Search results for: transient efficiency
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7143

Search results for: transient efficiency

3933 A Framework for Green Use and Disposal of Information Communication Technology Devices

Authors: Frezer Alem Kebede

Abstract:

The notion of viewing ICT as merely support for the business process has shifted towards viewing ICT as a critical business enabler. As such, the need for ICT devices has increased, contributing to high electronic equipment acquisition and disposal. Hence, its use and disposal must be seen in light of environmental sustainability, i.e., in terms of green use and disposal. However, there are limited studies on green Use and Disposal framework to be used as guiding lens by organizations in developing countries. And this study endeavors to address that need taking one of the largest multinational ICT intensive company in the country. The design and development of this framework passed through several stages, initially factors affecting green use and disposal were identified after quantitative and qualitative data analysis then there were multiple brainstorming sessions for the design enhancement as participative modelling was employed. Given the difference in scope and magnitude of the challenges identified, the proposed framework approaches green use and disposal in four imperatives; strategically, tactically, operationally and through continuous improvement.

Keywords: energy efficiency, green disposal, green ICT, green use, green use and disposal framework, sustainability

Procedia PDF Downloads 215
3932 Removal of Lead in High Rate Activated Sludge System

Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Mohamed Z. Elshikhipy, Rana Hamouda

Abstract:

The heavy metals pollution in water, sediments and fish of Lake Manzala affected from the disposal of wastewater, industrial and agricultural drainage water into the lake on the environmental situation. A pilot plant with an industrial discharge flow of 135L/h was designed according to the activated sludge plant to simulate between the biological and chemical treatment with the addition of alum to the aeration tank with dosages of 100, 150, 200, and 250 mg/L. The industrial discharge had concentrations of Lead and BOD5 with an average range 1.22, 145mg/L, respectively. That means the average Pb was high up to 25 times than the allowed permissible concentration. The optimization of the chemical-biological process using 200mg/L alum dosage compared has improvement of Lead and BOD5 removal efficiency to 61.76% and 56%, respectively.

Keywords: industrial wastewater, activated sludge, BOD5, lead, alum salt

Procedia PDF Downloads 519
3931 Compositional Influence in the Photovoltaic Properties of Dual Ion Beam Sputtered Cu₂ZnSn(S,Se)₄ Thin Films

Authors: Brajendra S. Sengar, Vivek Garg, Gaurav Siddharth, Nisheka Anadkat, Amitesh Kumar, Shaibal Mukherjee

Abstract:

The optimal band gap (~ 1 to 1.5 eV) and high absorption coefficient ~104 cm⁻¹ has made Cu₂ZnSn(S,Se)₄ (CZTSSe) films as one of the most promising absorber materials in thin-film photovoltaics. Additionally, CZTSSe consists of elements that are abundant and non-toxic, makes it even more favourable. The CZTSSe thin films are grown at 100 to 500ᵒC substrate temperature (Tsub) on Soda lime glass (SLG) substrate by Elettrorava dual ion beam sputtering (DIBS) system by utilizing a target at 2.43x10⁻⁴ mbar working pressure with RF power of 45 W in argon ambient. The chemical composition, depth profiling, structural properties and optical properties of these CZTSSe thin films prepared on SLG were examined by energy dispersive X-ray spectroscopy (EDX, Oxford Instruments), Hiden secondary ion mass spectroscopy (SIMS) workstation with oxygen ion gun of energy up to 5 keV, X-ray diffraction (XRD) (Rigaku Cu Kα radiation, λ=.154nm) and Spectroscopic Ellipsometry (SE, M-2000D from J. A. Woollam Co., Inc). It is observed that from that, the thin films deposited at Tsub=200 and 300°C show Cu-poor and Zn-rich states (i.e., Cu/(Zn + Sn) < 1 and Zn/Sn > 1), which is not the case for films grown at other Tsub. It has been reported that the CZTSSe thin films with the highest efficiency are typically at Cu-poor and Zn-rich states. The values of band gap in the fundamental absorption region of CZTSSe are found to be in the range of 1.23-1.70 eV depending upon the Cu/(Zn+Sn) ratio. It is also observed that there is a decline in optical band gap with the increase in Cu/(Zn+Sn) ratio (evaluated from EDX measurement). Cu-poor films are found to have higher optical band gap than Cu-rich films. The decrease in the band gap with the increase in Cu content in case of CZTSSe films may be attributed to changes in the extent of p-d hybridization between Cu d-levels and (S, Se) p-levels. CZTSSe thin films with Cu/(Zn+Sn) ratio in the range 0.86–1.5 have been successfully deposited using DIBS. Optical band gap of the films is found to vary from 1.23 to 1.70 eV based on Cu/(Zn+Sn) ratio. CZTSe films with Cu/ (Zn+Sn) ratio of .86 are found to have optical band gap close to the ideal band gap (1.49 eV) for highest theoretical conversion efficiency. Thus by tailoring the value of Cu/(Zn+Sn), CZTSSe thin films with the desired band gap could be obtained. Acknowledgment: We are thankful to DIBS, EDX, and XRD facility equipped at Sophisticated Instrument Centre (SIC) at IIT Indore. The authors B. S. S and A. K. acknowledge CSIR, and V. G. acknowledges UGC, India for their fellowships. B. S. S is thankful to DST and IUSSTF for BASE Internship Award. Prof. Shaibal Mukherjee is thankful to DST and IUSSTF for BASE Fellowship and MEITY YFRF award. This work is partially supported by DAE BRNS, DST CERI, and DST-RFBR Project under India-Russia Programme of Cooperation in Science and Technology. We are thankful to Mukul Gupta for SIMS facility equipped at UGC-DAE Indore.

Keywords: CZTSSe, DIBS, EDX, solar cell

Procedia PDF Downloads 251
3930 The Differences between Direct Examination and ELISA Test during the Diagnosis of Fasciolosis in Jaundiced Slaughtered Sheep in Iraq

Authors: Azad A. Meerkhan, Alaa Hani Razak, Bayan M. S. Younis

Abstract:

The efficiency of enzyme-linked immunosorbent assay (ELISA) in sheep infected with Fasciola hepatica was studied. 232 jaundiced sheep among 5208 sheep slaughter in the Duhok abattoir (regardless of the age and gender) between the period of May. 2012 to Oct. 2012 were examined by direct examination (Searching of adult flukes in the bile duct) and by Enzyme-linked immunosorbent assay (ELISA) to detect the prevalence of fascioliasis in the studied population which showed a high observed infection ratio in Sep. 2012 (12.2%) with the high (ELISA) result of infection in May. 2012 (25.36%). Significant differences were found between the two ways in all of the months with the highest difference in May. 2012 and the net deference between the both ways was 6.91%.

Keywords: fascioliasis, Fasciola hepatica, layers, liver fluk, ELISA, direct examination

Procedia PDF Downloads 324
3929 Design Considerations on Cathodic Protection for X65 Steel Tank Containing Fresh Water

Authors: A. M. Al-Sabagh, M. A. Deyab, M. N. Kroush

Abstract:

The present study focused on critical and detailed approach for using aluminum electrode as impressed current anode for cathodic protection of X65 steel tank containing fresh water. The impressed current design calculation showed 0.6 A of current demand and voltage of 0.33 V required to adequately protect the X65 steel tank with internal surface area of 421 m². We used here one transformer rectifier with current and voltage output of 25 A and 25 V, respectively. The data showed that the potentials ranged from -0.474 to -0.509 V (vs. Cu/CuSO₄), prior to the application of cathodic protection. When the potential was measured 1 h after the application of cathodic protection, the potential values showed considerable shift within protection range (-0.950 V vs. Cu/CuSO₄). The results confirmed that aluminum anode can be used in freshwater applications with high efficiency (current capacity) and low consumption rate.

Keywords: cathodic protection, aluminum, steel, fresh water

Procedia PDF Downloads 156
3928 How to Enhance Performance of Universities by Implementing Balanced Scorecard with Using FDM and ANP

Authors: Neda Jalaliyoon, Nooh Abu Bakar, Hamed Taherdoost

Abstract:

The present research recommended balanced scorecard (BSC) framework to appraise the performance of the universities. As the original model of balanced scorecard has four perspectives in order to implement BSC in present research the same model with “financial perspective”, “customer”,” internal process” and “learning and growth” is used as well. With applying fuzzy Delphi method (FDM) and questionnaire sixteen measures of performance were identified. Moreover, with using the analytic network process (ANP) the weights of the selected indicators were determined. Results indicated that the most important BSC’s aspect were Internal Process (0.3149), Customer (0.2769), Learning and Growth (0.2049), and Financial (0.2033) respectively. The proposed BSC framework can help universities to enhance their efficiency in competitive environment.

Keywords: balanced scorecard, higher education, fuzzy delphi method, analytic network process (ANP)

Procedia PDF Downloads 428
3927 Exploration on Extraction of Coalbed Seam in Water Sensitive Reservoir by Combustion of Coal Seams

Authors: Liu Yinga, Bai Xingjiab

Abstract:

The conventional way to exploit coalbed methane is to drop reservoirs pressure through drainage, which means that reducing pressure through water drainage for coalbed methane desorption. However, it has many limitations. In this paper, the recovery by conventional way is low, in order to exploit water-sensitive reservoir, combustion of coal seam is proposed to increase recovery ratio, and then theoretical feasibility is elaborated through four aspects: temperature, pressure, superficial area, competitive adsorption, then given an example of water sensitive reservoir, results can be obtained that recovery is effectively improved through combustion of coal seam. At the same time, the suitability and efficiency of combustion of coal seam determine that it can be widely applied.

Keywords: coalbed methane, drainage decompression, water-sensitive, combustion of coal seams, competitive adsorption

Procedia PDF Downloads 265
3926 Synthesis, Electrochemical and Theoretical Study of Corrosion Inhibition on Carbon Steel in 1M HCl Medium by 2,2'-(piperazine-1,4-diyl)bis(N-(4-bromophenyl)acetamide)

Authors: Tanghourte Mohamed, Ouassou Nazih, El Mesky Mohammed, Znini Mohamed, Mabrouk El Houssine

Abstract:

In the present study, a distinct organic inhibitor, namely 2,2'-(piperazine-1,4-diyl)bis(N-(4-bromophenyl)acetamide) (PBRA), was synthesized and characterized using ¹H, ¹³C NMR, and IR spectroscopy. Subsequently, the inhibition effect of PBRA on the corrosion of carbon steel in 1 M HCl was studied using electrochemical measurements such as potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS). The results showed that the inhibition efficiency increased with concentration, reaching 87% at 10-³M. Furthermore, PBRA remained effective at temperatures ranging from 298 to 328 K. The adsorption of the inhibitor onto carbon steel was well described by the Langmuir adsorption isotherm. Additionally, a correlation between the molecular structure and quantum chemistry indices was established using density functional theory (DFT).

Keywords: synthesis, corrosion, inhibition, piperazine, efficacy, isotherm, acetamide

Procedia PDF Downloads 10
3925 3D Label-Free Bioimaging of Native Tissue with Selective Plane Illumination Optical Microscopy

Authors: Jing Zhang, Yvonne Reinwald, Nick Poulson, Alicia El Haj, Chung See, Mike Somekh, Melissa Mather

Abstract:

Biomedical imaging of native tissue using light offers the potential to obtain excellent structural and functional information in a non-invasive manner with good temporal resolution. Image contrast can be derived from intrinsic absorption, fluorescence, or scatter, or through the use of extrinsic contrast. A major challenge in applying optical microscopy to in vivo tissue imaging is the effects of light attenuation which limits light penetration depth and achievable imaging resolution. Recently Selective Plane Illumination Microscopy (SPIM) has been used to map the 3D distribution of fluorophores dispersed in biological structures. In this approach, a focused sheet of light is used to illuminate the sample from the side to excite fluorophores within the sample of interest. Images are formed based on detection of fluorescence emission orthogonal to the illumination axis. By scanning the sample along the detection axis and acquiring a stack of images, 3D volumes can be obtained. The combination of rapid image acquisition speeds with the low photon dose to samples optical sectioning provides SPIM is an attractive approach for imaging biological samples in 3D. To date all implementations of SPIM rely on the use of fluorescence reporters be that endogenous or exogenous. This approach has the disadvantage that in the case of exogenous probes the specimens are altered from their native stage rendering them unsuitable for in vivo studies and in general fluorescence emission is weak and transient. Here we present for the first time to our knowledge a label-free implementation of SPIM that has downstream applications in the clinical setting. The experimental set up used in this work incorporates both label-free and fluorescent illumination arms in addition to a high specification camera that can be partitioned for simultaneous imaging of both fluorescent emission and scattered light from intrinsic sources of optical contrast in the sample being studied. This work first involved calibration of the imaging system and validation of the label-free method with well characterised fluorescent microbeads embedded in agarose gel. 3D constructs of mammalian cells cultured in agarose gel with varying cell concentrations were then imaged. A time course study to track cell proliferation in the 3D construct was also carried out and finally a native tissue sample was imaged. For each sample multiple images were obtained by scanning the sample along the axis of detection and 3D maps reconstructed. The results obtained validated label-free SPIM as a viable approach for imaging cells in a 3D gel construct and native tissue. This technique has the potential use in a near-patient environment that can provide results quickly and be implemented in an easy to use manner to provide more information with improved spatial resolution and depth penetration than current approaches.

Keywords: bioimaging, optics, selective plane illumination microscopy, tissue imaging

Procedia PDF Downloads 251
3924 Evaluation of Quasi-Newton Strategy for Algorithmic Acceleration

Authors: T. Martini, J. M. Martínez

Abstract:

An algorithmic acceleration strategy based on quasi-Newton (or secant) methods is displayed for address the practical problem of accelerating the convergence of the Newton-Lagrange method in the case of convergence to critical multipliers. Since the Newton-Lagrange iteration converges locally at a linear rate, it is natural to conjecture that quasi-Newton methods based on the so called secant equation and some minimal variation principle, could converge superlinearly, thus restoring the convergence properties of Newton's method. This strategy can also be applied to accelerate the convergence of algorithms applied to fixed-points problems. Computational experience is reported illustrating the efficiency of this strategy to solve fixed-point problems with linear convergence rate.

Keywords: algorithmic acceleration, fixed-point problems, nonlinear programming, quasi-newton method

Procedia PDF Downloads 490
3923 Performance Improvement of Piston Engine in Aeronautics by Means of Additive Manufacturing Technologies

Authors: G. Andreutti, G. Saccone, D. Lucariello, C. Pirozzi, S. Franchitti, R. Borrelli, C. Toscano, P. Caso, G. Ferraro, C. Pascarella

Abstract:

The reduction of greenhouse gases and pollution emissions is a worldwide environmental issue. The amount of CO₂ released by an aircraft is associated with the amount of fuel burned, so the improvement of engine thermo-mechanical efficiency and specific fuel consumption is a significant technological driver for aviation. Moreover, with the prospect that avgas will be phased out, an engine able to use more available and cheaper fuels is an evident advantage. An advanced aeronautical Diesel engine, because of its high efficiency and ability to use widely available and low-cost jet and diesel fuels, is a promising solution to achieve a more fuel-efficient aircraft. On the other hand, a Diesel engine has generally a higher overall weight, if compared with a gasoline one of same power performances. Fixing the MTOW, Max Take-Off Weight, and the operational payload, this extra-weight reduces the aircraft fuel fraction, partially vinifying the associated benefits. Therefore, an effort in weight saving manufacturing technologies is likely desirable. In this work, in order to achieve the mentioned goals, innovative Electron Beam Melting – EBM, Additive Manufacturing – AM technologies were applied to a two-stroke, common rail, GF56 Diesel engine, developed by the CMD Company for aeronautic applications. For this purpose, a consortium of academic, research and industrial partners, including CMD Company, Italian Aerospace Research Centre – CIRA, University of Naples Federico II and the University of Salerno carried out a technological project, funded by the Italian Minister of Education and Research – MIUR. The project aimed to optimize the baseline engine in order to improve its performance and increase its airworthiness features. This project was focused on the definition, design, development, and application of enabling technologies for performance improvement of GF56. Weight saving of this engine was pursued through the application of EBM-AM technologies and in particular using Arcam AB A2X machine, available at CIRA. The 3D printer processes titanium alloy micro-powders and it was employed to realize new connecting rods of the GF56 engine with an additive-oriented design approach. After a preliminary investigation of EBM process parameters and a thermo-mechanical characterization of titanium alloy samples, additive manufactured, innovative connecting rods were fabricated. These engine elements were structurally verified, topologically optimized, 3D printed and suitably post-processed. Finally, the overall performance improvement, on a typical General Aviation aircraft, was estimated, substituting the conventional engine with the optimized GF56 propulsion system.

Keywords: aeronautic propulsion, additive manufacturing, performance improvement, weight saving, piston engine

Procedia PDF Downloads 145
3922 A Hybrid Tabu Search Algorithm for the Multi-Objective Job Shop Scheduling Problems

Authors: Aydin Teymourifar, Gurkan Ozturk

Abstract:

In this paper, a hybrid Tabu Search (TS) algorithm is suggested for the multi-objective job shop scheduling problems (MO-JSSPs). The algorithm integrates several shifting bottleneck based neighborhood structures with the Giffler & Thompson algorithm, which improve efficiency of the search. Diversification and intensification are provided with local and global left shift algorithms application and also new semi-active, active, and non-delay schedules creation. The suggested algorithm is tested in the MO-JSSPs benchmarks from the literature based on the Pareto optimality concept. Different performances criteria are used for the multi-objective algorithm evaluation. The proposed algorithm is able to find the Pareto solutions of the test problems in shorter time than other algorithm of the literature.

Keywords: tabu search, heuristics, job shop scheduling, multi-objective optimization, Pareto optimality

Procedia PDF Downloads 444
3921 Risk Assessment of Building Information Modelling Adoption in Construction Projects

Authors: Amirhossein Karamoozian, Desheng Wu, Behzad Abbasnejad

Abstract:

Building information modelling (BIM) is a new technology to enhance the efficiency of project management in the construction industry. In addition to the potential benefits of this useful technology, there are various risks and obstacles to applying it in construction projects. In this study, a decision making approach is presented for risk assessment in BIM adoption in construction projects. Various risk factors of exerting BIM during different phases of the project lifecycle are identified with the help of Delphi method, experts’ opinions and related literature. Afterward, Shannon’s entropy and Fuzzy TOPSIS (Technique for Order Preference by Similarity to Ideal Situation) are applied to derive priorities of the identified risk factors. Results indicated that lack of knowledge between professional engineers about workflows in BIM and conflict of opinions between different stakeholders are the risk factors with the highest priority.

Keywords: risk, BIM, fuzzy TOPSIS, construction projects

Procedia PDF Downloads 232
3920 A New Class of Conjugate Gradient Methods Based on a Modified Search Direction for Unconstrained Optimization

Authors: Belloufi Mohammed, Sellami Badreddine

Abstract:

Conjugate gradient methods have played a special role for solving large scale optimization problems due to the simplicity of their iteration, convergence properties and their low memory requirements. In this work, we propose a new class of conjugate gradient methods which ensures sufficient descent. Moreover, we propose a new search direction with the Wolfe line search technique for solving unconstrained optimization problems, a global convergence result for general functions is established provided that the line search satisfies the Wolfe conditions. Our numerical experiments indicate that our proposed methods are preferable and in general superior to the classical conjugate gradient methods in terms of efficiency and robustness.

Keywords: unconstrained optimization, conjugate gradient method, sufficient descent property, numerical comparisons

Procedia PDF Downloads 406
3919 Epidemiological, Clinical, Diagnostic Indicators and Treatment Efficiency of Patients with Immune Thrombocytopenic Purpura Diagnosed in Albania

Authors: Sara Grazhdani, Alma Cili, Arben Ivanaj

Abstract:

Immune Thrombocytopenic Purpura is an autoimmune disease characterized by the destruction of platelets by immune mediators, their deficient production in the red bone marrow and increased splenic sequestration, leading to the appearance of thrombocytopenia and increased risk of hemorrhage. Treatment is indicated in patients with low platelet counts (<30 x 10 9 /L) who present clinically with hemorrhagic events or are at increased risk for hemorrhage. The goal of the treatment remains (I) prevention of hemorrhagic events and deaths resulting from them, (II) reaching an adequate level of the number of platelets, (III) treatment of patients with as few toxic effects as possible. Corticosteroid therapy remains the first choice in the treatment of patients with Primary Immune Thrombocytopenic Purpura. Rituximab (Mabthera) remains the first choice in the second line in the treatment of patients with Immune Thrombocytopenic Purpura, refractory to the use of cortisones.

Keywords: ITP, rituximab, prednisolone, relapse

Procedia PDF Downloads 113
3918 An Outsourcing System Model for the Thai Electrical Appliances Industry

Authors: Sudawan Somjai

Abstract:

The purpose of this paper was to find an appropriate outsourcing system model for the Thai electrical appliances industry. The objective was to increase competitive capability of the industry with an outsourcing system. The population for this study was the staff in the selected 10 companies in Thai electrical appliances industry located in Bangkok and the eastern part of Thailand. Data collecting techniques included in-depth interviews, focus group and storytelling techniques. The data was collected from 5 key informants from each company, making a total of 50 informants. The findings revealed that an outsourcing model would consist of important factors including outsourcing system, labor flexibility, capability of business process, manpower management efficiency, cost reduction, business risk elimination, core competency and competitiveness. Different suggestions were made as well in this research paper.

Keywords: outsourcing system, model, Thailand, electrical appliances industry

Procedia PDF Downloads 592
3917 Modeling Intention to Use 3PL Services: An Application of the Theory of Planned Behavior

Authors: Nasrin Akter, Prem Chhetri, Shams Rahman

Abstract:

The present study tested Ajzen’s Theory of Planned Behavior (TPB) model to explain the formation of business customers’ intention to use 3PL services in Bangladesh. The findings show that the TPB model has a good fit to the data. Based on theoretical support and suggested modification indices, a refined TPB model was developed afterwards which provides a better predictive power for intention. Consistent with the theory, the results of a structural equation analysis revealed that the intention to use 3PL services is predicted by attitude and subjective norms but not by perceived behavioral control. Further investigation indicated that the paths between (attitude and intention) and (subjective norms and intention) did not statistically differ between 3PL user and non-user. Findings of this research provide an evidence base to formulate business strategies to increase the use of 3PL services in Bangladesh to enhance productivity and to gain economic efficiency.

Keywords: Bangladesh, intention, third-party logistics, Theory of Planned Behavior

Procedia PDF Downloads 582
3916 Effect of Energy Management Practices on Sustaining Competitive Advantage among Manufacturing Firms: A Case of Selected Manufacturers in Nairobi, Kenya

Authors: Henry Kiptum Yatich, Ronald Chepkilot, Aquilars Mutuku Kalio

Abstract:

Studies on energy management have focused on environmental conservation, reduction in production and operation expenses. However, transferring gains of energy management practices to competitive advantage is importance to manufacturers in Kenya. Success in managing competitive advantage arises out of a firm’s ability in identifying and implementing actions that can give the company an edge over its rivals. Manufacturing firms in Kenya are the highest consumers of both electricity and petroleum products. In this regard, the study posits that transfer of the gains of energy management practices to competitive advantage is imperative. The study was carried in Nairobi and its environs, which hosts the largest number of manufacturers. The study objectives were; to determine the level of implementing energy management regulations on sustaining competitive advantage, to determine the level of implementing company energy management policy on competitive advantage, to examine the level of implementing energy efficient technology on sustaining competitive advantage, and to assess the percentage energy expenditure on sustaining competitive advantage among manufacturing firms. The study adopted a survey research design, with a study population of 145,987. A sample of 384 respondents was selected randomly from 21 proportionately selected firms. Structured questionnaires were used to collect data. Data analysis was done using descriptive statistics (mean and standard deviations) and inferential statistics (correlation, regression, and T-test). Data is presented using tables and diagrams. The study found that Energy Management Regulations, Company Energy Management Policies, and Energy Expenses are significant predictors of Competitive Advantage (CA). However, Energy Efficient Technology as a component of Energy Management Practices did not have a significant relationship with Competitive Advantage. The study revealed that the level of awareness in the sector stood at 49.3%. Energy Expenses in the sector stood at an average of 10.53% of the firm’s total revenue. The study showed that gains from energy efficiency practices can be transferred to competitive strategies so as to improve firm competitiveness. The study recommends that manufacturing firms should consider energy management practices as part of its strategic agenda in assessing and reviewing their energy management practices as possible strategies for sustaining competitiveness. The government agencies such as Energy Regulatory Commission, the Ministry of Energy and Petroleum, and Kenya Association of Manufacturers should enforce the energy management regulations 2012, and with enhanced stakeholder involvement and sensitization so as promote sustenance of firm competitiveness. Government support in providing incentives and rebates for acquisition of energy efficient technologies should be pursued. From the study limitation, future experimental and longitudinal studies need to be carried out. It should be noted that energy management practices yield enormous benefits to all stakeholders and that the practice should not be considered a competitive tool but rather as a universal practice.

Keywords: energy, efficiency, management, guidelines, policy, technology, competitive advantage

Procedia PDF Downloads 384
3915 Optimization Design of Superposition Wave Form Automotive Exhaust Bellows Structure

Authors: Zhang Jianrun, He Tangling

Abstract:

Superposition wave form automotive exhaust bellows is a new type of bellows, which has the characteristics of large compensation, good vibration isolation performance and long life. It has been paid more and more attention and applications in automotive exhaust pipe system. Aiming at the lack of current design methods of superposition wave form automotive exhaust bellows, this paper proposes a response surface parameter optimization method where the fatigue life and vibration transmissibility of the bellows are set as objectives. The parametric modeling of bellow structure is also adopted to achieve the high efficiency in the design. The approach proposed in this paper provides a new way for the design of superposition wave form automotive exhaust bellows. It embodies good engineering application value.

Keywords: superposition wave form, exhaust bellows, optimization, vibration, fatigue life

Procedia PDF Downloads 98
3914 Modeling Metrics for Monitoring Software Project Performance Based on the GQM Model

Authors: Mariayee Doraisamy, Suhaimi bin Ibrahim, Mohd Naz’ri Mahrin

Abstract:

There are several methods to monitor software projects and the objective for monitoring is to ensure that the software projects are developed and delivered successfully. A performance measurement is a method that is closely associated with monitoring and it can be scrutinized by looking at two important attributes which are efficiency and effectiveness both of which are factors that are important for the success of a software project. Consequently, a successful steering is achieved by monitoring and controlling a software project via the performance measurement criteria and metrics. Hence, this paper is aimed at identifying the performance measurement criteria and the metrics for monitoring the performance of a software project by using the Goal Question Metrics (GQM) approach. The GQM approach is utilized to ensure that the identified metrics are reliable and useful. These identified metrics are useful guidelines for project managers to monitor the performance of their software projects.

Keywords: component, software project performance, goal question metrics, performance measurement criteria, metrics

Procedia PDF Downloads 358
3913 The Effect of Cinnamaldehyde on Escherichia coli Survival during Low Temperature Long Time Cooking

Authors: Fuji Astuti, Helen Onyeaka

Abstract:

The aim of the study was to investigate the combine effects of cinnamaldehyde (0.25 and 0.45% v/v) on thermal resistance of pathogenic Escherichia coli during low temperature long time (LT-LT) cooking below 60℃. Three different static temperatures (48, 53 and 50℃) were performed, and the number of viable cells was studied. The starting concentrations of cells were 10⁸ CFU/ml. In this experiment, heat treatment efficiency for safe reduction indicated by decimal logarithm reduction of viable recovered cells, which was monitored for heating over 6 hours. Thermal inactivation was measured by means of establishing the death curves between the mean log surviving cells (log₁₀ CFU/ml) and designated time points (minutes) for each temperature test. The findings depicted that addition of cinnamaldehyde exhibited to elevate the thermal sensitivity of E. coli. However, the injured cells found to be well-adapted to all temperature tests after certain time point of cooking, in which they grew to more than 10⁵ CFU/ml.

Keywords: cinnamaldehyde, decimal logarithm reduction, Escherichia coli, LT-LT cooking

Procedia PDF Downloads 359
3912 ENDO-β-1,4-Xylanase from Thermophilic Geobacillus stearothermophilus: Immobilization Using Matrix Entrapment Technique to Increase the Stability and Recycling Efficiency

Authors: Afsheen Aman, Zainab Bibi, Shah Ali Ul Qader

Abstract:

Introduction: Xylan is a heteropolysaccharide composed of xylose monomers linked together through 1,4 linkages within a complex xylan network. Owing to wide applications of xylan hydrolytic products (xylose, xylobiose and xylooligosaccharide) the researchers are focusing towards the development of various strategies for efficient xylan degradation. One of the most important strategies focused is the use of heat tolerant biocatalysts which acts as strong and specific cleaving agents. Therefore, the exploration of microbial pool from extremely diversified ecosystem is considerably vital. Microbial populations from extreme habitats are keenly explored for the isolation of thermophilic entities. These thermozymes usually demonstrate fast hydrolytic rate, can produce high yields of product and are less prone to microbial contamination. Another possibility of degrading xylan continuously is the use of immobilization technique. The current work is an effort to merge both the positive aspects of thermozyme and immobilization technique. Methodology: Geobacillus stearothermophilus was isolated from soil sample collected near the blast furnace site. This thermophile is capable of producing thermostable endo-β-1,4-xylanase which cleaves xylan effectively. In the current study, this thermozyme was immobilized within a synthetic and a non-synthetic matrice for continuous production of metabolites using entrapment technique. The kinetic parameters of the free and immobilized enzyme were studied. For this purpose calcium alginate and polyacrylamide beads were prepared. Results: For the synthesis of immobilized beads, sodium alginate (40.0 gL-1) and calcium chloride (0.4 M) was used amalgamated. The temperature (50°C) and pH (7.0) optima of immobilized enzyme remained same for xylan hydrolysis however, the enzyme-substrate catalytic reaction time raised from 5.0 to 30.0 minutes as compared to free counterpart. Diffusion limit of high molecular weight xylan (corncob) caused a decline in Vmax of immobilized enzyme from 4773 to 203.7 U min-1 whereas, Km value increased from 0.5074 to 0.5722 mg ml-1 with reference to free enzyme. Immobilized endo-β-1,4-xylanase showed its stability at high temperatures as compared to free enzyme. It retained 18% and 9% residual activity at 70°C and 80°C, respectively whereas; free enzyme completely lost its activity at both temperatures. The Immobilized thermozyme displayed sufficient recycling efficiency and can be reused up to five reaction cycles, indicating that this enzyme can be a plausible candidate in paper processing industry. Conclusion: This thermozyme showed better immobilization yield and operational stability with the purpose of hydrolyzing the high molecular weight xylan. However, the enzyme immobilization properties can be improved further by immobilizing it on different supports for industrial purpose.

Keywords: immobilization, reusability, thermozymes, xylanase

Procedia PDF Downloads 374
3911 Study on Electromagnetic Plasma Acceleration Using Rotating Magnetic Field Scheme

Authors: Takeru Furuawa, Kohei Takizawa, Daisuke Kuwahara, Shunjiro Shinohara

Abstract:

In the field of a space propulsion, an electric propulsion system has been developed because its fuel efficiency is much higher than a conventional chemical one. However, the practical electric propulsion systems, e.g., an ion engine, have a problem of short lifetime due to a damage of generation and acceleration electrodes of the plasma. A helicon plasma thruster is proposed as a long-lifetime electric thruster which has non-direct contact electrodes. In this system, both generation and acceleration methods of a dense plasma are executed by antennas from the outside of a discharge tube. Development of the helicon plasma thruster has been conducting under the Helicon Electrodeless Advanced Thruster (HEAT) project. Our helicon plasma thruster has two important processes. First, we generate a dense source plasma using a helicon wave with an excitation frequency between an ion and an electron cyclotron frequencies, fci and fce, respectively, applied from the outside of a discharge using a radio frequency (RF) antenna. The helicon plasma source can provide a high-density (~1019 m-3), a high-ionization ratio (up to several tens of percent), and a high particle generation efficiency. Second, in order to achieve high thrust and specific impulse, we accelerate the dense plasma by the axial Lorentz force fz using the product of the induced azimuthal current jθ and the static radial magnetic field Br, shown as fz = jθ × Br. The HEAT project has proposed several kinds of electrodeless acceleration schemes, and in our particular case, a Rotating Magnetic Field (RMF) method has been extensively studied. The RMF scheme was originally developed as a concept to maintain the Field Reversed Configuration (FRC) in a magnetically confined fusion research. Here, RMF coils are expected to generate jθ due to a nonlinear effect shown below. First, the rotating magnetic field Bω is generated by two pairs of RMF coils with AC currents, which have a phase difference of 90 degrees between the pairs. Due to the Faraday’s law, an axial electric field is induced. Second, an axial current is generated by the effects of an electron-ion and an electron-neutral collisions through the Ohm’s law. Third, the azimuthal electric field is generated by the nonlinear term, and the retarding torque generated by the collision effects again. Then, azimuthal current jθ is generated as jθ = - nₑ er ∙ 2π fRMF. Finally, the axial Lorentz force fz for plasma acceleration is generated. Here, jθ is proportional to nₑ and frequency of RMF coil current fRMF, when Bω is fully penetrated into the plasma. Our previous study has achieved 19 % increase of ion velocity using the 5 MHz and 50 A of the RMF coil power supply. In this presentation, we will show the improvement of the ion velocity using the lower frequency and higher current supplied by RMF power supply. In conclusion, helicon high-density plasma production and electromagnetic acceleration by the RMF scheme with a concept of electrodeless condition have been successfully executed.

Keywords: electric propulsion, electrodeless thruster, helicon plasma, rotating magnetic field

Procedia PDF Downloads 262
3910 A Patient-Centered Approach to Clinical Trial Development: Real-World Evidence from a Canadian Medical Cannabis Clinic

Authors: Lucile Rapin, Cynthia El Hage, Rihab Gamaoun, Maria-Fernanda Arboleda, Erin Prosk

Abstract:

Introduction: Sante Cannabis (SC), a Canadian group of clinics dedicated to medical cannabis, based in Montreal and in the province of Quebec, has served more than 8000 patients seeking cannabis-based treatment over the past five years. As randomized clinical trials with natural medical cannabis are scarce, real-world evidence offers the opportunity to fill research gaps between scientific evidence and clinical practice. Data on the use of medical cannabis products from SC patients were prospectively collected, leading to a large real-world database on the use of medical cannabis. The aim of this study was to report information on the profiles of both patients and prescribed medical cannabis products at SC clinics, and to assess the safety of medical cannabis among Canadian patients. Methods: This is an observational retrospective study of 1342 adult patients who were authorized with medical cannabis products between October 2017 and September 2019. Information regarding demographic characteristics, therapeutic indications for medical cannabis use, patterns in dosing and dosage form of medical cannabis and adverse effects over one-year follow-up (initial and 4 follow-up (FUP) visits) were collected. Results: 59% of SC patients were female, with a mean age of 56.7 (SD= 15.6, range= (19-97)). Cannabis products were authorized mainly for patients with a diagnosis of chronic pain (68.8% of patients), cancer (6.7%), neurological disorders (5.6%), and mood disorders (5.4 %). At initial visit, a large majority (70%) of patients were authorized exclusively medical cannabis products, 27% were authorized a combination of pharmaceutical cannabinoids and medical cannabis and 3% were prescribed only pharmaceutical cannabinoids. This pattern was recurrent over the one-year follow-up. Overall, oil was the preferred formulation (average over visits 72.5%) followed by a combination of oil and dry (average 19%), other routes of administration accounted for less than 4%. Patients were predominantly prescribed products with a balanced THC:CBD ratio (59%-75% across visits). 28% of patients reported at least one adverse effect (AE) at the 3-month follow-up visit and 12% at the six-month FUP visit. 84.8% of total AEs were mild and transient. No serious AE was reported. Overall, the most common side effects reported were dizziness (11.95% of total AEs), drowsiness (11.4%), dry mouth (5.5%), nausea (4.8%), headaches (4.6%), cough (4.4%), anxiety (4.1%) and euphoria (3.5%). Other adverse effects accounted for less than 3% of total AE. Conclusion: Our results confirm that the primary area of clinical use for medical cannabis is in pain management. Patients in this cohort are largely utilizing plant-based cannabis oil products with a balanced ratio of THC:CBD. Reported adverse effects were mild and included dizziness and drowsiness. This real-world data confirms the tolerable safety profile of medical cannabis and suggests medical indications not yet validated in controlled clinical trials. Such data offers an important opportunity for the investigation of the long-term effects of cannabinoid exposure in real-life conditions. Real-world evidence can be used to direct clinical trial research efforts on specific indications and dosing patterns for product development.

Keywords: medical cannabis, safety, real-world data, Canada

Procedia PDF Downloads 135
3909 Effectuation of Interactive Advertising: An Empirical Study on Egyptian Tourism Advertising

Authors: Bassant Eyada, Hanan Atef Kamal Eldin

Abstract:

Advertising has witnessed a diffusion and development in technology to promote products and services, increasingly relying on the interactivity between the consumer and the advertisement. Consumers seek, self-select, process, use and respond to the information provided, hence, providing the potential to increase consumers’ efficiency, involvement, trustworthiness, response, and satisfaction towards the advertised product or service. The power of interactive personalized messages shifts the focus of traditional advertising to more concentrated consumers, sending out tailored messages with more specific individual needs and preferences, defining the importance and relevance that consumers attach to the advertisement, therefore, enhancing the ability to persuade, and the quality of decision making. In this paper, the researchers seek to discuss and explore innovative interactive advertising, its’ effectiveness on consumers and the benefits the advertisements provide, through designing an interactive ad to be placed at the international airports promoting tourism in Egypt.

Keywords: advertising, effectiveness, interactivity, Egypt

Procedia PDF Downloads 317
3908 Processing of Flexible Dielectric Nanocomposites Using Nanocellulose and Recycled Alum Sludge for Wearable Technology Applications

Authors: D. Sun, L. Saw, A. Onyianta, D. O’Rourke, Z. Lu, C. See, C. Wilson, C. Popescu, M. Dorris

Abstract:

With the rapid development of wearable technology (e.g., smartwatch, activity trackers and health monitor devices), flexible dielectric materials with environmental-friendly, low-cost and high-energy efficiency characteristics are in increasing demand. In this work, a flexible dielectric nanocomposite was processed by incorporating two components: cellulose nanofibrils and alum sludge in a polymer matrix. The two components were used in the reinforcement phase as well as for enhancing the dielectric properties; they were processed using waste materials that would otherwise be disposed to landfills. Alum sludge is a by-product of the water treatment process in which aluminum sulfate is prevalently used as the primary coagulant. According to the data from a project partner-Scottish Water: there are approximately 10k tons of alum sludge generated as a waste from the water treatment work to be landfilled every year in Scotland. The industry has been facing escalating financial and environmental pressure to develop more sustainable strategies to deal with alum sludge wastes. In the available literature, some work on reusing alum sludge has been reported (e.g., aluminum recovery or agriculture and land reclamation). However, little work can be found in applying it to processing energy materials (e.g., dielectrics) for enhanced energy density and efficiency. The alum sludge was collected directly from a water treatment plant of Scottish Water and heat-treated and refined before being used in preparing composites. Cellulose nanofibrils were derived from water hyacinth, an invasive aquatic weed that causes significant ecological issues in tropical regions. The harvested water hyacinth was dried and processed using a cost-effective method, including a chemical extraction followed by a homogenization process in order to extract cellulose nanofibrils. Biodegradable elastomer polydimethylsiloxane (PDMS) was used as the polymer matrix and the nanocomposites were processed by casting raw materials in Petri dishes. The processed composites were characterized using various methods, including scanning electron microscopy (SEM), rheological analysis, thermogravimetric and X-ray diffraction analysis. The SEM result showed that cellulose nanofibrils of approximately 20nm in diameter and 100nm in length were obtained and the alum sludge particles were of approximately 200um in diameters. The TGA/DSC analysis result showed that a weight loss of up to 48% can be seen in the raw material of alum sludge and its crystallization process has been started at approximately 800°C. This observation coincides with the XRD result. Other experiments also showed that the composites exhibit comprehensive mechanical and dielectric performances. This work depicts that it is a sustainable practice of reusing such waste materials in preparing flexible, lightweight and miniature dielectric materials for wearable technology applications.

Keywords: cellulose, biodegradable, sustainable, alum sludge, nanocomposite, wearable technology, dielectric

Procedia PDF Downloads 86
3907 The Analgesic Effect of Electroacupuncture in a Murine Fibromyalgia Model

Authors: Bernice Jeanne Lottering, Yi-Wen Lin

Abstract:

Introduction: Chronic pain has a definitive lack of objective parameters in the measurement and treatment efficacy of diseases such as Fibromyalgia (FM). Persistent widespread pain and generalized tenderness are the characteristic symptoms affecting a large majority of the global population, particularly females. This disease has indicated a refractory tendency to conventional treatment ventures, largely resultant from a lack of etiological and pathogenic understanding of the disease development. Emerging evidence indicates that the central nervous system (CNS) plays a critical role in the amplification of pain signals and the neurotransmitters associated therewith. Various stimuli have been found to activate the channels existent on nociceptor terminals, thereby actuating nociceptive impulses along the pain pathways. The transient receptor potential vanalloid 1 (TRPV1) channel functions as a molecular integrator for numerous sensory inputs, such as nociception, and was explored in the current study. Current intervention approaches face a multitude challenges, ranging from effective therapeutic interventions to the limitation of pathognomonic criteria resultant from incomplete understanding and partial evidence on the mechanisms of action of FM. It remains unclear whether electroacupuncture (EA) plays an integral role in the functioning of the TRPV1 pathway, and whether or not it can reduce the chronic pain induced by FM. Aims: The aim of this study was to explore the mechanisms underlying the activation and modulation of the TRPV1 channel pathway in a cold stress model of FM applied to a murine model. Furthermore, the effect of EA in the treatment of mechanical and thermal pain, as expressed in FM was also to be investigated. Methods: 18 C57BL/6 wild type and 6 TRPV1 knockout (KO) mice, aged 8-12 weeks, were exposed to an intermittent cold stress-induced fibromyalgia-like pain model, with or without EA treatment at ZusanLi ST36 (2Hz/20min) on day 3 to 5. Von Frey and Hargreaves behaviour tests were implemented in order to analyze the mechanical and thermal pain thresholds on day 0, 3 and 5 in control group (C), FM group (FM), FM mice with EA treated group (FM + EA) and FM in KO group. Results: An increase in mechanical and thermal hyperalgesia was observed in the FM, EA and KO groups when compared to the control group. This initial increase was reduced in the EA group, which directs focus at the treatment efficacy of EA in nociceptive sensitization, and the analgesic effect EA has attenuating FM associated pain. Discussion: An increase in the nociceptive sensitization was observed through higher withdrawal thresholds in the von Frey mechanical test and the Hargreaves thermal test. TRPV1 function in mice has been scientifically associated with these nociceptive conduits, and the increased behaviour test results suggest that TRPV1 upregulation is central to the FM induced hyperalgesia. This data was supported by the decrease in sensitivity observed in results of the TRPV1 KO group. Moreover, the treatment of EA showed a decrease in this FM induced nociceptive sensitization, suggesting TRPV1 upregulation and overexpression can be attenuated by EA at bilateral ST36. This evidence compellingly implies that the analgesic effect of EA is associated with TRPV1 downregulation.

Keywords: fibromyalgia, electroacupuncture, TRPV1, nociception

Procedia PDF Downloads 141
3906 Food Safety in Wine: Removal of Ochratoxin a in Contaminated White Wine Using Commercial Fining Agents

Authors: Antònio Inês, Davide Silva, Filipa Carvalho, Luís Filipe-Riberiro, Fernando M. Nunes, Luís Abrunhosa, Fernanda Cosme

Abstract:

The presence of mycotoxins in foodstuff is a matter of concern for food safety. Mycotoxins are toxic secondary metabolites produced by certain molds, being ochratoxin A (OTA) one of the most relevant. Wines can also be contaminated with these toxicants. Several authors have demonstrated the presence of mycotoxins in wine, especially ochratoxin A. Its chemical structure is a dihydro-isocoumarin connected at the 7-carboxy group to a molecule of L-β-phenylalanine via an amide bond. As these toxicants can never be completely removed from the food chain, many countries have defined levels in food in order to attend health concerns. OTA contamination of wines might be a risk to consumer health, thus requiring treatments to achieve acceptable standards for human consumption. The maximum acceptable level of OTA in wines is 2.0 μg/kg according to the Commission regulation No. 1881/2006. Therefore, the aim of this work was to reduce OTA to safer levels using different fining agents, as well as their impact on white wine physicochemical characteristics. To evaluate their efficiency, 11 commercial fining agents (mineral, synthetic, animal and vegetable proteins) were used to get new approaches on OTA removal from white wine. Trials (including a control without addition of a fining agent) were performed in white wine artificially supplemented with OTA (10 µg/L). OTA analyses were performed after wine fining. Wine was centrifuged at 4000 rpm for 10 min and 1 mL of the supernatant was collected and added of an equal volume of acetonitrile/methanol/acetic acid (78:20:2 v/v/v). Also, the solid fractions obtained after fining, were centrifuged (4000 rpm, 15 min), the resulting supernatant discarded, and the pellet extracted with 1 mL of the above solution and 1 mL of H2O. OTA analysis was performed by HPLC with fluorescence detection. The most effective fining agent in removing OTA (80%) from white wine was a commercial formulation that contains gelatin, bentonite and activated carbon. Removals between 10-30% were obtained with potassium caseinate, yeast cell walls and pea protein. With bentonites, carboxymethylcellulose, polyvinylpolypyrrolidone and chitosan no considerable OTA removal was verified. Following, the effectiveness of seven commercial activated carbons was also evaluated and compared with the commercial formulation that contains gelatin, bentonite and activated carbon. The different activated carbons were applied at the concentration recommended by the manufacturer in order to evaluate their efficiency in reducing OTA levels. Trial and OTA analysis were performed as explained previously. The results showed that in white wine all activated carbons except one reduced 100% of OTA. The commercial formulation that contains gelatin, bentonite and activated carbon reduced only 73% of OTA concentration. These results may provide useful information for winemakers, namely for the selection of the most appropriate oenological product for OTA removal, reducing wine toxicity and simultaneously enhancing food safety and wine quality.

Keywords: wine, ota removal, food safety, fining

Procedia PDF Downloads 542
3905 Synergistic Extraction of Cobalt (II) from Sulfate Medium by Mixtures of Capric Acid and Methyl Isobutyl Cétone in Chloroform

Authors: F. Adjel, C. Bensmail, S. Almi, D. Barkat

Abstract:

The synergistic solvent extraction of cobalt (II) from 0.33 mol dm^-3 Na2SO4 aqueous solutions with capric acid (HL) in the absence and presence of methyl isobutyl cétone (MIBK) in chloroform at 25°C, has been studied. The extracted species when the capric acid compound was used alone, is CoL2(HL)2. In the presence of MIBK, a remarkable enhancement on the extraction of nickel (II) with 0.02 mol dm^-3 capric acid was observed upon the addition of 0.0025 to 0.01 mol dm^-3 MIBK in chloroform. From a synergistic extraction-equilibrium study, the synergistic enhancement was ascribed to the adduct formation CoL2(HL)2 n(MIBK). The MIBK-HL interaction strongly influences the synergistic extraction efficiency. The synergistic extraction stoichiometry of cobalt (II) with capric acid and MIBK is studied with the methods of slope analysis. The equilibrium constants were determined.

Keywords: solvent extraction, cobalt (II), capric acid, MIBK, synergism

Procedia PDF Downloads 496
3904 Robust Control of Traction Motors based Electric Vehicles by Means of High-Gain

Authors: H. Mekki, A. Djerioui, S. Zeghlache, L. Chrifi-Alaoui

Abstract:

Induction motor (IM)Induction motor (IM) are nowadays widely used in industrial applications specially in electric vehicles (EVs) and traction locomotives, due to their high efficiency high speed and lifetime. However, since EV motors are easily influenced by un-certainties parameter variations and external load disturbance, both robust control techniques have received considerable attention during the past few decades. This paper present a robust controller design based sliding mode control (SMC) and high gain flux observer (HGO) for induction motor (IM) based Electric Vehicles (EV) drives. This control technique is obtained by the combination between the field oriented and the sliding mode control strategy and present remarkable dynamic performances just as a good robustness with respect to EV drives load torque. A high gain flux observer is also presented and associated in order to design sensorless control by estimating the rotor flux only using measurements of the stator voltages and currents. Simulations results are provided to evaluate the consistency and to show the effectiveness of the proposed SMC strategy also the performance of the HGO for Electric Vehicles system are nowadays widely used in industrial applications specially in electric vehicles (EVs) and traction locomotives, due to their high efficiency high speed and lifetime. However, since EV motors are easily influenced by un-certainties parameter variations and external load disturbance, both robust control techniques have received considerable attention during the past few decades. This paper present a robust controller design based sliding mode control (SMC) and high gain flux observer (HGO) for induction motor (IM) based Electric Vehicles (EV) drives. This control technique is obtained by the combination between the field oriented and the sliding mode control strategy and present remarkable dynamic performances just as a good robustness with respect to EV drives load torque. A high gain flux observer is also presented and associated in order to design sensorless control by estimating the rotor flux only using measurements of the stator voltages and currents. Simulations results are provided to evaluate the consistency and to show the effectiveness of the proposed SMC strategy also the performance of the HGO for Electric Vehicles system.

Keywords: electric vehicles, sliding mode control, induction motor drive, high gain observer

Procedia PDF Downloads 75