Search results for: network capacity
5372 Resilience in Children: A Comparative Analysis between Children with and without Parental Supervision Bandar Abbas
Authors: N. Taghinejad, F. Dortaj, N. Khodabandeh
Abstract:
This research aimed at comparing resilience among male and female children with and without parental supervision in Bandar Abbas. The sample consists of 200 subjects selected through cluster sampling. The research method was comparative causal and Conner and Davidson’s questionnaire form resilience was used for data collection. Results indicated that there is no difference between children with and without parental supervision regarding their resilience capacity. These findings may be challenging and useful for psychologists, officials of children’s affairs and legislators.Keywords: resilience, children , children with parental supervision, children without parental supervision
Procedia PDF Downloads 4565371 Accessibility Analysis of Urban Green Space in Zadar Settlement, Croatia
Authors: Silvija Šiljeg, Ivan Marić, Ante Šiljeg
Abstract:
The accessibility of urban green spaces (UGS) is an integral element in the quality of life. Due to rapid urbanization, UGS studies have become a key element in urban planning. The potential benefits of space for its inhabitants are frequently analysed. A functional transport network system and the optimal spatial distribution of urban green surfaces are the prerequisites for maintaining the environmental equilibrium of the urban landscape. An accessibility analysis was conducted as part of the Urban Green Belts Project (UGB). The development of a GIS database for Zadar was the first step in generating the UGS accessibility indicator. Data were collected using the supervised classification method of multispectral LANDSAT images and manual vectorization of digital orthophoto images (DOF). An analysis of UGS accessibility according to the ANGst standard was conducted in the first phase of research. The accessibility indicator was generated on the basis of seven objective measurements, which included average UGS surface per capita and accessibility according to six functional levels of green surfaces. The generated indicator was compared with subjective measurements obtained by conducting a survey (718 respondents) within statistical units. The collected data reflected individual assessments and subjective evaluations of UGS accessibility. This study highlighted the importance of using objective and subjective measures in the process of understanding the accessibility of urban green surfaces. It may be concluded that when evaluating UGS accessibility, residents emphasize the immediate residential environment, ignoring higher UGS functional levels. It was also concluded that large areas of UGS within a city do not necessarily generate similar satisfaction with accessibility. The heterogeneity of output results may serve as guidelines for the further development of a functional UGS city network.Keywords: urban green spaces (UGS), accessibility indicator, subjective and objective measurements, Zadar
Procedia PDF Downloads 2595370 Advanced CoMP Scheme for LTE-based V2X System
Authors: Su-Hyun Jung, Young-Su Ryu, Yong-Jun Kim, Hyoung-Kyu Song
Abstract:
In this paper, a highly efficient coordinated multiple-point (CoMP) scheme for vehicular communication is proposed. The proposed scheme controls the transmit power and applies proper transmission scheme for the various situations. The proposed CoMP scheme provides comparable performance to the conventional dynamic cell selection (DCS) scheme. Moreover, this scheme provides improved power efficiency compared with the conventional joint transmission (JT) scheme. Simulation results show that the proposed scheme can achieve more enhanced performance with the high power efficiency and improve the cell capacity.Keywords: CoMP, LTE-A, V2I, V2V, V2X.
Procedia PDF Downloads 5835369 CO₂ Recovery from Biogas and Successful Upgrading to Food-Grade Quality: A Case Study
Authors: Elisa Esposito, Johannes C. Jansen, Loredana Dellamuzia, Ugo Moretti, Lidietta Giorno
Abstract:
The reduction of CO₂ emission into the atmosphere as a result of human activity is one of the most important environmental challenges to face in the next decennia. Emission of CO₂, related to the use of fossil fuels, is believed to be one of the main causes of global warming and climate change. In this scenario, the production of biomethane from organic waste, as a renewable energy source, is one of the most promising strategies to reduce fossil fuel consumption and greenhouse gas emission. Unfortunately, biogas upgrading still produces the greenhouse gas CO₂ as a waste product. Therefore, this work presents a case study on biogas upgrading, aimed at the simultaneous purification of methane and CO₂ via different steps, including CO₂/methane separation by polymeric membranes. The original objective of the project was the biogas upgrading to distribution grid quality methane, but the innovative aspect of this case study is the further purification of the captured CO₂, transforming it from a useless by-product to a pure gas with food-grade quality, suitable for commercial application in the food and beverage industry. The study was performed on a pilot plant constructed by Tecno Project Industriale Srl (TPI) Italy. This is a model of one of the largest biogas production and purification plants. The full-scale anaerobic digestion plant (Montello Spa, North Italy), has a digestive capacity of 400.000 ton of biomass/year and can treat 6.250 m3/hour of biogas from FORSU (organic fraction of solid urban waste). The entire upgrading process consists of a number of purifications steps: 1. Dehydration of the raw biogas by condensation. 2. Removal of trace impurities such as H₂S via absorption. 3.Separation of CO₂ and methane via a membrane separation process. 4. Removal of trace impurities from CO₂. The gas separation with polymeric membranes guarantees complete simultaneous removal of microorganisms. The chemical purity of the different process streams was analysed by a certified laboratory and was compared with the guidelines of the European Industrial Gases Association and the International Society of Beverage Technologists (EIGA/ISBT) for CO₂ used in the food industry. The microbiological purity was compared with the limit values defined in the European Collaborative Action. With a purity of 96-99 vol%, the purified methane respects the legal requirements for the household network. At the same time, the CO₂ reaches a purity of > 98.1% before, and 99.9% after the final distillation process. According to the EIGA/ISBT guidelines, the CO₂ proves to be chemically and microbiologically sufficiently pure to be suitable for food-grade applications.Keywords: biogas, CO₂ separation, CO2 utilization, CO₂ food grade
Procedia PDF Downloads 2125368 Properties of Magnesium-Based Hydrogen Storage Alloy Added with Palladium and Titanium Hydride
Authors: Jun Ying Lin, Tzu Hsiang Yen, Cha'o Kuang Chen
Abstract:
Nowadays, the great majority believe that there is great potentiality in hydrogen storage alloy storing hydrogen by physical and chemical absorption. However, the hydrogen storage alloy is limited by high operation temperature. Scientists find that adding transition elements can improve the properties of hydrogen storage alloy. In this research, outstanding improvements of kinetic and thermal properties are given by the addition of Palladium and Titanium hydride to Magnesium-based hydrogen storage alloy. Magnesium-based alloy is the main material, into which TiH2 / Pd are added separately. Following that, materials are milled by a Planetary Ball Miller at 650 rpm. TGA/DSC and PCT measure the capacity, spending time and temperature of abs/des-orption. Additionally, SEM and XRD analyze the structures and components of material. It is clearly shown that Pd is beneficial to kinetic properties. 2MgH2-0.1Pd has the highest capacity of all the alloys listed, approximately 5.5 wt%. Secondly, there are not any new Ti-related compounds found from XRD analysis. Thus, TiH2, considered as the catalyst, leads to the condition of 2MgH2-TiH2 and 2MgH2-TiH2-0.1Pd efficiently absorbing hydrogen in low temperature. 2MgH2-TiH2 can reach roughly 3.0 wt% in 82.4 minutes at 50°C and 8 minutes at 100°C, while2MgH2-TiH2-0.1Pd can reach 2.0 wt% in 400 minutes at 50°C and in 48 minutes at 100°C. The lowest temperature of 2MgH2-0.1Pd and 2MgH2-TiH2 is similar (320°C), otherwise the lowest temperature of 2MgH2-TiH2-0.1Pd decrease by 20°C. From XRD, it can be observed that PdTi2 and Pd3Ti are produced by mechanical alloying when adding Pd as well as TiH2 into MgH2. Due to the synergistic effects between Pd and TiH2, 2MgH2-TiH2-0.1Pd owns the lowest dehydrogenation temperature. Furthermore, the Pressure-Composition-Temperature (PCT) curve of 2MgH2-TiH2-0.1Pd is measured at different temperature, 370°C, 350°C, 320°C and 300°C separately. The plateau pressure is given form the PCT curves above. In accordance to different plateau pressures, enthalpy and entropy in the Van’t Hoff equation can be solved. In 2MgH2-TiH2-0.1Pd, the enthalpy is 74.9 KJ/mol and the entropy is 122.9 J/mol. Activation means that hydrogen storage alloy undergoes repeat abs/des-orpting processes. It plays an important role in the abs/des-orption. Activation shortens the abs/des-orption time because of the increase in surface area. From SEM, it is clear that the grain size and surface become smaller and rougherKeywords: hydrogen storage materials, magnesium hydride, abs-/des-orption performance, Plateau pressure
Procedia PDF Downloads 2665367 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches
Authors: Vahid Nourani, Atefeh Ashrafi
Abstract:
Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant
Procedia PDF Downloads 1285366 Experimental Investigation on Strengthening of Timber Beam Using Glass Fibers and Steel Plates
Authors: Sisaynew Tesfaw Admassu
Abstract:
The strengthening of timber beams can be necessary for several reasons including the increase of live loads (possible in a historical building for a change of destination of use or upgrading to meet new requirements), the reduction of the resistant cross-sections following deterioration (attacks of biological agents such as fungi, and insects) or traumatic events (fires) and the excess of deflection in the members. The main purpose of strengthening an element is not merely to repair it, but also to prevent and minimize the appearance of future problems. This study did an experimental investigation on the behavior of reference and strengthened solid timber beams. The strengthening materials used in this study were CSM-450 glass fiber and steel materials for both flexural and shear strengthening techniques. Twenty-two solid timber beams of Juniperus procera (TID) species with the dimensions of 60 x 90 x 780 mm were used in the present study. The binding material to bond the strengthening materials with timber was general-purpose resin with Luperox® K10 MEKP catalyst. Three beams were used as control beams (unstrengthen beams) while the remaining nineteen beams were strengthened using the strengthening materials for flexure and shear. All the beams were tested for three points loading to failure by using a Universal Testing Machine, UTM-600kN machine. The experimental results showed that the strengthened beams performed better than the unstrengthen beams. The experimental result of flexural strengthened beams showed that the load-bearing capacity of strengthened beams increased between 16.34 – 42.55%. Four layers of Glass Fiber Reinforced polymer on the tension side of the beams was shown to be the most effective way to enhance load-bearing capacity. The strengthened beams also have an enhancement in their flexural stiffness. The stiffness of flexural strengthened beams was increased between 1.18 – 65.53% as compared to the control beams. The highest increment in stiffness has occurred on beams strengthened using 2x60 mm steel plates. The shear-strengthened beams showed a relatively small amount of performance as compared to flexural-strengthened beams; the reason is that the beams are sufficient for shear. The polyester resin used in the experimental work showed good performance in bonding agents between materials. The resin showed more effectiveness in GFRP materials than steel materials.Keywords: heritage structures, strengthening, stiffness, adhesive, polyester resin, steel plates
Procedia PDF Downloads 745365 Prefabrication Technology as an Option for Accelerated Sustainable Social Housing Delivery in South Africa
Authors: Madifedile Thasi, Azola Mayeza
Abstract:
In South Africa, provision of housing to the growing population has been described as one of the greatest challenges facing the government. Between 1994 to 2015, more than 2.5 million housing units were provided by the government for the poorest households and the low-income earners under the Reconstruction and Development Programme (RDP). Yet, the latest census figure revealed that about 2.1 million households still live in shacks and informal dwellings. Human settlements patterns remain dysfunctional across in South Africa because of rapid urbanisation. The housing backlog is growing at a rate of 178 000 units a year. The aforementioned predicament calls the need for innovative approaches to address the issue in a sustainable way and this need not be overemphasized. Aside from the issue of cost, the delivery of more housing units comes with environmental and sustainability issues. The prefabrication building technology has resulted into accelerated housing delivery to a satisfactory level in some countries such as Nigeria and Malaysia that are facing similar issue. It is therefore expected to be a foremost option to address the social housing backlog in South Africa and within the country housing sustainability agenda. This paper appraises the factors responsible for the limited implementation of prefabrication technology in South African housing projects. The objective is to recommend the method and materials that can be best sustained in the country in terms of local availability, cost effectiveness and environmental friendliness. It presents empirical data to support the hypothesis that a wider implementation of prefabrication technology in the social housing projects will be of significant benefit, by providing fast turnaround, cost-effective and sustainable solution that will dent the housing backlog, as well as improving the quality of the social housings. It was found that only 17 000 units of the RDP housings provided were constructed using alternative building technologies. Furthermore, there are variety of prefabricated technologies in the market but mostly have limited production capacity, minimal manufacturing capacity and most materials are imported, which leads to unavailability of the technology for large scale delivery and utilization despite its obvious advantages.Keywords: prefabrication technology, sustainable social housings, South Africa, housing delivery
Procedia PDF Downloads 2085364 A Comprehensive Study and Evaluation on Image Fashion Features Extraction
Authors: Yuanchao Sang, Zhihao Gong, Longsheng Chen, Long Chen
Abstract:
Clothing fashion represents a human’s aesthetic appreciation towards everyday outfits and appetite for fashion, and it reflects the development of status in society, humanity, and economics. However, modelling fashion by machine is extremely challenging because fashion is too abstract to be efficiently described by machines. Even human beings can hardly reach a consensus about fashion. In this paper, we are dedicated to answering a fundamental fashion-related problem: what image feature best describes clothing fashion? To address this issue, we have designed and evaluated various image features, ranging from traditional low-level hand-crafted features to mid-level style awareness features to various current popular deep neural network-based features, which have shown state-of-the-art performance in various vision tasks. In summary, we tested the following 9 feature representations: color, texture, shape, style, convolutional neural networks (CNNs), CNNs with distance metric learning (CNNs&DML), AutoEncoder, CNNs with multiple layer combination (CNNs&MLC) and CNNs with dynamic feature clustering (CNNs&DFC). Finally, we validated the performance of these features on two publicly available datasets. Quantitative and qualitative experimental results on both intra-domain and inter-domain fashion clothing image retrieval showed that deep learning based feature representations far outweigh traditional hand-crafted feature representation. Additionally, among all deep learning based methods, CNNs with explicit feature clustering performs best, which shows feature clustering is essential for discriminative fashion feature representation.Keywords: convolutional neural network, feature representation, image processing, machine modelling
Procedia PDF Downloads 1395363 Learning from Flood: A Case Study of a Frequently Flooded Village in Hubei, China
Authors: Da Kuang
Abstract:
Resilience is a hotly debated topic in many research fields (e.g., engineering, ecology, society, psychology). In flood management studies, we are experiencing the paradigm shift from flood resistance to flood resilience. Flood resilience refers to tolerate flooding through adaptation or transformation. It is increasingly argued that our city as a social-ecological system holds the ability to learn from experience and adapt to flood rather than simply resist it. This research aims to investigate what kinds of adaptation knowledge the frequently flooded village learned from past experience and its advantages and limitations in coping with floods. The study area – Xinnongcun village, located in the west of Wuhan city, is a linear village and continuously suffered from both flash flood and drainage flood during the past 30 years. We have a field trip to the site in June 2017 and conducted semi-structured interviews with local residents. Our research summarizes two types of adaptation knowledge that people learned from the past floods. Firstly, at the village scale, it has formed a collective urban form which could help people live during both flood and dry season. All houses and front yards were elevated about 2m higher than the road. All the front yards in the village are linked and there is no barrier. During flooding time, people walk to neighbors through houses yards and boat to outside village on the lower road. Secondly, at individual scale, local people learned tacit knowledge of preparedness and emergency response to flood. Regarding the advantages and limitations, the adaptation knowledge could effectively help people to live with flood and reduce the chances of getting injuries. However, it cannot reduce local farmers’ losses on their agricultural land. After flood, it is impossible for local people to recover to the pre-disaster state as flood emerges during June and July will result in no harvest. Therefore, we argue that learning from past flood experience could increase people’s adaptive capacity. However, once the adaptive capacity cannot reduce people’s losses, it requires a transformation to a better regime.Keywords: adaptation, flood resilience, tacit knowledge, transformation
Procedia PDF Downloads 3345362 Exploring Hydrogen Embrittlement and Fatigue Crack Growth in API 5L X52 Steel Pipeline Under Cyclic Internal Pressure
Authors: Omar Bouledroua, Djamel Zelmati, Zahreddine Hafsi, Milos B. Djukic
Abstract:
Transporting hydrogen gas through the existing natural gas pipeline network offers an efficient solution for energy storage and conveyance. Hydrogen generated from excess renewable electricity can be conveyed through the API 5L steel-made pipelines that already exist. In recent years, there has been a growing demand for the transportation of hydrogen through existing gas pipelines. Therefore, numerical and experimental tests are required to verify and ensure the mechanical integrity of the API 5L steel pipelines that will be used for pressurized hydrogen transportation. Internal pressure loading is likely to accelerate hydrogen diffusion through the internal pipe wall and consequently accentuate the hydrogen embrittlement of steel pipelines. Furthermore, pre-cracked pipelines are susceptible to quick failure, mainly under a time-dependent cyclic pressure loading that drives fatigue crack propagation. Meanwhile, after several loading cycles, the initial cracks will propagate to a critical size. At this point, the remaining service life of the pipeline can be estimated, and inspection intervals can be determined. This paper focuses on the hydrogen embrittlement of API 5L steel-made pipeline under cyclic pressure loading. Pressurized hydrogen gas is transported through a network of pipelines where demands at consumption nodes vary periodically. The resulting pressure profile over time is considered a cyclic loading on the internal wall of a pre-cracked pipeline made of API 5L steel-grade material. Numerical modeling has allowed the prediction of fatigue crack evolution and estimation of the remaining service life of the pipeline. The developed methodology in this paper is based on the ASME B31.12 standard, which outlines the guidelines for hydrogen pipelines.Keywords: hydrogen embrittlement, pipelines, transient flow, cyclic pressure, fatigue crack growth
Procedia PDF Downloads 885361 Distributed Key Management With Less Transmitted Messaged In Rekeying Process To Secure Iot Wireless Sensor Networks In Smart-Agro
Authors: Safwan Mawlood Hussien
Abstract:
Internet of Things (IoT) is a promising technology has received considerable attention in different fields such as health, industry, defence, and agro, etc. Due to the limitation capacity of computing, storage, and communication, IoT objects are more vulnerable to attacks. Many solutions have been proposed to solve security issues, such as key management using symmetric-key ciphers. This study provides a scalable group distribution key management based on ECcryptography; with less transmitted messages The method has been validated through simulations in OMNeT++.Keywords: elliptic curves, Diffie–Hellman, discrete logarithm problem, secure key exchange, WSN security, IoT security, smart-agro
Procedia PDF Downloads 1195360 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue
Authors: Rachel Y. Zhang, Christopher K. Anderson
Abstract:
A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine
Procedia PDF Downloads 1335359 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment
Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee
Abstract:
Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation
Procedia PDF Downloads 3485358 Glasshouse Experiment to Improve Phytomanagement Solutions for Cu-Polluted Mine Soils
Authors: Marc Romero-Estonllo, Judith Ramos-Castro, Yaiza San Miguel, Beatriz Rodríguez-Garrido, Carmela Monterroso
Abstract:
Mining activity is among the main sources of trace and heavy metal(loid) pollution worldwide, which is a hazard to human and environmental health. That is why several projects have been emerging for the remediation of such polluted places. Phytomanagement strategies draw good performances besides big side benefits. In this work, a glasshouse assay with trace element polluted soils from an old Cu mine ore (NW of Spain) which forms part of the PhytoSUDOE network of phytomanaged contaminated field sites (PhytoSUDOE Project (SOE1/P5/E0189)) was set. The objective was to evaluate improvements induced by the following phytoremediation-related treatments. Three increasingly complex amendments alone or together with plant growth (Populus nigra L. alone and together with Tripholium repens L.) were tested. And three different rhizosphere bioinocula were applied (Plant Growth Promoting Bacteria (PGP), mycorrhiza (MYC), or mixed (PGP+MYC)). After 110 days of growth, plants were collected, biomass was weighed, and tree length was measured. Physical-chemical analyses were carried out to determine pH, effective Cation Exchange Capacity, carbon and nitrogen contents, bioavailable phosphorous (Olsen bicarbonate method), pseudo total element content (microwave acid digested fraction), EDTA extractable metals (complexed fraction), and NH4NO3 extractable metals (easily bioavailable fraction). On plant material, nitrogen content and acid digestion elements were determined. Amendment usage, plant growth, and bioinoculation were demonstrated to improve soil fertility and/or plant health within the time span of this study. Particularly, pH levels increased from 3 (highly acidic) to 5 (acidic) in the worst-case scenario, even reaching 7 (neutrality) in the best plots. Organic matter and pH increments were related to polluting metals’ bioavailability decrements. Plants grew better both with the most complex amendment and the middle one, with few differences due to bioinoculation. Using the less complex amendment (just compost) beneficial effects of bioinoculants were more observable, although plants didn’t thrive very well. On unamended soils, plants neither sprouted nor bloomed. The scheme assayed in this study is suitable for phytomanagement of these kinds of soils affected by mining activity. These findings should be tested now on a larger scale.Keywords: aided phytoremediation, mine pollution, phytostabilization, soil pollution, trace elements
Procedia PDF Downloads 665357 Development of Immersive Virtual Reality System for Planning of Cargo Loading Operations
Authors: Eugene Y. C. Wong, Daniel Y. W. Mo, Cosmo T. Y. Ng, Jessica K. Y. Chan, Leith K. Y. Chan, Henry Y. K. Lau
Abstract:
The real-time planning visualisation, precise allocation and loading optimisation in air cargo load planning operations are increasingly important as more considerations are needed on dangerous cargo loading, locations of lithium batteries, weight declaration and limited aircraft capacity. The planning of the unit load devices (ULD) can often be carried out only in a limited number of hours before flight departure. A dynamic air cargo load planning system is proposed with the optimisation of cargo load plan and visualisation of planning results in virtual reality systems. The system aims to optimise the cargo load planning and visualise the simulated loading planning decision on air cargo terminal operations. Adopting simulation tools, Cave Automatic Virtual Environment (CAVE) and virtual reality technologies, the results of planning with reference to weight and balance, Unit Load Device (ULD) dimensions, gateway, cargo nature and aircraft capacity are optimised and presented. The virtual reality system facilities planning, operations, education and training. Staff in terminals are usually trained in a traditional push-approach demonstration with enormous manual paperwork. With the support of newly customized immersive visualization environment, users can master the complex air cargo load planning techniques in a problem based training with the instant result being immersively visualised. The virtual reality system is developed with three-dimensional (3D) projectors, screens, workstations, truss system, 3D glasses, and demonstration platform and software. The content will be focused on the cargo planning and loading operations in an air cargo terminal. The system can assist decision-making process during cargo load planning in the complex operations of air cargo terminal operations. The processes of cargo loading, cargo build-up, security screening, and system monitoring can be further visualised. Scenarios are designed to support and demonstrate the daily operations of the air cargo terminal, including dangerous goods, pets and animals, and some special cargos.Keywords: air cargo load planning, optimisation, virtual reality, weight and balance, unit load device
Procedia PDF Downloads 3455356 Peach as a Potential Functional Food: Biological Activity and Important Phenolic Compound Source
Authors: Luís R. Silva, Catarina Bento, Ana C. Gonçalves, Fábio Jesus, Branca M. Silva
Abstract:
Nowadays, the general population is more and more concerned about nutrition and the health implications of an unbalanced diet. Current knowledge regarding the health benefits and antioxidant properties of certain foods such as fruits and vegetables has gained the interest of both the general public and scientific community. Peach (Prunus persica (L.) Batsch) is one of the most consumed fruits worldwide, with low sugar contents and a broad range of nutrients essential to the normal functioning of the body. Six different peach cultivars from the Fundão region in Portugal were evaluated regarding their phenolic composition by LC-DAD and biological activity. The prepared extracts’ capacity to scavenge free-radicals was tested through the stable free radical DPPH• and nitric oxide (•NO). Additionally, antidiabetic potential and protective effects against peroxyl radical (ROO•) induced damage to erythrocytes were also tested. LC-DAD analysis allowed the identification of 17 phenolic compounds, among which 5-O-caffeoylquinic acids and 3-O-caffeoylquinic acids are pointed out as the most abundant. Regarding the antioxidant activity, all cultivars displayed concentration-dependent free-radical scavenging activity against both nitrogen species and DPPH•. In respect to α-glucosidase inhibitory activity, Royal Magister and Royal Glory presented the highest inhibitory activity (IC50 = 11.7 ± 1.4 and 17.1 ± 1.7 μg/mL, respectively), nevertheless all six cultivars presented higher activity than the control acarbose. As for the protective effect of Royal Lu extract on the oxidative damage induced in erythrocytes by ROO•, the results were quite promising showing inhibition IC50 values of 110.0 ± 4.5 μg/mL and 83.8 ± 6.5 μg/mL for hemolysis and hemoglobin oxidation, respectively. The demonstrated activity is of course associated to the peaches’ phenolic profile, rich in phenolic acids and flavonoids with high hydrogen donating capacity. These compounds have great industrial interest for the manufacturing of natural products. The following step would naturally be the extraction and isolation from the plant tissues and large-scale production through biotechnology techniques.Keywords: antioxidants, functional food, phenolic compounds, peach
Procedia PDF Downloads 2945355 Prioritizing Biodiversity Conservation Areas based on the Vulnerability and the Irreplaceability Framework in Mexico
Authors: Alma Mendoza-Ponce, Rogelio Corona-Núñez, Florian Kraxner
Abstract:
Mexico is a megadiverse country and it has nearly halved its natural vegetation in the last century due to agricultural and livestock expansion. Impacts of land use cover change and climate change are unevenly distributed and spatial prioritization to minimize the affectations on biodiversity is crucial. Global and national efforts for prioritizing biodiversity conservation show that ~33% to 45% of Mexico should be protected. The width of these targets makes difficult to lead resources. We use a framework based on vulnerability and irreplaceability to prioritize conservation efforts in Mexico. Vulnerability considered exposure, sensitivity and adaptive capacity under two scenarios (business as usual, BAU based, on the SSP2 and RCP 4.5 and a Green scenario, based on the SSP1 and the RCP 2.6). Exposure to land use is the magnitude of change from natural vegetation to anthropogenic covers while exposure to climate change is the difference between current and future values for both scenarios. Sensitivity was considered as the number of endemic species of terrestrial vertebrates which are critically endangered and endangered. Adaptive capacity is used as the ration between the percentage of converted area (natural to anthropogenic) and the percentage of protected area at municipality level. The results suggest that by 2050, between 11.6 and 13.9% of Mexico show vulnerability ≥ 50%, and by 2070, between 12.0 and 14.8%, in the Green and BAU scenario, respectively. From an ecosystem perspective cloud forests, followed by tropical dry forests, natural grasslands and temperate forests will be the most vulnerable (≥ 50%). Amphibians are the most threatened vertebrates; 62% of the endemic amphibians are critically endangered or endangered while 39%, 12% and 9% of the mammals, birds, and reptiles, respectively. However, the distribution of these amphibians counts for only 3.3% of the country, while mammals, birds, and reptiles in these categories represent 10%, 16% and 29% of Mexico. There are 5 municipalities out of the 2,457 that Mexico has that represent 31% of the most vulnerable areas (70%).These municipalities account for 0.05% of Mexico. This multiscale approach can be used to address resources to conservation targets as ecosystems, municipalities or species considering land use cover change, climate change and biodiversity uniqueness.Keywords: biodiversity, climate change, land use change, Mexico, vulnerability
Procedia PDF Downloads 1675354 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System
Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu
Abstract:
In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission
Procedia PDF Downloads 1435353 A Comparative Semantic Network Study between Chinese and Western Festivals
Authors: Jianwei Qian, Rob Law
Abstract:
With the expansion of globalization and the increment of market competition, the festival, especially the traditional one, has demonstrated its vitality under the new context. As a new tourist attraction, festivals play a critically important role in promoting the tourism economy, because the organization of a festival can engage more tourists, generate more revenues and win a wider media concern. However, in the current stage of China, traditional festivals as a way to disseminate national culture are undergoing the challenge of foreign festivals and the related culture. Different from those special events created solely for developing economy, traditional festivals have their own culture and connotation. Therefore, it is necessary to conduct a study on not only protecting the tradition, but promoting its development as well. This study conducts a comparative study of the development of China’s Valentine’s Day and Western Valentine’s Day under the Chinese context and centers on newspaper reports in China from 2000 to 2016. Based on the literature, two main research focuses can be established: one is concerned about the festival’s impact and the other is about tourists’ motivation to engage in a festival. Newspaper reports serve as the research discourse and can help cover the two focal points. With the assistance of content mining techniques, semantic networks for both Days are constructed separately to help depict the status quo of these two festivals in China. Based on the networks, two models are established to show the key component system of traditional festivals in the hope of perfecting the positive role festival tourism plays in the promotion of economy and culture. According to the semantic networks, newspaper reports on both festivals have similarities and differences. The difference is mainly reflected in its cultural connotation, because westerners and Chinese may show their love in different ways. Nevertheless, they share more common points in terms of economy, tourism, and society. They also have a similar living environment and stakeholders. Thus, they can be promoted together to revitalize some traditions in China. Three strategies are proposed to realize the aforementioned aim. Firstly, localize international festivals to suit the Chinese context to make it function better. Secondly, facilitate the internationalization process of traditional Chinese festivals to receive more recognition worldwide. Finally, allow traditional festivals to compete with foreign ones to help them learn from each other and elucidate the development of other festivals. It is believed that if all these can be realized, not only the traditional Chinese festivals can obtain a more promising future, but foreign ones are the same as well. Accordingly, the paper can contribute to the theoretical construction of festival images by the presentation of the semantic network. Meanwhile, the identified features and issues of festivals from two different cultures can enlighten the organization and marketing of festivals as a vital tourism activity. In the long run, the study can enhance the festival as a key attraction to keep the sustainable development of both the economy and the society.Keywords: Chinese context, comparative study, festival tourism, semantic network analysis, valentine’s day
Procedia PDF Downloads 2325352 Metagenomics Analysis of Bacteria in Sorghum Using next Generation Sequencing
Authors: Kedibone Masenya, Memory Tekere, Jasper Rees
Abstract:
Sorghum is an important cereal crop in the world. In particular, it has attracted breeders due to capacity to serve as food, feed, fiber and bioenergy crop. Like any other plant, sorghum hosts a variety of microbes, which can either, have a neutral, negative and positive influence on the plant. In the current study, regions (V3/V4) of 16 S rRNA were targeted to extensively assess bacterial multitrophic interactions in the phyllosphere of sorghum. The results demonstrated that the presence of a pathogen has a significant effect on the endophytic bacterial community. Understanding these interactions is key to develop new strategies for plant protection.Keywords: bacteria, multitrophic, sorghum, target sequencing
Procedia PDF Downloads 2855351 Life Expansion: Visual Autobiography, Identity, Representation and the Degrees of Fictionalization of the Self on Instagram
Authors: Pablo De Macedo Silveira Vallejos
Abstract:
This article aims to observe autobiographical and visual narrative practices among users on Instagram. In this way, the work proposes to reflect on how image resources are used to develop edited representations of the self in that social network. The research aims to explore the uses of editing and the degrees of fictionalization present on Instagram.Keywords: autobiography, visual narratives, representation, fiction, social media
Procedia PDF Downloads 745350 Improving Contributions to the Strengthening of the Legislation Regarding Road Infrastructure Safety Management in Romania, Case Study: Comparison Between the Initial Regulations and the Clarity of the Current Regulations - Trends Regarding the Efficiency
Authors: Corneliu-Ioan Dimitriu, Gheorghe Frățilă
Abstract:
Romania and Bulgaria have high rates of road deaths per million inhabitants. Directive (EU) 2019/1936, known as the RISM Directive, has been transposed into national law by each Member State. The research focuses on the amendments made to Romanian legislation through Government Ordinance no. 3/2022, which aims to improve road safety management on infrastructure. The aim of the research is two-fold: to sensitize the Romanian Government and decision-making entities to develop an integrated and competitive management system and to establish a safe and proactive mobility system that ensures efficient and safe roads. The research includes a critical analysis of European and Romanian legislation, as well as subsequent normative acts related to road infrastructure safety management. Public data from European Union and national authorities, as well as data from the Romanian Road Authority-ARR and Traffic Police database, are utilized. The research methodology involves comparative analysis, criterion analysis, SWOT analysis, and the use of GANTT and WBS diagrams. The Excel tool is employed to process the road accident databases of Romania and Bulgaria. Collaboration with Bulgarian specialists is established to identify common road infrastructure safety issues. The research concludes that the legislative changes have resulted in a relaxation of road safety management in Romania, leading to decreased control over certain management procedures. The amendments to primary and secondary legislation do not meet the current safety requirements for road infrastructure. The research highlights the need for legislative changes and strengthened administrative capacity to enhance road safety. Regional cooperation and the exchange of best practices are emphasized for effective road infrastructure safety management. The research contributes to the theoretical understanding of road infrastructure safety management by analyzing legislative changes and their impact on safety measures. It highlights the importance of an integrated and proactive approach in reducing road accidents and achieving the "zero deaths" objective set by the European Union. Data collection involves accessing public data from relevant authorities and using information from the Romanian Road Authority-ARR and Traffic Police database. Analysis procedures include critical analysis of legislation, comparative analysis of transpositions, criterion analysis, and the use of various diagrams and tools such as SWOT, GANTT, WBS, and Excel. The research addresses the effectiveness of legislative changes in road infrastructure safety management in Romania and the impact on control over management procedures. It also explores the need for strengthened administrative capacity and regional cooperation in addressing road safety issues. The research concludes that the legislative changes made in Romania have not strengthened road safety management and emphasize the need for immediate action, legislative amendments, and enhanced administrative capacity. Collaboration with Bulgarian specialists and the exchange of best practices are recommended for effective road infrastructure safety management. The research contributes to the theoretical understanding of road safety management and provides valuable insights for policymakers and decision-makers in Romania.Keywords: management, road infrastructure safety, legislation, amendments, collaboration
Procedia PDF Downloads 845349 Concanavaline a Conjugated Bacterial Polyester Based PHBHHx Nanoparticles Loaded with Curcumin for the Ovarian Cancer Therapy
Authors: E. Kilicay, Z. Karahaliloglu, B. Hazer, E. B. Denkbas
Abstract:
In this study, we have prepared concanavaline A (ConA) functionalized curcumin (CUR) loaded PHBHHx (poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)) nanoparticles as a novel and efficient drug delivery system. CUR is a promising anticancer agent for various cancer types. The aim of this study was to evaluate therapeutic potential of curcumin loaded PHBHHx nanoparticles (CUR-NPs) and concanavaline A conjugated curcumin loaded NPs (ConA-CUR NPs) for ovarian cancer treatment. ConA was covalently connected to the carboxylic group of nanoparticles by EDC/NHS activation method. In the ligand attachment experiment, the binding capacity of ConA on the surface of NPs was found about 90%. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) analysis showed that the prepared nanoparticles were smooth and spherical in shape. The size and zeta potential of prepared NPs were about 228±5 nm and −21.3 mV respectively. ConA-CUR NPs were characterized by FT-IR spectroscopy which confirmed the existence of CUR and ConA in the nanoparticles. The entrapment and loading efficiencies of different polymer/drug weight ratios, 1/0.125 PHBHHx/CUR= 1.25CUR-NPs; 1/0.25 PHBHHx/CUR= 2.5CUR-NPs; 1/0.5 PHBHHx/CUR= 5CUR-NPs, ConA-1.25CUR NPs, ConA-2.5CUR NPs and ConA-5CUR NPs were found to be ≈ 68%-16.8%; 55%-17.7 %; 45%-33.6%; 70%-15.7%; 60%-17%; 51%-30.2% respectively. In vitro drug release showed that the sustained release of curcumin was observed from CUR-NPs and ConA-CUR NPs over a period of 19 days. After binding of ConA, the release rate was slightly increased due to the migration of curcumin to the surface of the nanoparticles and the matrix integrities was decreased because of the conjugation reaction. This functionalized nanoparticles demonstrated high drug loading capacity, sustained drug release profile, and high and long term anticancer efficacy in human cancer cell lines. Anticancer activity of ConA-CUR NPs was proved by MTT assay and reconfirmed by apoptosis and necrosis assay. The anticancer activity of ConA-CUR NPs was measured in ovarian cancer cells (SKOV-3) and the results revealed that the ConA-CUR NPs had better tumor cells decline activity than free curcumin. The nacked nanoparticles have no cytotoxicity against human ovarian carcinoma cells. Thus the developed functionalized nanoformulation could be a promising candidate in cancer therapy.Keywords: curcumin, curcumin-PHBHHx nanoparticles, concanavalin A, concanavalin A-curcumin PHBHHx nanoparticles, PHBHHx nanoparticles, ovarian cancer cell
Procedia PDF Downloads 3995348 Breast Cancer Metastasis Detection and Localization through Transfer-Learning Convolutional Neural Network Classification Based on Convolutional Denoising Autoencoder Stack
Authors: Varun Agarwal
Abstract:
Introduction: With the advent of personalized medicine, histopathological review of whole slide images (WSIs) for cancer diagnosis presents an exceedingly time-consuming, complex task. Specifically, detecting metastatic regions in WSIs of sentinel lymph node biopsies necessitates a full-scanned, holistic evaluation of the image. Thus, digital pathology, low-level image manipulation algorithms, and machine learning provide significant advancements in improving the efficiency and accuracy of WSI analysis. Using Camelyon16 data, this paper proposes a deep learning pipeline to automate and ameliorate breast cancer metastasis localization and WSI classification. Methodology: The model broadly follows five stages -region of interest detection, WSI partitioning into image tiles, convolutional neural network (CNN) image-segment classifications, probabilistic mapping of tumor localizations, and further processing for whole WSI classification. Transfer learning is applied to the task, with the implementation of Inception-ResNetV2 - an effective CNN classifier that uses residual connections to enhance feature representation, adding convolved outputs in the inception unit to the proceeding input data. Moreover, in order to augment the performance of the transfer learning CNN, a stack of convolutional denoising autoencoders (CDAE) is applied to produce embeddings that enrich image representation. Through a saliency-detection algorithm, visual training segments are generated, which are then processed through a denoising autoencoder -primarily consisting of convolutional, leaky rectified linear unit, and batch normalization layers- and subsequently a contrast-normalization function. A spatial pyramid pooling algorithm extracts the key features from the processed image, creating a viable feature map for the CNN that minimizes spatial resolution and noise. Results and Conclusion: The simplified and effective architecture of the fine-tuned transfer learning Inception-ResNetV2 network enhanced with the CDAE stack yields state of the art performance in WSI classification and tumor localization, achieving AUC scores of 0.947 and 0.753, respectively. The convolutional feature retention and compilation with the residual connections to inception units synergized with the input denoising algorithm enable the pipeline to serve as an effective, efficient tool in the histopathological review of WSIs.Keywords: breast cancer, convolutional neural networks, metastasis mapping, whole slide images
Procedia PDF Downloads 1305347 A Settlement Strategy for Health Facilities in Emerging Countries: A Case Study in Brazil
Authors: Domenico Chizzoniti, Monica Moscatelli, Letizia Cattani, Piero Favino, Luca Preis
Abstract:
A settlement strategy is to anticipate and respond the needs of existing and future communities through the provision of primary health care facilities in marginalized areas. Access to a health care network is important to improving healthcare coverage, often lacking, in developing countries. The study explores that a good sanitary system strategy of rural contexts brings advantages to an existing settlement: improving transport, communication, water and social facilities. The objective of this paper is to define a possible methodology to implement primary health care facilities in disadvantaged areas of emerging countries. In this research, we analyze the case study of Lauro de Freitas, a municipality in the Brazilian state of Bahia, part of the Metropolitan Region of Salvador, with an area of 57,662 km² and 194.641 inhabitants. The health localization system in Lauro de Freitas is an integrated process that involves not only geographical aspects, but also a set of factors: population density, epidemiological data, allocation of services, road networks, and more. Data were collected also using semi-structured interviews and questionnaires to the local population. Synthesized data suggest that moving away from the coast where there is the greatest concentration of population and services, a network of primary health care facilities is able to improve the living conditions of small-dispersed communities. Based on the health service needs of populations, we have developed a methodological approach that is particularly useful in rural and remote contexts in emerging countries.Keywords: healthcare, settlement strategy, urban health, rural
Procedia PDF Downloads 3685346 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane
Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo
Abstract:
Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining
Procedia PDF Downloads 865345 Analysis of Problems Faced by the Female Students in Capacity Enhancing at Intermediate Level in Girls College of Khyber Pakhtunkhwa, Pakistan
Authors: Uzma Ahmad
Abstract:
hyber Pakhtunkhwa (KPK) is the most turbulent province of Pakistan, sharing a longborder with Afghanistan. For about four decades, KPK is facing a series of international events. The peak was reached after 9/11when region was labelled as posing a major theatre of militancy and terrorism which was intensified when Tehrik Taliban Pakistan (TTP) began attempts to seize the authority of state. One of the main focus of TTP was to damage and uprooting of female education system and infrastructure in KPK which later became the site of a massacre of school children of Army Public School Peshawar on 16 December 2014.It resulted to the launching of Zarb-e-Azb against the TTP insurgency,casualty and crime rates in the KPKas a whole dropped by 40.0% as compared to 2011–13. All this has badly hampered the female education both in terms of quantity and quality. Malala Yousafzai who is now an advocate of female education has been a victim of Talibans brutality in that area. And thelanguage in which she managed to express herself to the International community is English.Keeping in view the situation, the present project was designed with a sole aim to focus on female students of the area which are few in numbers and to investigate some specific area, where they have been confronting problems in the use of grammar, vocabulary,tenses and organization of ideas in writings. The reasons might be the careless attitude, insufficient reading habits, lack of interest and poor knowledge of English language. The methodology was a descriptive one as it shows the effects of the internal efficiency(independent variables) on an intermediate college’s progress(dependent variables). It was a case study since data was collected from a focused group of 60 female students of arts and humanities at Swabi college at Intermediate level. The ultimate focus was to explore the possibilities of creating a Gender friendly environment for female students. This research has proved how the correct use of English language has given them confidence to move ahead side by side with men and to acknowledge their right of self-determination.Keywords: capacity building, female education, gender friendly, internal efficiency
Procedia PDF Downloads 1645344 Using a Card Game as a Tool for Developing a Design
Authors: Matthias Haenisch, Katharina Hermann, Marc Godau, Verena Weidner
Abstract:
Over the past two decades, international music education has been characterized by a growing interest in informal learning for formal contexts and a "compositional turn" that has moved from closed to open forms of composing. This change occurs under social and technological conditions that permeate 21st-century musical practices. This forms the background of Musical Communities in the (Post)Digital Age (MusCoDA), a four-year joint research project of the University of Erfurt (UE) and the University of Education Karlsruhe (PHK), funded by the German Federal Ministry of Education and Research (BMBF). Both explore songwriting processes as an example of collective creativity in (post)digital communities, one in formal and the other in informal learning contexts. Collective songwriting will be studied from a network perspective, that will allow us to view boundaries between both online and offline as well as formal and informal or hybrid contexts as permeable and to reconstruct musical learning practices. By comparing these songwriting processes, possibilities for a pedagogical-didactic interweaving of different educational worlds are highlighted. Therefore, the subproject of the University of Erfurt investigates school music lessons with the help of interviews, videography, and network maps by analyzing new digital pedagogical and didactic possibilities. In the first step, the international literature on songwriting in the music classroom was examined for design development. The analysis focused on the question of which methods and practices are circulating in the current literature. Results from this stage of the project form the basis for the first instructional design that will help teachers in planning regular music classes and subsequently reconstruct musical learning practices under these conditions. In analyzing the literature, we noticed certain structural methods and concepts that recur, such as the Building Blocks method and the pre-structuring of the songwriting process. From these findings, we developed a deck of cards that both captures the current state of research and serves as a method for design development. With this deck of cards, both teachers and students themselves can plan their individual songwriting lessons by independently selecting and arranging topic, structure, and action cards. In terms of science communication, music educators' interactions with the card game provide us with essential insights for developing the first design. The overall goal of MusCoDA is to develop an empirical model of collective musical creativity and learning and an instructional design for teaching music in the postdigital age.Keywords: card game, collective songwriting, community of practice, network, postdigital
Procedia PDF Downloads 645343 Influence of Bottom Ash on the Geotechnical Parameters of Clayey Soil
Authors: Tanios Saliba, Jad Wakim, Elie Awwad
Abstract:
Clayey soils exhibit undesirable problems in civil engineering project: poor bearing soil capacity, shrinkage, cracking, …etc. On the other hand, the increasing production of bottom ash and its disposal in an eco-friendly manner is a matter of concern. Soil stabilization using bottom ash is a new technic in the geo-environmental engineering. It can be used wherever a soft clayey soil is encountered in foundations or road subgrade, instead of using old technics such as cement-soil mixing. This new technology can be used for road embankments and clayey foundations platform (shallow or deep foundations) instead of replacing bad soil or using old technics which aren’t eco-friendly. Moreover, applying this new technic in our geotechnical engineering projects can reduce the disposal of the bottom ash problem which is getting bigger day after day. The research consists of mixing clayey soil with different percentages of bottom ash at different values of water content, and evaluates the mechanical properties of every mix: the percentages of bottom ash are 10% 20% 30% 40% and 50% with values of water content of 25% 35% and 45% of the mix’s weight. Before testing the different mixes, clayey soil’s properties were determined: Atterbeg limits, soil’s cohesion and friction angle and particle size distribution. In order to evaluate the mechanical properties and behavior of every mix, different tests are conducted: -Direct shear test in order to determine the cohesion and internal friction angle of every mix. -Unconfined compressive strength (stress strain curve) to determine mix’s elastic modulus and compressive strength. Soil samples are prepared in accordance with the ASTM standards, and tested at different times, in order to be able to emphasize the influence of the curing period on the variation of the mix’s mechanical properties and characteristics. As of today, the results obtained are very promising: the mix’s cohesion and friction angle vary in function of the bottom ash percentage, water content and curing period: the cohesion increases enormously before decreasing for a long curing period (values of mix’s cohesion are larger than intact soil’s cohesion) while internal friction angle keeps on increasing even when the curing period is 28 days (the tests largest curing period), which give us a better soil behavior: less cracks and better soil bearing capacity.Keywords: bottom ash, Clayey soil, mechanical properties, tests
Procedia PDF Downloads 177