dismutase, myeloperoxidase, ATPase, pump
Procedia PDF Downloads 2005877 The Highly Dispersed WO3-x Photocatalyst over the Confinement Effect of Mesoporous SBA-15 Molecular Sieves for Photocatalytic Nitrogen Reduction
Authors: Xiaoling Ren, Guidong Yang
Abstract:
As one of the largest industrial synthetic chemicals in the world, ammonia has the advantages of high energy density, easy liquefaction, and easy transportation, which is widely used in agriculture, chemical industry, energy storage, and other fields. The industrial Haber-Bosch method process for ammonia synthesis is generally conducted under severe conditions. It is essential to develop a green, sustainable strategy for ammonia production to meet the growing demand. In this direction, photocatalytic nitrogen reduction has huge advantages over the traditional, well-established Haber-Bosch process, such as the utilization of natural sun light as the energy source and significantly lower pressure and temperature to affect the reaction process. However, the high activation energy of nitrogen and the low efficiency of photo-generated electron-hole separation in the photocatalyst result in low ammonia production yield. Many researchers focus on improving the catalyst. In addition to modifying the catalyst, improving the dispersion of the catalyst and making full use of active sites are also means to improve the overall catalytic activity. Few studies have been carried out on this, which is the aim of this work. In this work, by making full use of the nitrogen activation ability of WO3-x with defective sites, small size WO3-x photocatalyst with high dispersibility was constructed, while the growth of WO3-x was restricted by using a high specific surface area mesoporous SBA-15 molecular sieve with the regular pore structure as a template. The morphology of pure SBA-15 and WO3-x/SBA-15 was characterized byscanning electron microscopy (SEM). Compared with pure SBA-15, some small particles can be found in the WO3-x/SBA-15 material, which means that WO3-x grows into small particles under the limitation of SBA-15, which is conducive to the exposure of catalytically active sites. To elucidate the chemical nature of the material, the X-ray diffraction (XRD) analysis was conducted. The observed diffraction pattern inWO3-xis in good agreement with that of the JCPDS file no.71-2450. Compared with WO3-x, no new peaks appeared in WO3-x/SBA-15.It can be concluded that WO3-x/SBA-15 was synthesized successfully. In order to provide more active sites, the mass content of WO3-x was optimized. Then the photocatalytic nitrogen reduction performances of above samples were performed with methanol as a hole scavenger. The results show that the overall ammonia production performance of WO3-x/SBA-15 is improved than pure bulk WO3-x. The above results prove that making full use of active sites is also a means to improve overall catalytic activity.This work provides material basis for the design of high-efficiency photocatalytic nitrogen reduction catalysts.Keywords: ammonia, photocatalytic, nitrogen reduction, WO3-x, high dispersibility
Procedia PDF Downloads 1595876 Association of Serum Uric Acid Level and Bone Mineral Density of Menopausal Women
Authors: Soyeon Kang, Youn-Jee Chung, Jung Namkung
Abstract:
Objective: This retrospective study investigated the association between uric acid level and bone mineral density (BMD) in the postmenopausal period. Methods: The study included 328 menopausal women (mean age, 57.3 ± 6.5 years; mean serum uric acid level, 4.6 ± 1.0 mg/dL). Patients were divided into three groups by tertile of serum uric acid level. Patients who used hormone treatment (HT), bisphosphonates, or lipid-lowering agents were included. Results: Blood urea nitrogen, serum creatinine, and serum triglyceride levels were significantly higher in the upper uric acid tertiles. No significant difference was found in the mean uric acid levels between medication users and non-users. Distinct HT regimens showed different mean serum uric acid levels. In a cross-sectional analysis, higher serum uric acid levels showed a tendency toward increased BMD in the spine and femoral neck. Longitudinal analysis of 186 women who underwent follow-up examination at a mean interval of 14.6 months revealed a trend toward a smaller reduction in femoral neck BMD in women in the upper serum uric acid tertiles. Conclusion: A positive correlation exists between serum uric acid levels and BMD in menopausal women.Keywords: menopause, antioxidant, uric acid, bone mineral density
Procedia PDF Downloads 1295875 Development of Protein-based Emulsion Gels For Food Structuring
Authors: Baigts-Allende Diana, Klojdová Iveta, Kozlu Ali, Metri-ojeda Jorge
Abstract:
Emulsion gels are constituted by a colloidal system (emulsion) stabilized by a polymeric gel matrix. These systems are more homogeneous and stable than conventional emulsions and can behave as either gel-like or soft-solid. Protein-based emulsion gels (PEG) have been used as carrier systems of bioactive compounds and as food structuring to improve the texture and consistency, mainly in producing low-fat content products. This work studied the effect of protein: polysaccharide ratio 0.75:1.25, 1:1, and 1.25:0.75 (levels -1, 0, and +1) and pH values (2-9) on the stability of protein-based emulsion gels using soy protein isolate and sodium alginate. Protein emulsion capacity was enhaced with increased pH (6,7,8 and 9) compared to acid pH values. The smaller particle size for PEG was at pH 9 (~23µm); however, with increasing protein ratio (level +1), higher particle size was observed (~23µm). The same trend was observed for rheological measurements; the consistency index (K) increased at pH 9 for level -1 (1.17) in comparison to level +1 (0.45). The studied PEG showed good thermal stability at neutral and pH 9 (~98 %) for all biopolymer ratios. Optimal conditions in pH and biopolymer ratios were determined for PEG using soy protein and sodium alginate ingredients with potential use in elaborating stable systems for broad application in the food sector.Keywords: emulsion gels, food structuring, biopolymers, food systems
Procedia PDF Downloads 745874 Building Transparent Supply Chains through Digital Tracing
Authors: Penina Orenstein
Abstract:
In today’s world, particularly with COVID-19 a constant worldwide threat, organizations need greater visibility over their supply chains more than ever before, in order to find areas for improvement and greater efficiency, reduce the chances of disruption and stay competitive. The concept of supply chain mapping is one where every process and route is mapped in detail between each vendor and supplier. The simplest method of mapping involves sourcing publicly available data including news and financial information concerning relationships between suppliers. An additional layer of information would be disclosed by large, direct suppliers about their production and logistics sites. While this method has the advantage of not requiring any input from suppliers, it also doesn’t allow for much transparency beyond the first supplier tier and may generate irrelevant data—noise—that must be filtered out to find the actionable data. The primary goal of this research is to build data maps of supply chains by focusing on a layered approach. Using these maps, the secondary goal is to address the question as to whether the supply chain is re-engineered to make improvements, for example, to lower the carbon footprint. Using a drill-down approach, the end result is a comprehensive map detailing the linkages between tier-one, tier-two, and tier-three suppliers super-imposed on a geographical map. The driving force behind this idea is to be able to trace individual parts to the exact site where they’re manufactured. In this way, companies can ensure sustainability practices from the production of raw materials through the finished goods. The approach allows companies to identify and anticipate vulnerabilities in their supply chain. It unlocks predictive analytics capabilities and enables them to act proactively. The research is particularly compelling because it unites network science theory with empirical data and presents the results in a visual, intuitive manner.Keywords: data mining, supply chain, empirical research, data mapping
Procedia PDF Downloads 1755873 Effects of Conjugated Linoleic Acid (CLA) on Hormones and Factors Involved in Murine Ovulation
Authors: Leila Karshenas, Hamidreza Khodaei, Behnaz Mahdavi
Abstract:
Ovulation is a physiologic process with an inflammatory response that depends on a coordinated activity of gonadotropins and steroid hormones, as well as inflammatory mediators such as cytokines, prostaglandins, leptin, nitric oxide (NO), etc. Conjugated linoleic acid (CLA) is composed of polyunsaturated fatty acids (PUFA) found in dairy products, beef and lamb. There is strong evidence that dietary CLA affects mediators involved in ovulation. The aim of this study was to determine the effects of different doses of dietary CLA on systemic and local hormones and factors involved in ovulation. In this case-control study, 80 (50±2-day old) female mice were randomly divided into four groups (C as the controls and T1, T2 and T3 as the treatment groups). There were four replicates in each group and there were five mice in every replicate (20 mice, in total). The mice in the control group were fed with no CLA in their diet but the ones in the treatment group received 0.1, 0.3 and 0.5g/kg of CLA (replacing corn oil in the diet), respectively for 120 days. Later on, blood samples were obtained from the tails of animals that displayed estrus signs and estradiol (E2), progesterone (P4), LH, FSH, NO, leptin and TNFα were measured. Furthermore, the effects of CLA on the ovarian production of prostaglandins (PGs) and NO were investigated. The data were analyzed by SAS software.CLA significantly decreased serum levels of FSH (p<0.05), LH, estradiol, NO, leptin and TNFα (p<0.01). In addition, CLA decreased progesterone levels but this effect was statistically insignificant. The significantly negative effects of CLA were seen on the ovarian production of PGE2 and PGF2α (p<0.01).It seems that CLA may play an effective role in reducing the ovulation rate in mice as CLA adversely affected female reproduction and it had negative effects on systemic and local hormones involved in ovulation.Keywords: conjugated linoleic acid, nitric oxide, ovary, ovulation, prostaglandin, gonadotropin
Procedia PDF Downloads 3015872 Acquisition of Murcian Lexicon and Morphology by L2 Spanish Immigrants: The Role of Social Networks
Authors: Andrea Hernandez Hurtado
Abstract:
Research on social networks (SNs) -- the interactions individuals share with others has shed important light in helping to explain differential use of variable linguistic forms, both in L1s and L2s. Nevertheless, the acquisition of nonstandard L2 Spanish in the Region of Murcia, Spain, and how learners interact with other speakers while sojourning there have received little attention. Murcian Spanish (MuSp) was widely influenced by Panocho, a divergent evolution of Hispanic Latin, and differs from the more standard Peninsular Spanish (StSp) in phonology, morphology, and lexicon. For instance, speakers from this area will most likely palatalize diminutive endings, producing animalico [̩a.ni.ma.ˈli.ko] instead of animalito [̩a.ni.ma.ˈli.to] ‘little animal’. Because L1 speakers of the area produce and prefer salient regional lexicon and morphology (particularly the palatalized diminutive -ico) in their speech, the current research focuses on how international residents in the Region of Murcia use Spanish: (1) whether or not they acquire (perceptively and/or productively) any of the salient regional features of MuSp, and (2) how their SNs explain such acquisition. This study triangulates across three tasks -recognition, production, and preference- addressing both lexicon and morphology, with each task specifically created for the investigation of MuSp features. Among other variables, the effects of L1, residence, and identity are considered. As an ongoing dissertation research, data are currently being gathered through an online questionnaire. So far, 7 participants from multiple nationalities have completed the survey, although a minimum of 25 are expected to be included in the coming months. Preliminary results revealed that MuSp lexicon and morphology were successfully recognized by participants (p<.001). In terms of regional lexicon production (10.0%) and preference (47.5%), although participants showed higher percentages of StSp, results showed that international residents become aware of stigmatized lexicon and may incorporate it into their language use. Similarly, palatalized diminutives (production 14.2%, preference 19.0%) were present in their responses. The Social Network Analysis provided information about participants’ relationships with their interactants, as well as among them. Results indicated that, generally, when residents were more immersed in the culture (i.e., had more Murcian alters) they produced and preferred more regional features. This project contributes to the knowledge of language variation acquisition in L2 speakers, focusing on a stigmatized Spanish dialect and exploring how stigmatized varieties may affect L2 development. Results will show how L2 Spanish speakers’ language is affected by their stay in Murcia. This, in turn, will shed light on the role of SNs in language acquisition, the acquisition of understudied and marginalized varieties, and the role of immersion on language acquisition. As the first systematic account on the acquisition of L2 Spanish lexicon and morphology in the Region of Murcia, it lays important groundwork for further research on the connection between SNs and the acquisition of regional variants, applicable to Murcia and beyond.Keywords: international residents, L2 Spanish, lexicon, morphology, nonstandard language acquisition, social networks
Procedia PDF Downloads 775871 Delineating Concern Ground in Block Caving – Underground Mine Using Ground Penetrating Radar
Authors: Eric Sitorus, Septian Prahastudhi, Turgod Nainggolan, Erwin Riyanto
Abstract:
Mining by block or panel caving is a mining method that takes advantage of fractures within an ore body, coupled with gravity, to extract material from a predetermined column of ore. The caving column is weakened from beneath through the use of undercutting, after which the ore breaks up and is extracted from below in a continuous cycle. The nature of this method induces cyclical stresses on the pillars of excavations as stress is built up and released over time, which has a detrimental effect on both the installed ground support and the rock mass itself. Ground support capacity, especially on the production where excavation void ratio is highest, is subjected to heavy loading. Strain above threshold of the elongation of support capacity can yield resulting in damage to excavations. Geotechnical engineers must evaluate not only the remnant capacity of ground support systems but also investigate depth of rock mass yield within pillars, backs and floors. Ground Penetrating Radar (GPR) is a geophysical method that has the ability to evaluate rock mass damage using electromagnetic waves. This paper illustrates a case study from the Grasberg mining complex where non-invasive information on the depth of damage and condition of the remaining rock mass was required. GPR with 100 MHz antenna resolution was used to obtain images of the subsurface to determine rehabilitation requirements prior to recommencing production activities. The GPR surveys were used to calibrate the reflection coefficient response of varying rock mass conditions to known Rock Quality Designation (RQD) parameters observed at the mine. The calibrated GPR survey allowed site engineers to map subsurface conditions and plan rehabilitation accordingly.Keywords: block caving, ground penetrating radar, reflectivity, RQD
Procedia PDF Downloads 1345870 Process Development for the Conversion of Organic Waste into Valuable Products
Authors: Ife O. Bolaji
Abstract:
Environmental concerns arising from the use of fossil fuels has increased the interest in the development of renewable and sustainable sources of energy. This would minimize the dependence on fossil fuels and serve as future alternatives. Organic wastes contain carbohydrates, proteins and lipids, which can be utilised as carbon sources for the production of bio-based products. Cellulose is the most abundant natural biopolymer, being the main structural component of lignocellulosic materials. The aim of this project is to develop a biological process for the hydrolysis and fermentation of organic wastes into ethanol and organic acids. The hydrolysis and fermentation processes are integrated in a single vessel using undefined mixed culture microorganisms. The anaerobic fermentation of microcrystalline cellulose was investigated in continuous and batch reactors at 25°C with an appropriate growth medium for cellulase formation, hydrolysis, and fermentation. The reactors were inoculated with soil (B1, C1, C3) or sludge from an anaerobic digester (B2, C2) and the breakdown of cellulose was monitored by measuring the production of ethanol, organic acids and the residual cellulose. The batch reactors B1 and B2 showed negligible microbial activity due to inhibition while the continuous reactors, C1, C2 and C3, exhibited little cellulose hydrolysis which was concealed by the cellulose accumulation in the reactor. At the end of the continuous operation, the reactors C1, C2 and C3 were operated under batch conditions. 48%, 34% and 42% cellulose had been fermented by day 88, 55 and 55 respectively of the batch fermentation. Acetic acid, ethanol, propionic acid and butyric acids were the main fermentation products in the reactors. A stable concentration of 0.6 g/l ethanol and 5 g/L acetic acid was maintained in C3 for several weeks due to reduced activity of methanogens caused by the decrease in pH. Thus far, the results have demonstrated that mixed microbial culture is capable of hydrolysing and fermenting cellulose under lenient conditions. The fermentation of cellulose has been found effective in a combination of continuous and batch processes.Keywords: cellulose, hydrolysis, mixed culture, organic waste
Procedia PDF Downloads 3675869 Features of Fossil Fuels Generation from Bazhenov Formation Source Rocks by Hydropyrolysis
Authors: Anton G. Kalmykov, Andrew Yu. Bychkov, Georgy A. Kalmykov
Abstract:
Nowadays, most oil reserves in Russia and all over the world are hard to recover. That is the reason oil companies are searching for new sources for hydrocarbon production. One of the sources might be high-carbon formations with unconventional reservoirs. Bazhenov formation is a huge source rock formation located in West Siberia, which contains unconventional reservoirs on some of the areas. These reservoirs are formed by secondary processes with low predicting ratio. Only one of five wells is drilled through unconventional reservoirs, in others kerogen has low thermal maturity, and they are of low petroliferous. Therefore, there was a request for tertiary methods for in-situ cracking of kerogen and production of oil. Laboratory experiments of Bazhenov formation rock hydrous pyrolysis were used to investigate features of the oil generation process. Experiments on Bazhenov rocks with a different mineral composition (silica concentration from 15 to 90 wt.%, clays – 5-50 wt.%, carbonates – 0-30 wt.%, kerogen – 1-25 wt.%) and thermal maturity (from immature to late oil window kerogen) were performed in a retort under reservoir conditions. Rock samples of 50 g weight were placed in retort, covered with water and heated to the different temperature varied from 250 to 400°C with the durability of the experiments from several hours to one week. After the experiments, the retort was cooled to room temperature; generated hydrocarbons were extracted with hexane, then separated from the solvent and weighted. The molecular composition of this synthesized oil was then investigated via GC-MS chromatography Characteristics of rock samples after the heating was measured via the Rock-Eval method. It was found, that the amount of synthesized oil and its composition depending on the experimental conditions and composition of rocks. The highest amount of oil was produced at a temperature of 350°C after 12 hours of heating and was up to 12 wt.% of initial organic matter content in the rocks. At the higher temperatures and within longer heating time secondary cracking of generated hydrocarbons occurs, the mass of produced oil is lowering, and the composition contains more hydrocarbons that need to be recovered by catalytical processes. If the temperature is lower than 300°C, the amount of produced oil is too low for the process to be economically effective. It was also found that silica and clay minerals work as catalysts. Selection of heating conditions allows producing synthesized oil with specified composition. Kerogen investigations after heating have shown that thermal maturity increases, but the yield is only up to 35% of the maximum amount of synthetic oil. This yield is the result of gaseous hydrocarbons formation due to secondary cracking and aromatization and coaling of kerogen. Future investigations will allow the increase in the yield of synthetic oil. The results are in a good agreement with theoretical data on kerogen maturation during oil production. Evaluated trends could be tooled up for in-situ oil generation by shale rocks thermal action.Keywords: Bazhenov formation, fossil fuels, hydropyrolysis, synthetic oil
Procedia PDF Downloads 114